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Abstract.1

Pathologists rely on clinical information, tissue morphology, and sophisticated molecular diagnostics to accurately2

infer the metastatic origin of secondary liver cancer. In this paper, we introduce a deep learning approach to identify3

spatially localized regions of cancerous tumor within hematoxylin and eosin stained tissue sections of liver cancer and4

to generate predictions of the cancer’s metastatic origin. Our approach achieves an accuracy of 90.2% when classifying5

metastatic origin of whole slide images into three distinct classes, which compares favorably to an established clinical6

benchmark by three board-certified pathologists whose accuracies ranged from 90.2% to 94.1% on the same prediction7

task. This approach illustrates the potential impact of deep learning systems to leverage morphological and structural8

features of H&E stained tissue sections to guide pathological and clinical determination of the metastatic origin of9

secondary liver cancers.10
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1 Introduction13

Metastatic liver cancer accounts for 25% of all metastases to solid organs, yet because liver metas-14

tases can arise from almost anywhere in the body, accurately determining the origin of metastatic15

liver cancer is of paramount importance for guiding effective treatment.1, 2 In clinical practice,16

pathologists commonly rely on clinical information, tissue examination, and molecular assays to17

determine the metastatic origin of a patient’s secondary liver tumor. Although clinically effective,18

this approach requires significant expertise, experience, and time to perform properly.19
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Deep learning methods have rapidly accelerated the automation of key processes in identify-20

ing and quantifying clinically meaningful features in biomedical images and continues to drive21

modern advancements in digital pathology.3, 4 Furthermore, deep learning systems have been ap-22

plied to settings where their performance matches and even exceeds the ability of clinical human23

practitioners in tasks related to image analysis, including in clinical instances that rely on inspec-24

tion of hematoxylin and eosin (H&E) stained tissue.5–9 The emerging power and success of many25

deep learning approaches applied to image content analysis stem from their ability to learn and26

leverage meaningful features from large data data collections that cannot be explicitly mathemati-27

cally modeled.6, 10–12 For example, these approaches can provide robust and reproducible solutions28

for automated detection and analysis of tumor lesions within whole slide images containing both29

normal and cancerous tumor tissue segments.13–15
30

Our key contribution in this paper is a deep learning approach to identify metastatic tissue31

within whole slide section and classify these tumors by their metastatic origin. We evaluate model32

performance with respect to a clinical benchmark established by three board-certified pathologists33

charged with the same classification task as our model in which each pathologist was tasked to34

infer the metastatic origin of liver cancer directly from H&E stained tissue sections without the use35

of molecular immunohistochemistry assays or clinical data. Through this work, we demonstrate36

feasibility of deep learning systems to automatically characterize the biological origin of metastatic37

cancers by their morphological features presented in H&E tissue sections.38

2 Method39

Our approach is composed of two deep neural networks that operate in series. The first stage40

model is trained to filter tiles containing normal or stromal tissue from whole slide images (WSIs),41
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as these tiles are not expected to have predictive value in estimating the metastatic origin of can-42

cerous tissue. A second stage model is then trained to predict a single label of metastatic origin43

for each tile in the dataset and aggregate tile predictions within independent WSIs to generate a44

single whole-slide prediction of metastatic origin. A diagram illustrating the basic workflow of our45

approach is shown in Fig. 1.46

Our approach first leverages pathologist annotation of tumor region to train a binary classifier47

designed to predict whether a given tile of H&E image is either tumor or non-tumor tissue. A sec-48

ond stage classification model is then trained on the tumor portions of images to correctly predict49

their metastatic origin with respect to clinically-determined labels. In all cases, model output is50

reassembled into probabilistic heatmaps over the WSI, enabling a rapid assessment of spatial char-51

acteristics driving predictive reasoning. Both first and second stage models utilize the Inception v452

deep learning architecture,16 which is optimized to capture morphological and architectural fea-53

tures on varying scales with high efficiency and has been shown to achieve human-level prediction54

capability on the ImageNet dataset. Models were developed in Keras with Tensorflow backend17
55

and trained undergoing cyclic learning rates18 using the Adam optimizer19 on NVIDIA V100 GPUs56

made available through the Exacloud HPC resource at Oregon Health & Science University.57

