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Abstract 
 

Recent genome-wide association studies in stroke have enabled the generation of 
genomic risk scores (GRS) but the predictive power of these GRS has been modest 
in comparison to established stroke risk factors. Here, using a meta-scoring approach, 
we developed a metaGRS for ischaemic stroke (IS) and analysed this score in the UK 
Biobank (n=395,393; 3075 IS events by age 75). The metaGRS hazard ratio for IS 
(1.26, 95% CI 1.22–1.31 per standard deviation increase of the score) doubled that of 
previous GRS, enabling the identification of a subset of individuals at monogenic levels 
of risk: individuals in the top 0.25% of metaGRS had a three-fold increased risk of IS. 
The metaGRS was similarly or more predictive when compared to established risk 
factors, such as family history, blood pressure, body mass index and smoking status. 
For participants within accepted guideline levels for established stroke risk factors, we 
found substantial variation in incident stroke rates across genomic risk backgrounds. 
We further estimated combinations of reductions needed in modifiable risk factors for 
individuals with different levels of genomic risk and suggest that, for individuals with 
high metaGRS, achieving currently recommended risk factor levels may be insufficient 
to mitigate risk.  
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Introduction 
 

Stroke is a leading cause of death worldwide and the leading cause of permanent 
disability1,2. About 80% of stroke cases are of ischaemic origin3. The risk of ischaemic 
stroke is determined by a complex interplay of genetic and environmental factors partly 
acting through modifiable risk factors such as hypertension and diabetes. Roughly 
thirty-five genomic loci have been robustly associated with stroke4-7, and many more 
genetic associations have been reported for stroke-related risk factors8-14, e.g., over 
1,000 loci have been associated with blood pressure (BP)11,15-19 and >100 with atrial 
fibrillation (AF)10,20. These data are now beginning to be harnessed to aid risk 
prediction. 

Recent work has highlighted the potential of genomic risk scores (GRS) for risk 
prediction of common diseases21-24. Genomic risk prediction has a notable advantage 
over established risk factors as it could be used to infer risk of disease from birth, thus 
allowing the initiation of preventive strategies before conventional risk factors manifest 
and their discriminative capacity begins to emerge. 

For stroke, a recent 90-SNP GRS derived from the MEGASTROKE GWAS meta-
analysis4 showed that genetic and lifestyle factors are independently associated with 
incident stroke24, and that even among individuals with high GRS, lifestyle factors had 
a large impact on risk, implying that risk could be reduced in those with high genetic 
predisposition for stroke. However, in contrast to GRSs for other cardiovascular 
diseases like coronary artery disease (CAD)21-23, the predictive power of previous GRS 
for stroke has been limited25-27, likely because of limited genetic data for stroke and 
the well-known heterogeneity of the stroke phenotype4,7. Recent analytical advances 
have enabled more powerful GRS construction, such as those leveraging multiple sets 
of GWAS summary statistics21,28, potentially allowing for power and heterogeneity 
limitations to be overcome. Specifically, for CAD, an approach, where multiple GRSs 
are combined into one metaGRS, was found to improve risk prediction over any one 
of the individual CAD GRS21. Such an approach may be widened to provide 
substantively improved genomic prediction of stroke. 

Here, we extended the metaGRS strategy to predict ischaemic stroke by incorporating 
GWAS summary statistics for stroke and its etiological subtypes ischaemic stroke (IS) 
as along with GWAS summary statistics for those of 19 other risk factors and co-
morbidities of ischaemic stroke (IS). This new IS metaGRS was validated and 
compared to previously published GRS using UK Biobank29,30. We next compared the 
predictive capacity of the IS metaGRS to established non-genetic risk factors for IS. 
Finally, we assessed the additional information provided by the metaGRS in 
combination with current guidelines for the treatment of established IS risk factors and 
created joint models which predict absolute risk of incident IS.  

