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Abstract
Opioid substitution and syringes exchange programs have drastically reduced hepatitis
C virus (HCV) spread in France but HCV sexual transmission in men having sex with men
(MSM) has recently arisen as a significant public health concern. The fact that the virus
is transmitting in a heterogeneous population, with ‘new’ and ‘classical’ hosts, makes
prevalence and incidence rates poorly informative. However, additional insights can be
gained by analyzing virus phylogenies inferred from dated genetic sequence data. By
combining a phylodynamics approach based on Approximate Bayesian Computation (ABC)
and an original transmission model, we estimate key epidemiological parameters of an
ongoing HCV epidemic among MSMs in Lyon (France). We show that this new epidemic
is largely independent of the ‘classical’ HCV epidemics and that its doubling time is ten
times lower (0.44 years versus 4.37 years). These results have practical implications for HCV
control and illustrate the additional information provided by virus genomics in public health.

Keywords: Phylodynamics; Genomics; Hepatitis C virus; Public health; Approximate Bayesian Computation

Background

It is estimated that 71 million people worldwide suffer from chronic hepatitis C virus (HCV)
infections (European Union HCV Collaborators, 2017; Messina et al., 2015). The World Health
Organisation (WHO) and several countries have issued recommendations towards the ‘elim-
ination’ of this virus, which they define as an 80% reduction in new chronic infections and a
65% decline in liver mortality by 2030 (European Union HCV Collaborators, 2017). HIV-HCV
coinfected patients are targeted with priority because of the shared transmission routes be-
tween the two viruses (Alter, 2006) and because of the increased virulence of HCV in coinfec-
tions (Klein et al., 2016; Kovari et al., 2015; Rosenthal et al., 2009). Successful harm reduction
interventions, such as needle-syringe exchange and opiate substitution programs, as well as
a high level of enrolment into care programs for HIV-infected patients, have led to a dras-
tic drop in the prevalence of active HCV infections in HIV-HCV coinfected patients in several
European countries during the recent years (Béguelin et al., 2018; Berenguer et al., 2018;
Boerekamps et al., 2018; Pradat, Pugliese, et al., 2017). Unfortunately, this elimination goal
is challenged by the emergence of HCV sexual transmission, especially among men having
sex with men (MSM). This trend is reported to be driven by unprotected sex, drug use in the
context of sex (‘chemsex’), and potentially traumatic practices such as fisting (T vd Laar et al.,
2009; Pradat, Huleux, et al., 2018; Salazar-Vizcaya et al., 2016). The epidemiology of HCV in-
fection in the Dat’AIDS cohort has been extensively described from 2000 to 2016 (D’Oliveira
et al., 2005; Pradat, Caillat-Vallet, et al., 2001; Sahajian et al., 2011). The incidence of acute
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HCV infection has been estimated among HIV-infected MSM between 2012 and 2016, among
HIV-negative MSM enrolled in PrEP between in 2016-2017 (Pradat, Huleux, et al., 2018) and
among HIV-infected and HIV-negative MSMs from 2014 to 2017 (Ramière et al., 2019). In the
area of Lyon (France), HCV incidence has been shown to increase concomitantly with a shift in
the profile of infected hosts (Ramière et al., 2019). Understanding and quantifying this recent
increase is the main goal of this study.

Several modelling studies have highlighted the difficulty to control the spread of HCV infec-
tions in HIV-infected MSMs in the absence of harm reduction interventions (Salazar-Vizcaya
et al., 2016; Virlogeux et al., 2017). Furthermore, we recently described the spread of HCV
from HIV-infected to HIV-negative MSMs, using HIV pre-exposure prophylaxis (PrEP) or not,
through shared high-risk practices (Ramière et al., 2019). More generally, an alarming inci-
dence of acute HCV infections in both HIV-infected and PrEP-using MSMs was reported in
France in 2016-2017 (Pradat, Huleux, et al., 2018). Additionally, while PrEP-using MSMs are
regularly screened for HCV, those who are HIV-negative and do not use PrEP may remain un-
diagnosed and untreated for years. In general, we know little about the population size and
practices of HIV-negative MSM who do not use PrEP. All these epidemiological events could
jeopardize the goal of HCV elimination by creating a large pool of infected and undiagnosed
patients, which could fuel new infections in intersecting populations. Furthermore, the epi-
demiological dynamics of HCV infection have mostly been studied in intravenous drug users
(IDU) (Kwon et al., 2009; Pitcher et al., 2018; Pybus, Cochrane, et al., 2005; Sweeting et al.,
2008) and the general population (Breban et al., 2014; Heffernan et al., 2019). Results from
these populations are not easily transferable to other populations, which calls for a better
understanding of the epidemiological characteristics of HCV sexual transmission in MSM.