Raw H&E images were acquired from the OHSU Knight BioLibrary, uploaded to a secure in-58

stance of an OMERO server,20 programmatically accessed through the OpenSlide python API,21
59

normalized with established methods to overcome known inconsistencies in the H&E staining60

process,22 and tiled into non-overlapping patches of 299 × 299 pixels necessary to accommo-61

date the Inception v4 architecture. Tiles whose mean three-channel, 8-bit intensities were greater62

than 240 were filtered out as white non-informative background. Pathological annotations of63

tumor regions within 28 whole slide H&E images from each of the fourteen metastatic sub-64
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types were collected using PathViewer (https://glencoesoftware.com/products/65

pathviewer/), an interactive utility for the collection and storage of pathological annotation.66

Tumor region annotations defined the target label for each tile in the WSI dataset as either belong-67

ing to tumor or non-tumor tissue. We randomly assigned 30% of whole slide images to a held-out68

test set used for model validation. The code used to generate the results and figures is available in69

a dedicated Github repository.70

Fig 1 Deep learning based approach to leverage pathological annotation of tumor region to isolate and localize tumor
tissue from a WSI and generate predictions of metastatic origin.

3 Results71

3.1 Quantitative Localization of Liver Cancer in Whole Slide Images72

The first-stage model is a tumor tile binary classifier that generates a prediction between 0 and73

1 for each tile in the dataset in which a 1 corresponded to perfect confidence that a tile was of74

tumor tissue and in which a 0 corresponded to perfect confidence that the tile was of normal or75

stomal tissue. This model achieved an AUC of 0.74 under the receiver operator characteristics76

curve which was sufficient to establish good correlation (R2 = 0.96) between clinical estimation77
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and our model’s estimates of tumor purity in whole slide H&E images as shown in Fig. 2. Further,78

visual comparisons between the pathological tumor annotation and our model’s predictions illus-79

trate spatial concordance between the drawn tumor-bounding mask and our model’s predictions.80

Once trained, the tumor-region identifying model was deployed on the entire remaining dataset to81

include only tiles containing cancerous tissue.82

Fig 2 (left column) Three examples from the held-out testing set with pathological annotation of tumor regions
outlined in blue. (center column) Corresponding model predictions estimating regions of whole slide images that
contain tumor tissue show concordance between the pathological annotation of tumor region with the outcome of our
model. In these illustrations, a brighter color intensity corresponds to higher probability that the underlying tile was
labeled as being of tumor by the trained model. (right column, top) Confusion matrix from the held-out testing set
for a tumor/non-tumor predictive model illustrating F1 score of 0.772 in the classification task. (right column, center)
Receiver Operating Characteristics (ROC) curve illustrating area under the curve of 0.74. (right column, bottom)
Comparison between the true tumor purity in the sample inferred from the pathological annotation (x-axis) versus the
inferred tumor purity from the model’s output (y-axis) with strong correlation (R2 = 0.96)
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3.2 Quantitative Whole Slide Image Classification of Metastatic Origin83

Each image in the dataset is annotated with clinically-determined metastatic origin labels informed84

by clinical information, pathological inspection of tissue sample, and IHC profiling. These clin-85

ical annotations were summarized into 14 distinct subgroups by a clinical practitioner, which are86

shown in Fig. 3. Although exploratory data analysis considered all fourteen classes, due to class87

imbalances in this dataset, this work is predicated on the three primarily represented metastatic88

origins in the dataset (colonic adenocarcinomas, neuroendocrine carcinomas, and gastrointestinal89

stromal tumors) which collectively represent over 80% of the relevant data.90

Fig 3 (left) Summary of the acquired dataset, composed of 333 WSIs each containing metastatic tissue originating
from one of 14 sites. (right) Distribution of non-overlapping tile counts in each WSI with mean count 3302 tiles per
WSI.

3.2.1 Whole Slide Image Classification91

After the first stage identifies regions of the H&E images that are tumor, the second stage model92

learns to classify those tiles according to their metastatic origin. A second Inception v4 deep neu-93

ral network was designed to generate a three-class prediction for each tile in the training set as94

belonging to either a colonic adenocarcinoma, gastrointestinal stromal, or neuroendocrine carci-95

noma. Whole slide image predictions predictions aggregated across all corresponding tumor tiles96

achieved an F1 score of 0.875 on the held-out testing set of WSIs, having failed to correctly clas-97
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sify 5 out of the 51 held-out testing samples. Class-specific statistics shown in Table 1 quantify98

classification performance metrics for the metastatic origin prediction model. Confusion matrices99

of both WSI and per-tile predictions are shown in Fig. 4.100

Several technical factors were associated with incorrect predictions, including slide blurring,101

tissue folding, and low tumor purity. Our model’s confidence was lower for samples that it in-102

correctly classified, as shown in Fig. 4, though one sample was incorrectly classified with 86%103