 

Results 
 
Derivation of a metaGRS for ischaemic stroke 
To create the GRSs we randomly split the UK Biobank (UKB) British white dataset 
(n=407,388) into a derivation (n=11,995) and validation set (n=395,393; Methods, 
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Figure 1, Table 1). In order to increase statistical power in the derivation phase, we 
enriched the derivation set (n=11,995) with ischaemic stroke events (n=888, 7.4%). A 
schematic of the overall study design is given in Figure 1. 
We used GWAS summary statistics that did not include the UKB for five stroke 
outcomes and 14 stroke-related phenotypes (Supplementary Table 1) to generate 
19 GRSs associated with ischaemic stroke (Figure 1). As expected, the 19 individual 
GRSs were correlated with each other in several distinct clusters: (i) any stroke (AS), 
ischaemic stroke (IS), cardioembolic stroke (CES), large artery stroke (LAS), and small 
vessel stroke (SVS); (ii) the three CAD scores (1KGCAD, 46K, and FDR202); (iii) total 
cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL), and high 
density lipoprotein cholesterol (HDL); (iv) systolic blood pressure (SBP) and diastolic 
blood pressure (DBP); and (v) body mass index (BMI) and type 2 diabetes (T2D) 
(Figure 2). From the 19 distinct GRSs, we constructed the metaGRS using elastic-net 
logistic regression with 10-fold cross-validation on the derivation set (Figure 1; 
metaGRS; model weights are shown in Supplementary Figure 1), and subsequently 
converted the model to a set of 3.2 million SNP weights, which have been made freely 
available (https://dx.doi.org/10.6084/m9.figshare.8202233). 
 
The metaGRS improves risk prediction of ischaemic stroke compared to other 
genetic scores 
Using the independent UKB validation set, we next quantified the risk prediction 
performance of the metaGRS, and evaluated its association with IS via survival 
analysis. The metaGRS was associated with IS with a HR of 1.26 (95% CI 1.22–1.31) 
per standard deviation of metaGRS, which was stronger than any individual GRS 
comprising the metaGRS and was twice the effect size of the previously published 90-
SNP IS GRS24 (HR=1.13 [95% CI 1.10–1.17]; Supplementary Figure 2a). The 
metaGRS also increased the C-index by 0.029 over the 90-SNP GRS 
(Supplementary Figure 2b). We also assessed the performance of the IS metaGRS 
for predicting the any stroke (AS) outcome. We found the associations were 
consistently weaker for AS than for IS, however, as with IS, the metaGRS was a 
stronger predictor of AS than the 90-SNP GRS score (Supplementary Figure 2). 
In a Kaplan-Meier analysis of IS, the top and bottom 10% of the metaGRS showed 
substantial differences in cumulative incidence of IS (Supplementary Figure 3; log-
rank test between the top decile and the 45–55% decile: P=3×10-6); these results were 
consistent with a Cox proportional hazards model of the metaGRS assessing the HRs 
for the top 10% decile vs the middle 45–55% decile (Supplementary Figure 4). The 
top 0.25% of the population were at a three-fold increased risk of IS versus the middle 
decile (45–55%), with HR=3.0 (95% CI 1.96–4.59) (Figure 3). 
There was no evidence for a statistical interaction of the metaGRS with sex on IS 
hazard (P=0.614), indicating that the substantial differences in cumulative incidence 
between the sexes were driven by differences in baseline hazards rather than by any 
sex-specific effects of the metaGRS itself. 
 
The ischaemic stroke metaGRS has comparable or higher predictive power than 
established risk factors 
We next compared the performance of the metaGRSs with established risk factors31 
for predicting IS. We examined seven established risk factors at first UKB assessment: 
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LDL cholesterol, SBP, family history of stroke, BMI, diabetes diagnosed by a doctor, 
current smoking, and hypertension (an expanded definition based on SBP/DBP 
measurements, BP medication usage, self-reporting, and hospital records; Methods). 
As expected, established risk factors were positively associated with incident IS, with 
hypertension being the strongest risk factor (Supplementary Figure 5). Notably, the 
HR of the metaGRS (incident IS HR=1.25 per s.d.) was similar to that of SBP (incident 
IS HR=1.28 per s.d., where the s.d. of SBP was 21.7mmHg) and current smoking 
(incident IS HR=1.25, s.d.=0.3) (Supplementary Figure 5). 
Comparison of the C-index for time to incident IS revealed that blood pressure 
phenotypes, hypertension and SBP (C=0.590 [95% CI 0.577–0.603]; C=0.584 [95% 
CI 0.570–0.598], respectively), had the largest C-indices followed by the metaGRS 
(C=0.580 [95% CI 0.566–0.593]) and the other established risk factors (Figure 4). 
Notably, the metaGRS had a greater C-index than family history of stroke (C=0.558, 
95% CI 0.544–0.572; Figure 4). The metaGRS and hypertension contained similar 
additional information on top of the other risk factors; adding either the metaGRS or 
hypertension to the six other risk factors yielded similar predictive power, C=0.629 
(95% CI 0.615–0.643) and C=0.628 (95% 0.614–0.641), respectively. Finally, adding 
both the metaGRS and hypertension to the six risk factors yielded the model with the 
highest C-index, C=0.637 (95% CI 0.623–0.650) (Figure 4). 
  