Given the lack of knowledge about the focal population driving the increase in HCV inci-
dence, we analyse virus sequence data with phylodynamics methods. This research field has
been blooming over the last decade and hypothesizes that the way rapidly evolving viruses
spread leaves ‘footprints’ in their genomes (Frost et al., 2015; Grenfell et al., 2004; Volz, Koelle,
et al., 2013). By combiningmathematical modelling, statistical analyses and phylogenies of in-
fections, where each leaf corresponds to the virus sequence isolated from a patient, current
methods can infer key parameters of viral epidemics. This framework has been successfully
applied to other HCV epidemics (Joy et al., 2016; Magiorkinis et al., 2009; Pybus, Charleston,
et al., 2001; Stadler et al., 2013), but the ongoing one in Lyon is challenging to analyze because
the focal population is heterogeneous, with ‘classical’ hosts (typically HIV-negative patients in-
fected through nosocomial transmission or with a history of opioid intravenous drug use or
blood transfusion) and ‘new’ hosts (both HIV-infected and HIV-negative MSM, detected dur-
ing or shortly after acute HCV infection phase, potentially using recreational drugs such as
cocaine or cathinones), where host profiles have been established by field epidemiologists
based on interviews and risk factors. Our phylodynamics analysis relies on an Approximate
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Bayesian Computation (ABC, (Beaumont et al., 2002)) framework that was recently devel-
oped and validated using a simple Susceptible-Infected-Recovered (SIR) model (Saulnier et
al., 2017).

Assuming an epidemiological transmission model with two host types, ‘classical’ and ‘new’
(see theMethods), we use dated virus sequences to estimate the date of onset of the HCV epi-
demics in ‘classical’ and ‘new’ hosts, the level ofmixing betweenhosts types, and, for each host
type, the duration of the infectious period and the effective reproduction ratio (i.e. the num-
ber of secondary infections, (Anderson andMay, 1991)). To validate our results we performed
a parametric bootstrap analysis, we tested the sensitivity of themethod to differences in sam-
pling proportions between the two types of hosts. We also tested the sensitivity of themethod
to phylogenetic reconstruction uncertainty, and we performed a cross-validation analysis to
explore the robustness of our inference framework. We find that the doubling time of the
epidemics is one order of magnitude lower in ‘new’ than in ‘classical’ hosts, therefore empha-
sising the urgent need for public health action.

Results

The phylogeny inferred from the dated virus sequences shows that ‘new’ hosts (in red) tend
to be grouped in clades (Figure 1). This pattern suggests a high degree of assortativity in
the epidemics (i.e. hosts tends to infect hosts from the same type). The ABC phylodynamics
approach allows us to go beyond a visual description and to quantify several epidemiological
parameters.

As for any Bayesian inference method, we need to assume a prior distribution for each
parameter. These priors, shown in grey in Figure 2, are voluntarily designed to be large and
uniformly distributed to be as little informative as possible. One exception is the date of
onset of the epidemics, for which we use the output of the phylogenetic analysis conducted
in Beast (see the Methods) as a prior. We also assume the date of the ‘new’ hosts epidemics
to be after 1997 based on epidemiological data.

The inferencemethod converges towards posterior distributions for eachparameter, which
are shown in red in Figure 2. The estimate for the origin of the epidemic in ‘classical’ hosts
is t0 = 1957.47 [1948.61; 1961.96] (numbers in brackets indicate the 95% Highest Posterior
Density, or HPD). For the ‘new’ host type, we were not able to estimate when the epidemic
(t2) has started.

We find the level of assortativity betweenhost types to behigh for ‘classical’ (a1 = 0.94 [0.83; 1.0])
as well as for ‘new’ hosts (a2 = 0.92 [0.81; 0.99]). Therefore, hosts mainly infect hosts from
the same type.

The phylodynamics approach also allows us to infer the duration of the infectious period
for each host type. Assuming that this parameter does not vary over time, we estimate it to
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Figure 1. Phylogeny of HCV infections in the area of Lyon (France). ‘Classical’ hosts are in
blue and ‘new’ hosts are in red. Sampling events correspond to the end of black branches. The
phylogeny was estimated using Bayesian inference (Beast2). See the Methods for additional
details.

be 3.85 years [1.09; 8.33] for ‘classical’ hosts (parameter 1/γ1) and 0.45 years [0.30; 0.77] for
‘new’ hosts (parameter 1/γ2). We compute the ratio of γ2/γ1 and the 95% credibility interval
does exclude 1.