confidence which was driven by misclassified stromal tissue present in teh H&E slide. Individual104

tiles associated with highly confident predictions for each class are shown in Fig. 5. Pathological105

inspection of these tiles suggests that tiles associated with highly confident class predictions pre-106

sentpathological features that guide diagnoses, as the first row contains tiles presenting features107

associated with primarily spindle-type gastrointestinal stromal tumors and the third row present-108

ing typical well-differentiated neuroendocrine carcinomas. The first two images in the second row109

represent dirty necrotic tissue which, among the three diseases under consideration, tends to be as-110

sociated with colonic adenocarcinomas. However, this type of feature is not explicitly associated111

with cancer, and so should be interpreted with caution. Importantly, this approach obviates the112

need for pathological region annotation beyond what was required to train the first stage model.113

Table 1 Class-specific statistics of both the tumor identification and three-way origin classification task
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Tumor Identification 0.77 0.52 0.77 0.53 0.77 0.77 0.77
Colonic Adenocarcinoma 1.00 0.83 0.88 1.00 0.88 1.00 0.93

Neuroendocrine Carcinoma 0.79 1.00 1.00 0.92 1.00 0.79 0.88
Gastrointestinal Stromal 0.78 0.98 0.87 0.95 0.88 0.78 0.82
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Fig 4 (left) Confusion matrix of WSI prediction on a held-out test set. (center) Confusion matrix of tile-based pre-
dictions. (right) failure cases with respect to the inferred tumor purity in the sample on the x-axis (fraction of tiles
predicted to be tumor) and the model’s output confidence in its prediction on the y-axis.

Fig 5 Example tiles correctly classified by the model with high confidence in which each row is a distinct class
(gastrointestinal stromal, colonic adenocarcinoma, and neuroendocrine carcinoma in rows 1, 2, and 3, respectively).

3.3 Clinical Benchmark Comparison Study114

A study was developed to benchmark our approach to clinical practitioners. This study recruited115

three board-certified pathologists to independently classify each of the 51 whole slide image sam-116

ples in the held-out test set according to their metastatic origin. Each participant independently117

incorrectly classified 3, 4, and 5 samples each, while our neural network model missed 5 samples118

from the held-out test set. Table 2 summarizes the eleven samples that were missed by either the119

model or by at least one pathologist and their respective predictions. Interestingly, only two of the120

mis-classified samples by the model were correctly classified by all three pathologists. Figure 6121

illustrates a selected sample classified correctly by the model and all three pathologists, a sample122

missed by the model that the pathologists all got correct, a sample missed by both the model and123

at least one pathologist, and a sample for which the model was correct but at least one pathologist124

made an incorrect classification. All examples illustrate the raw H&E image and three heatmaps125
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generated by the model for each of the three-way predictions in which a brighter color corresponds126

to a higher confidence in the model’s prediction for each class. Importantly, predictions are only127

available for tiles that the first-stage of our model classified as tumor tissue, as non-tumor tiles were128

filtered out of the metastatic origin prediction task. Although the failure cases are diverse, proba-129

bilistic overlays of metastatic origin prediction may facilitate faster and more efficient examination130

of these tissue sections in clinical decision making processes.131

Table 2 Slides mis-classified by either the model or at least one pathologist (GS: Gastrointestinal stromal; CA: Colonic
adenocarcinoma; NC: neuroendocrine carcinoma)

Slide Alias Ground Truth Model Path1 Path2 Path3
101 CA CA CA CA NC
102 CA CA CA CA NC
103 CA CA CA NC GS
104 CA CA NC NC CA
105 GS CA GS GS GS
106 GS GS GS GS NC
107 GS CA GS GS GS
108 NC GS GS NC GS
109 NC CA NC NC NC
110 NC NC NC CA NC
111 NC CA CA CA NC

3.3.1 Complementary Study: Unsupervised Discovery of Origin-Related Features132

As part of our exploratory data analysis, we sought to evaluate whether an unsupervised learning133

model can learn to identify spatial features of H&E stained tissue tiles that correspond to their134

metastatic origin. To guide this approach, we employed variational autoencoders (VAE) to learn135

latent feature representations of metastatic cancers of diverse origins.136

VAEs are composed of complementary encoder and decoder networks in which the encoder137

network θ learns to compress an input data sample into a learned latent representation while the138

decoder network φ learns to reconstruct the original input from the latent code. VAEs learn unsu-139
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Original H&E Alias CA GS NC
200 (CA) 97.7 % 0.7% 1.5%