The metaGRS contributes to ischaemic stroke risk independent of established 
risk factors 
Given that the metaGRS is composed of GRSs for stroke and stroke risk factors, we 
conducted several complementary analyses to assess the association of the 
metaGRS with these risk factors, and whether the metaGRS was associated with IS 
risk independently of these risk factors. As expected, the IS metaGRS was positively 
and significantly associated with all seven risk factors (Supplementary Table 2). 
Adjusting for these risk factors as well as BP-lowering and/or lipid-lowering medication 
status only modestly attenuated the association of the metaGRS with incident IS 
(Supplementary Figure 6), indicating that the information contained in the metaGRS 
was only partially explained by these factors. On the other hand, adjusting for the 
metaGRS modestly but consistently attenuated the association of each risk factor itself 
with IS risk (Supplementary Figure 5). There was no evidence for statistical 
interaction of the metaGRS effects on IS with medication status at assessment (logistic 
regression, P=0.23 and P=0.82 for interaction of the metaGRS with BP medication 
and cholesterol-lowering medication, respectively). 
 
 
Predicting ischaemic stroke risk with established risk factors and the metaGRS 
The clinical utility of a GRS depends on its performance in combination with 
established risk factors and risk models. To examine this, we conducted analyses 
integrating information on risk factor levels based on (i) recent ACC / AHA / AAPA / 
ABC / ACPM / AGS / APhA / ASH / ASPC / NMA / PCNA guidelines32 (SBP<120 
mmHg); (ii) AHA / ASA guidelines for primary prevention of stroke31 (BMI<25 kg/m2); 
(iii) smoking status and diabetes status. We used Cox models of these established 
risk factors and the metaGRS together with the estimated baseline cumulative hazards 
to predict cumulative incidence of IS for individuals with a high metaGRS (top 1%), 
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average metaGRS (50%), and low metaGRS (bottom 1%) along with two levels of risk 
factors: (i) meeting guideline targets for the above risk factors32 and (ii) the following 
combination of risk factors representative of an individual at typical stroke risk: 
SBP=140 mmHg, BMI=30 kg/m2, current smoking, and no diagnosed diabetes. 
The predicted risk of IS for individuals with a high metaGRS (top 1%) and high levels 
of risk factors was maximal by age 75, reaching a cumulative incidence of 8.5% (95% 
CI 5.2–11.6%) for males and 5.1% (95% CI 3.1–7.1%) for females (Figure 5a). 
Effective reduction in the levels of the modifiable risk factors (SBP, BMI, and smoking) 
to match guideline targets was predicted to result in a substantial reduction in risk, 
down to 2.8% (95% CI 1.7–3.9%) for males and 1.7% (95% CI 1.0–2.4%) for females 
by age 75, thus substantially compensating for the high genomic risk. 
Conversely, for individuals matching the guidelines for established risk factors (Figure 
5b), there were notable differences in IS incidence for individuals in the top (1%) 
compared to the bottom (1%) of the metaGRS; with 2.8% (95% CI 1.7–3.9%) versus 
1.2% (95% CI 0.7–1.7%) in males and 1.7% (95% CI 1.0–2.4%) versus 0.7% (95% CI 
0.4–1.0%) in females, respectively, by age 75. These results further indicate that the 
metaGRS captures residual risk of stroke not quantified by existing risk factors.  
 