Regarding effective reproduction numbers, i.e. the number of secondary infections caused
by a given host over its infectious period, we estimate that of ‘classical’ hosts to have de-
creased from R(1),t1 = 1.96 [1.45; 3.29] to R(1),t2 = 1.61 [1.05; 2.08] after the introduction
of the third-generation HCV test in 1997. The inference on the differential transmission pa-
rameter indicates that HCV transmission rate is ν = 9.0 [7.7; 9.9] times greater from ‘new’
hosts than from ‘classical’ hosts. By combining these results (see the Methods), we compute
the effective reproduction number in ‘new’ hosts and find R(2),t3 = 1.73 [1.03; 4.32]. We
compute the ratio of the R(t) of ‘new’ hosts over the R(t) of ‘classical’ hosts after 1997 and,
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Figure 2. Parameter prior and posterior distributions. Prior distributions are in grey and
posterior distributions inferred by ABCare in red. The thinner the posterior distributionwidth,
the more accurate the inference. Posterior distributions are truncated based on the prior
distribution.

the median value is 1.14 and the 95% credibility interval is [0.56; 3.25].
To better understand the differences between the two host types, we compute the epi-

demic doubling time (tD), which is the time for an infected population to double in size. tD is
computed for each type of host, assuming complete assortativity (see the Methods). We find
that for the ‘classical’ hosts, before 1997 t(1),t1D ≈ 2.8 years ([1.1; 5.0] years). After 1997, the
pace decreaseswith a doubling time of t(1),t2D ≈ 4.4 years ([2.0; 20.8] years). For the epidemics
in the ‘new’ hosts, we estimate that t(2),t3D ≈ 0.44 years ([0.09; 8.84] years). When computing
the ratio of the doubling times of classical hosts after 1997 over the doubling times of the new
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hosts (t(1),t2D /t
(2),t3
D ) to estimate the current difference we find that t(1),t2D is 10 times higher

than t(2),t3D with a 95% credibility interval of [0.62; 149.99]. However, the 75% credibility in-
terval does exclude 1 and is [3.39; 25.61]. Distributions for theses three doubling times are
shown in Supplementary Figure S2.

Supplementary Figure S3 shows the correlations between parameters based on the poste-
rior distributions. We mainly find that the Rt in ‘classical’ hosts after the introduction of the
third generation of HCV detection tests (i.e.R(1),t2 ) is negatively correlated to ν and positively
correlated to γ2. In other words, if the epidemic spreads rapidly in ‘classical’ hosts, it requires
a slower spread in ‘new’ hosts to explain the phylogeny. R(1),t2

0 is also slightly negatively
correlated to γ1, which most likely comes from the fact that for a given R0, epidemics with a
longer infection duration have a lower doubling time and therefore a weaker epidemiological
impact. Overall, these correlations do not affect our main results, especially the pronounced
difference in infection periods (γ1 and γ2).

To validate these results, we performed a goodness-of-fit test by simulating phylogenies
using the resulting posterior distributions to determine whether these are similar to the tar-
get dataset (see theMethods). In Figure 3, we see that the target data in red, i.e. the projection
of the observed summary statistics from the phylogeny shown in Figure 1, is contained in the
envelope containing 90% of the simulations drawn from the posterior distributions. If we use
the 95% HPD of the posterior but assume a uniform distribution instead of the true poste-
rior distribution, we find that the target phylogeny is not contained in the envelope. These
results confirm that the posterior distributions we infer are highly informative. In Supple-
mentary Figure S4 we show that for 77 summary statistics out of 101, the target value is in
the 95% highest posterior distribution of summary statistics computed from the 10,000 sim-
ulated phylogenies from the posterior distribution used for the goodness-of-fit test.

To further explore the robustness of our inference method, we use simulated data to per-
form a ‘leave one out’ cross-validation (see the Methods). As shown in Supplementary Figure
S5, the mean relative error made for each parameter inference is limited and comparable to
what was found using a simpler SIR model (Saulnier et al., 2017). One exception is for the
‘new’ hosts’ level of assortativity (a2). This is likely due to the poor signal given the small size
of the observed phylogeny.