109 (NC) 62.2 % 1.5% 36.3%

108 (NC) 20.3% 50.2% 29.5%

106 (GS) 4.3% 53.5% 42.2%

Fig 6 Example mis-classified H&E slides with associated annotations from the second stage model illustrating lo-
calized predictions of metastatic origin in which brighter colors are associated with more confident class-specific
predictions. First row: sample correctly predicted by the model and all three pathologists. Second row: sample missed
by the model that all three pathologists got correct. Third row: Example missed by both the model and at least one
pathologist. Fourth row: example missed by at least one pathologist that the model got correct. (GS: Gastrointestinal
stromal; CA: Colonic Adenocarcinoma; NC: Neuroendocrine Carcinoma)

pervised features by minimizing a composite loss function composed of two terms during training.140

Equation 1 illustrates that VAEs learn to minimize the difference between input sample x and its141

reconstruction as well as minimize the Kullback-Leibler (KL) divergence of the latent variable z142

distribution with respect to a known prior p(z), which in this case is the standard normal distri-143

bution. By penalizing divergence between an learned feature distribution and an expected prior,144

VAEs learn optimal encodings that conform to expected distributions across the dataset and enable145
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a probabilistic interpretation of the embedded feature space.146

Li(xi, θ, φ) = −Ez∼qθ(z|xi)[log pφ(xi|z)] + KL(qθ(z|xi)‖p(z)) (1)

A single VAE model was trained to learn latent feature sets of individual tiles composed of four147

thousand tiles sampled randomly from the fourteen classes presented in the dataset. The learned148

features space of individual tiles are projected into two-dimensional space with the t-SNE algo-149

rithm23 and visualized by their respective metastatic origin in Fig. 7. This unsupervised approach150

suggests separability of image tiles based on features associated with metastatic origin, suggest-151

ing feasibility of a supervised classification model to correctly classify the origin of whole slide152

H&E images of liver metastases. Further, the learned feature space map generates a compelling153

arrangement of individual tiles grouped by their local feature space similarity. A complementary154

figure that illustrates an arrangement of tile images onto their respective coordinate projection is155

available online through FigShare at 10.6084/m9.figshare.8340581.156

4 Discussion157

This work presents a deep learning based approach designed to predict the origin of metastatic liver158

cancer using a two-stage serial model composed of a first model trained to identify tumor from non-159

tumor within H&E sections of metastatic liver tissue based on pathologists annotation and a second160

stage model that learns to predict the metastatic origin of individual patches of tumor tissue and161

aggregates those results into predictions over WSIs. We illustrate through a clinical benchmark162

comparison that our approach is within performance criteria of board-certified pathologists, sug-163

gesting that these types of systems may be capable of generating rapid, first-pass assessments of164
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Fig 7 Learned unsupervised features of H&E tile images from a VAE model projected into two dimensional space
and colored by the tiles’ metastatic origin illustrate local feature similarity with respect to metastatic origin. Each
facet image contains the t-SNE projection of the latent space encoding of each of the tiles in the dataset. That tiles
of similar metastatic origin tend to cluster together suggests that morphological features contained within the tiles are
informative for estimating where the metastases originated within the body. A higher-resolution figure illustrating
input tiles on their respective coordinates is hosted on FigShare (10.6084/m9.figshare.8340581).

metastatic origin in the absence of detailed clinical information or comprehensive molecular pro-165

filing assay. We believe this type of data-driven visualization augmentation provides an additional166

layer of information that may facilitate the speed and ease of generating final decisions by clinical167

care providers.168

Although these results illustrate feasibility of our approach, several significant limitations re-169

main. Principally, this analysis was data-limited to only three most-prevalent sources of metastatic170
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origin when in practice metastases can and do originate from a broad variety of biological sources.171

A future direction will seek to leverage H&E stained tissue sections of primary disease site and172

impose a transfer learning approach to predict the primary site of liver cancer in situ, without re-173

lying on training data drawn exclusively from liver metastases. Secondly, we observe that the first174

stage model may be inflexible to alternative sites of metastatic tissue. Instead of training a model175

to identify tiles containing cancer tissue in liver, a more generalizable model may be trained on a176

broad diversity of primary cancers and regularized appropriately to identify cancer independently177

of the host tissue. Third, although our model was shown to perform similarly to board-certified178

pathologists, we have not thoroughly considered the manner by which these types of deep learning179

models might optimally improve current workflows of practicing pathologists. We believe that180

robust translation of deep learning systems such as the one presented in this paper may continue to181

supplement and augment clinical decision-making processes dependent on medical image analysis.182
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