 
Discussion 
In this study, we developed a genomic risk score for ischaemic stroke based on GWAS 
summary statistics for 19 stroke and stroke-related traits. We quantify the predictive 
power of the IS metaGRS by comparing it to previously published genetic scores and 
measures of established non-genetic risk factors, and demonstrate its added value in 
combination with established risk factors and in the context of current guidelines for 
primary stroke prevention. While genomic risk scores for stroke are not yet at the level 
necessary for clinical translation, our analyses constitute several significant advances. 
First, we showed that the IS metaGRS had stronger association with IS than previously 
published genetic scores, doubling the effect size of the most recent genetic score. To 
put its performance in context, we estimated the IS metaGRS identified the 1 in 400 
individuals who were at 3-fold increased risk of IS, a level of risk and frequency similar 
to common monogenic cardiovascular diseases, such as familial 
hypercholesterolemia (FH), a risk factor for myocardial infarction33. Monogenic forms 
of stroke, such as CADASIL, are relatively rare34, thus the IS metaGRS may represent 
a potential new avenue to more common polygenic risk stratification, in combination 
with established risk factors.  
Second, the IS metaGRS had comparable predictive power to systolic blood pressure, 
and higher predictive power than other established risk factors measured, apart from 
hypertension, and captured residual risk not quantified by the established risk factors. 
In anticipation of a potential role in early screening, we estimate the risk reduction 
through modifiable stroke risk factors across different metaGRS backgrounds, and 
further show that current guidelines for stroke risk factors may be insufficiently 
stringent for individuals at high metaGRS. 
Third, we explicitly modelled how changes in modifiable risk factors, such as systolic 
blood pressure and body mass index, can compensate for high genomic risk. Previous 
research has demonstrated that intervening on modifiable risk factors can compensate 
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for increased genetic risk of disease21,35. However, these analyses relied on simply 
counting the number of elevated risk factors, which does not account for the 
differences in effect size between various risk factors. Importantly, our approach was 
flexible in that various combinations of risk factor reductions can lead to the same 
outcome in terms of risk. 
Our approach shows, for different genomic risk backgrounds, how modifiable risk 
factors could, in principle, be tailored to an individual’s ability to reduce an established 
risk factor(s) while maintaining an overall acceptable level of absolute risk. Similarly, 
this approach could potentially be used to guide early prevention of stroke: identifying 
individuals at increased risk early in life, who would then be targeted for more intensive 
lifestyle modifications, similar to the roles that have been proposed for genetics in 
cancer risk stratification36. Unlike most established risk factors which may vary over 
time and are typically not informative at an early age, the metaGRS remains stable 
and can be derived from birth. Later in life, when measurements of established risk 
factors are available, these can be further combined with the metaGRS to give the 
most accurate prediction of a person’s risk of incident stroke. Further research is 
required to determine what levels of risk factor reductions will be achievable and cost 
effective in practice. 
Lastly, even for individuals within risk factor levels recommended by current guidelines 
(SBP<120, BMI<25, not currently smoking, no diagnosed diabetes), our models 
predict substantial differences in risk between different metaGRS levels. These results 
suggest that for individuals with high metaGRS, achieving currently recommended risk 
factor levels may not be sufficient and that it is time to contemplate whether future 
guidelines on primary and secondary stroke prevention should integrate genetic 
information when defining treatment goals for high risk individuals. 
Our study has several limitations. The GWAS for stroke are still themselves limited by 
phenotypic heterogeneity and are less powered compared to other common diseases, 
such as CAD21. As stroke GWAS progress, genomic risk scores will become more 
powerful37,38. We did not observe substantial advantage from incorporating GRSs 
based on GWAS summary statistics for specific IS subtypes (LAS, CES, SVS) over 
that of IS as a whole. However, there may be benefit from developing subtype-specific 
scores that take advantage of the unique genetic architecture of each subtype39. The 
number of older individuals (>75 years) in UKB is limited at this stage, reducing our 
ability to model stroke risk in the age strata where the majority of events occur. 
Furthermore, the duration of follow-up in UKB is relatively limited and, because of the 
limited number of assessments, we could not model the cumulative effect of BP and 
smoking over time; however, we accounted for potential regression dilution bias in 
SBP measurements via the use of diagnosed hypertension, which showed stronger 
associations with stroke. Family history of stroke in UKB may be less comprehensive 
than in stroke-specific studies, limiting its predictive power, and overall the UKB study 
population is healthier than the general UK population40, which could have led to 
underestimation of some of the effects of risk factors. Our modelling assumes that risk 
factors, such as SBP and BMI, can be varied independently of each other. In practice, 
common lifestyle interventions such as exercise and diet will likely affect several risk 
factors at a time. Finally, this study focused on British white ancestry, and further 
studies are required to validate these scores in other populations41. 
Taken together, despite challenges in phenotypic heterogeneity and corresponding 
GWAS power, our study presents the most powerful ischaemic stroke genomic risk 
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score to date and assesses its potential for risk stratification in the context of 
established risk factors and clinical guidelines. It lays the groundwork for larger GWAS 
of stroke and its multiple sub-types as well as analyses which leverage the totality of 
information available for stroke genomic risk prediction. 
 
 
 
Methods 
 
Study participants 
The UK Biobank (UKB) study29,30 included individuals from the general UK population, 
aged between 40–69 years at recruitment. Recruitment included a standardised socio-
demographic questionnaire, as well as medical history, family history, and other 
lifestyle factors. Several physical measurements (e.g., height, weight, waist-hip ratio, 
systolic and diastolic BP) were taken at assessment. 

Individual records were linked to the Hospital Episode Statistics (HES) records and 
the national death and cancer registries. The age of event was age at the primary 
stroke event (the diagnostic algorithm for stroke in UKB can be found at 
http://biobank.ndph.ox.ac.uk/showcase/docs/alg_outcome_stroke.pdf; last accessed 
11/04/2019). 

We defined stroke risk factors at the first assessment, including: diabetes diagnosed 
by a doctor (field #2443), body mass index (BMI; field #21001), current smoking (field 
#20116), hypertension, family history of stroke, and high cholesterol. For hypertension 
we used an expanded definition including self-reported high blood pressure (either on 
blood pressure medication, data fields #6177, #6153; or systolic blood pressure >140 
mmHg, fields #4080, #93; or diastolic blood pressure >90 mmHg, data fields #4079, 
#94) as well as hospital records; for registry cases, we use HESIN (hospital admission) 
and death registry data including both primary and secondary diagnoses / causes of 
death (HESIN: ICD9 401–405, ICD10 I10–I15; death: ICD10 I10–I15, data fields 
#40001, #40002). For family history of stroke, we considered history in any first degree 
relative (father, mother, sibling; fields #20107, 20110, and 20111, respectively). 
 
We excluded individuals with withdrawn consent, self-reported stroke at age <20 years 
due the potential unreliability of these records, and those not of British white ancestry 
(identified via the UKB field ‘in.white.British.ancestry.subset’29), leaving a total of 
n=407,388 individuals. We censored the age of stroke at 75y. 
 
For individuals on BP-lowering medication, we adjusted systolic blood pressure by 
adding +15mmHg as per Evangelou et al16,42. We used LDL-cholesterol from the UKB 
biomarker panel, measured at first UKB assessment. For individuals on lipid-lowering 
medication at the time of assessment (n=66,737), we adjusted the measured LDL-
cholesterol level by +1.5 mmol/L. 
 
Genotyping quality control 
The UKB v2 genotypes were genotyped on the UKB Axiom array, and imputed to the 
Haplotype Reference Consortium (HRC) by the UKB29; SNPs on the 
UK10K/1000Genomes panel were excluded from the current analysis. Imputed 
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genotypes were converted to PLINK hard calls. For the initial GRS analysis, we 
considered genotyped or HRC-imputed SNPs with imputation INFO >0.01 and global 
MAF >0.001 (14.5M autosomal SNPs). A further QC step was performed on the final 
metaGRS (see below). 

 
Generation of the metaGRS 
We randomly sampled n=11,995 individuals from the UKB dataset, oversampling 
individuals with any stroke (AS) events, leading to 2065 individuals with AS (of which 
889 were also IS events) and 9935 non-AS referents. This subset was used for 
developing GRSs, and was excluded from all further analysis. Five individuals were 
later removed due to withdrawn consent. 
Using the UKB derivation set, we generated 19 GRSs for phenotypes associated with 
stroke (Supplementary Table 1). To minimise the risk of over-fitting due to inclusion 
of the same individuals in the derivation and validation datasets we selected GWAS 
that did not include the UK Biobank in their meta-analysis. 
The three CAD GRSs (46K, 1KGCAD, FDR202) were generated previously using an 
n=3000 derivation subset of the UKB (included in the larger n=12,000 subset 
employed here)21. The AF GRS was defined previously43. For the remaining GRSs, 
we used published summary statistics to generate a range of scores based on different 
r2 thresholds with PLINK 44 LD thinning (--indep-pairwise), and selected one optimal 
model (in terms of the largest magnitude hazard ratio), resulting in one representative 
GRS for each set of summary statistics. 
Each GRS was standardised (zero mean, unit standard deviation) over the entire 
dataset. Next, we employed elastic-net logistic regression45 using the R package 
‘glmnet’46 to model the associations between the 19 GRSs and stroke, adjusting for 
sex, genotyping chip (UKB vs BiLEVE), and 10 genetic PCs. A range of models with 
different penalties were evaluated using 10-fold cross-validation. The best model, in 
terms of highest cross-validated AUC (area under receiving-operator characteristic 
curve), was selected as the final model and held fixed for validation in the rest of the 
UKB data. The final adjusted coefficients for each GRS (odds ratios) in the penalised 
logistic regression are shown in Supplementary Figure 1, in comparison with the 
univariate estimates (based on one GRS at a time). 
The final per-GRS log odds 𝛾", … , 𝛾"% were converted to an equivalent per-SNP score 
via a weighted sum 

GRS)*+,- ∝ 𝑥)0
𝛾"
𝜎"
𝛼0" + ⋯+

𝛾"%
𝜎"%

𝛼0"% ,
5

06"

 

Where m is the total number of SNPs, 𝜎", … , 𝜎"% are the empirical standard deviations 
of each of the 19 GRSs in the derivation data, 𝛼0", … , 𝛼0"% are the SNP effect sizes 
(from the GWAS summary statistics) for the jth SNP in each of the GRSs, respectively, 
and 𝑥)0 is the genotype {0, 1, 2} for the ith individual’s jth SNP. A SNP’s effect size 𝛼07 
was considered to be zero for the kth score if the SNP was not included in that score. 
This resulted in 3.6 million SNPs for inclusion in the metaGRS. 
We conducted a sensitivity analysis to evaluate whether stricter quality control filtering 
would impact the performance of the metaGRS; removing SNPs with imputation 
INFO<0.4 and MAF<0.01 did not substantially affect the association of the metaGRS 
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with stroke, hence, we selected the metaGRS with stricter QC as the final score, 
bringing the total number of SNPs to 3.2 million. 
Evaluation of the metaGRS 
The metaGRS developed using the derivation set was held fixed and evaluated in the 
UKB validation subset (n=395,393) using a Cox proportional hazard model. We 
conducted complete case analysis due to the low proportion of participants with any 
missing values for the seven risk factor variables of interest (5.1% of participants). 
 
Age was used as the time scale in the Cox proportional hazard regression. The 
regression was stratified by sex and weighted by the inverse probability of selection 
into the validation set, together with robust standard errors (R package ‘survival’47). All 
analyses were adjusted for chip (UKB vs BiLEVE) and 10 PCs of the genotypes (as 
provided by UKB29). For analyses of incident stroke, age at UKB assessment was 
taken as time of entry into the study. Cox models of the metaGRS did not show 
deviations from proportional hazard assumptions, based on the global test for scaled 
Schoenfeld residuals (P=0.32). 
 
The predicted cumulative risk curves (as a function of time t) were calculated using 
‘survfit.coxph’ within each stratum of sex as  

1 − 𝑆 𝑡 = 1 − exp(−𝐻B(𝑡)	exp 𝑋∗𝛽 ), 

where  𝐻B(𝑡) is the estimated baseline cumulative hazard, X* is the matrix of the 
predictor variables set to the values of interest and 𝛽 is the vector of the estimated log 
hazard ratios.  
 
We performed a sensitivity analysis testing whether the association of the metaGRS 
with ischaemic stroke was affected by familial relatedness in the validation set. 
Relatedness analysis was done using KING48 v2.1.4, based on ~784,000 autosomal 
SNPs measured on the Axiom chip, identifying n=336,643 participants in the UKB 
validation set with kinship more distant than that of 2nd degree. There was a negligible 
difference in the association between the metaGRS and stroke in the full UKB 
validation set and within this distantly-related subset of individuals. 
 
Calibration of the metaGRS risk score was evaluated by fitting logistic regression 
models of the metaGRSs (adjusting for sex, chip, and 10 genetic PCs) in the derivation 
set, predicting the absolute risk of event in the test set (allowing for the 9.38-fold lower 
observed baseline rate of events between the testing set compared with the derivation 
set), and evaluating the proportion of test-set individuals with stroke events within each 
decile of the predicted risks (Supplementary Figure 7). Pointwise confidence 
intervals were obtained via the binomial test for proportions. 
 
We estimated the heritability of ischaemic stroke explained by the metaGRS, on the 
liability scale, using the R2 and partial R2 obtained from linear regression of the stroke 
outcomes on metaGRS (partial R2 was from linear regression adjusted for sex, age of 
assessment, genotyping chip, and 10 PCs). The estimates were converted to the 
liability scale49, assuming that the ischaemic stroke prevalence in UKB represents that 
of the general population (K=0.008). Due to a lack of robust estimates of the heritability 
of stroke, we examined a range of plausible h2 values from 0.1 to 0.4, yielding 
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estimates of explained heritability ranging from 7.7% to 1.8%, respectively 
(Supplementary Figure 8). 
 
We performed sensitivity analysis to assess the effect of potential geographical 
stratification within the UKB50 on the metaGRS. We compared the original metaGRS 
with residuals of the metaGRS regressed on (i) the first 10 PCs, (ii) first 10 PCs and 
natural cubic splines of the geographical north-south coordinate and east-west 
coordinates (3 degrees of freedom each), (iii) the first 30 PCs and splines of the 
coordinates, (iv) first 10 PCs and a thin-plate regression spline (TPRS) representing 
smooth interactions between the two coordinates51, and finally (v) also adding the UKB 
assessment centre (Supplementary Figure 9a). For the unadjusted score, we 
observed some variation across the north and east coordinates (up to 0.4 standard 
deviations), however, adjusting for PCs and the coordinates attenuated this variation 
substantially, with the TPRS method eliminating it completely. Despite the attenuation 
in geographical stratification, we observed negligible change in the association of the 
residuals of the scores with IS events (Supplementary Figure 9b), indicating that any 
geographical stratification in UKB was not driving the metaGRS’s association with 
stroke. 
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Tables 
 
Table 1: Study characteristics of the UK Biobank validation dataset. Shown are 
characteristics obtained at the first UK Biobank assessment. 
 
Baseline characteristic UK Biobank 

N=395,393 
Male 
N=180,653 (45.7%) 

Female 
N=214,740 (54.3%) 

Age, years [mean (sd)] 56.9 (8.0) 57.1 (8.1) 56.7 (7.9) 

Current smoker, N (%) 39,804 (10.0%) 21,261 (11.8%) 18,543 (8.6%) 

Systolic blood pressure, mm Hg 

[mean (sd)] (adjusted for BP 

medication) 

143.3 (21.7) 146.9 (20.4) 140.2 (22.2) 

Diabetes diagnosed by doctor, N 

(%) 

18,675 (4.7%) 11,449 (6.3%) 7,226 (3.4%) 

Hypertension, N (%) 211,069 (53.4%) 110,540 (61.2%) 100,529 (46.8%) 

Family history of stroke, 1st 

degree relative, N (%) 

104,831 (26.5%) 45,569 (25.2%) 59,262 (27.6%) 

High cholesterol, N (%) 53,141 (13.4%) 30,670 (17.0%) 22,471 (10.5%) 

Prevalent stroke events, N (%) 

AS: any stroke  

IS: ischaemic stroke 

Before age 75 

AS: 4543 (1.1%) 

IS: 1152 (0.3%) 

AS: 2679 (1.5%) 

IS: 787 (0.4%) 

AS: 1864 (0.9%) 

IS: 365 (0.2%) 

Incident stroke events, N (%) 

Before age 75 

AS: 2607 (0.7%) 

IS: 1923 (0.5%) 

AS: 1531 (0.8%) 

IS: 1207 (0.7%) 

AS: 1076 (0.5%) 

IS: 716 (0.3%) 

On blood-pressure lowering 

medication, N (%) 

80,880 (20.5%) 43,714 (24.2%) 37,166 (17.3%) 

On lipid-lowering medication, N 

(%) 

66,739 (16.9%) 40,164 (22.2%) 26,575 (12.4%) 

Follow-up time, years [mean (sd)] 6.3 (1.9) 6.2 (2.1) 6.4 (1.8) 

 
  

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/689935doi: bioRxiv preprint 

https://doi.org/10.1101/689935
http://creativecommons.org/licenses/by/4.0/


	 17 

 
Figures 
 
Figure 1: Study design. (a) Individual GRSs were derived in the UK Biobank training 
set (n=11,995) using GWAS summary statistics for individual traits. (b) The metaGRS 
for ischaemic stroke was then derived by integrating individual GRSs using elastic-net 
cross-validation. (c) Validation of the metaGRS for ischaemic stroke was performed in 
the UK Biobank validation set (n=395,393). Abbreviations: UKB, UK Biobank; GWAS, 
genome-wide association study; GRS, genomic risk score. 
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Figure 2: Individual GRSs for stroke-related phenotypes and stroke outcomes 
correlate in several distinct clusters. Shown is the correlation plot of individual 
GRSs in a random sample of 20,000 UK Biobank individuals. Estimates are from linear 
regression of each pair of standardised GRSs, adjusting for genotyping chip 
(UKB/BiLEVE) and 10 PCs. Stars indicate Benjamini-Hochberg false discovery rate 
<0.05 (adjusting for 171 tests). GRSs were ordered via hierarchical clustering of the 
absolute correlation. Anthrop, anthropometric; cardio: cardiovascular (other than 
CAD); SBP: systolic blood pressure; DBP: diastolic blood pressure; Height: measured 
height; BMI: body mass index; T2D: type 2 diabetes; 1KGCAD: coronary artery 
disease from 1000 Genomes; 46K: coronary artery disease from Metabochip; 
FDR202: coronary artery disease from 1000 Genomes (top SNPs); CES: 
cardioembolic stroke; AS: any stroke; IS: ischaemic stroke; LAS: large artery stroke; 
SVS: small vessel stroke; TC: total cholesterol; LDL: low density lipoprotein 
cholesterol; HDL: high density lipoprotein cholesterol; TG: triglycerides; AF: atrial 
fibrillation; Smoking: cigarettes per day. 
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Figure 3: The metaGRS identifies individuals at increased risk of ischaemic 
stroke. Shown is the distribution of the metaGRS for ischaemic stroke in the UK 
Biobank validation set, and corresponding hazard ratios. Hazard ratios are for the top 
metaGRS bins (stratified by percentiles) versus the middle metaGRS bin (45–55%). 
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Figure 4: The metaGRS for ischaemic stroke has comparable or higher 
predictive power than established risk factors. Shown are the C-indices for 
incident stroke in the UKB validation set comparing the metaGRS with established risk 
factors. The reference model included the genotyping chip and 10 genetic PCs. 
  

 
 

  

●

●

●

●

●

●

●

●

●

●

●

●

●

G
enetic /

G
enom

ic
Established risk factors

C
om

bined

0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.62 0.63 0.64 0.65

Reference

metaGRS

90−SNP score

All conventional
(incl. hypertension)

Hypertension

Systolic BP

Diagnosed diabetes

Current smoking

BMI

Family history
of stroke

All conventional
(incl. hypertension)

+metaGRS

All conventional
(excl. hypertension)

+metaGRS

Hypertension + metaGRS

C−index (95% CI)

●

●

●

●

●

●

●

●

●

●

●

●

●

G
enetic /

G
enom

ic
Established risk factors

C
om

bined

0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.62 0.63 0.64 0.65

Reference

metaGRS

90−SNP score

All conventional
(incl. hypertension)

Hypertension

Systolic BP

Diagnosed diabetes

Current smoking

BMI

Family history
of stroke

All conventional
(incl. hypertension)

+metaGRS

All conventional
(excl. hypertension)

+metaGRS

Hypertension + metaGRS

C−index (95% CI)

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/689935doi: bioRxiv preprint 

https://doi.org/10.1101/689935
http://creativecommons.org/licenses/by/4.0/


	 21 

Figure 5: Predicted cumulative incidence of ischaemic stroke. Shown is the 
predicted cumulative incidence of IS in subjects with either (a) high levels of the 
metaGRS along with different risk factor levels (within or outside the guidelines); or (b) 
risk factors within accepted guidelines along with different levels of the metaGRS. 
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