A potential issue is that the sampling rate of ’new’ hosts may be higher than that of ’clas-
sical’ hosts. To explore the effect of such sampling biases on the accuracy of our results,
we sub-sampled the ‘new’ hosts population by pruning the target phylogeny, i.e. randomly
removing 50% of the ‘new’ hosts’ tips. In Supplementary Figure S6 we show the posterior
distributions estimated by our ABC method using the different pruned phylogenies. We find
that although the confidence intervals are wider, the posterior distributions are all similar
with the posterior distributions estimated using the target phylogeny. Finally, to evaluate the
impact of phylogenetic reconstruction uncertainty, we analysed 100 additional trees from the
Beast posterior distribution. In Supplementary figure S7, we show that the estimates from
our ABC method are qualitatively similar for all these trees.
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Figure 3. Goodness-of-fit estimated using parameter bootstrap. The graph displays en-
velopes containing 90% of the 10, 000 simulations for each distribution. The envelope in black
results from the posterior distribution, in grey, results from the uniform distribution drawn
from the 95% HPD distribution. The target data is represented by a red cross. Axes units
are based on the outcome of principal component analysis using the simulated summary
statistics.

Discussion

Over the last years, the area of Lyon (France) witnessed an increase in HCV incidence both in
HIV-positive and HIV-negative populations of men having sex with men (MSM)(Ramière et al.,
2019). This increase appears to be driven by sexual transmission and echoes similar trends in
Amsterdam (TJW vd Laar et al., 2007) and Switzerland (Wandeler et al., 2012). A quantitative
analysis of the epidemic is necessary to optimise public health interventions. Unfortunately,
this is challenging because the monitoring of the population at risk is limited and because
classical tools in quantitative epidemiology, especially incidence time series, are poorly infor-
mative with such a heterogeneous population. To circumvent this problem, we used HCV
sequence data, which we analysed using phylodynamics. To account for host heterogene-
ity, we extended and validated an existing Approximate Bayesian Computation framework
(Saulnier et al., 2017).

From a public health point of view, our results have two major implications. First, we find
a strong degree of assortativity in both ‘classical’ and ‘new’ host populations. The virus phy-
logeny does hint at this result (Figure 1) but the ABC approach allows us to quantify the pat-
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tern and to show that assortativity may be higher for ‘classical’ hosts. The secondmain result
has to do with the striking difference in doubling times. Indeed, the current spread of the
epidemics in ‘new’ hosts appears to be five times more rapid than the spread in the ‘classical’
hosts in the early 1990s before the advent of the third generation tests in 1997, and ten times
more rapid that the spread in the ’new’ hosts after 1997. That the duration of the infectious
period in ‘new’ hosts is in the same order of magnitude as the time until treatment suggests
that the majority of the transmission events may be occurring during the acute phase. This
underlines the necessity to act rapidly upon detection, for instance by emphasising the impor-
tance of protection measures such as condom use and by initiating treatment even during
the acute phase (AASLD/IDSA HCV Guidance Panel, 2015). A better understanding of the un-
derlying contact networks could provide additional information regarding the structure of the
epidemics and, with that respect, next-generation sequence (NGS) data could be particularly
informative (Romero-Severson et al., 2016; Worby et al., 2017; Wymant et al., 2018).

Some potential limitations of the study are related to the sampling scheme, the assess-
ment of the host type, and the transmission model. Regarding the sampling, the proportion
of infected ‘new’ host that is sampled is unknown but could be high. For the ‘classical’ hosts,
we selected a representative subset of the patients detected in the area but this sampling
is likely to be low. However, the effect of underestimating sampling for the new epidemics
would be to underestimate its spread, which is already faster than the classical epidemics.
When running the analyses on different phylogenies with half of the ’new’ hosts sequences,
we find results similar to those obtained with the whole phylogeny, suggesting that our ABC
framework is partly robust to sampling biases. In general, implementing amore realistic sam-
pling scheme in themodel would be possible but it would require a more detailed model and
more data to avoid identifiability issues. Regarding assigning hosts to one of the two types,
this was performed by clinicians independently of the sequence data. Themain criterion used
was the infection stage (acute or chronic), whichwas complemented by other epidemiological
criteria (history of intravenous drug use, blood transfusion, HIV status). Finally, the ‘classical’
and the ‘new’ epidemics appear to be spreading on contact networkswith different structures.
However, such differences are beyond the level of details of the birth-death model we use
here and would require a larger dataset for them to be inferred.

To test whether the infection stage (acute vs. chronic) can explain the data better than
the existence of two host types, we developed an alternative model where all infected hosts
first go through an acute phase before recovering or progressing to the chronic phase. As
for the model with two host types, we used three time intervals. Supplementary Figure S9
shows the diagram of the model as well as the corresponding equations. Interestingly, it
was almost impossible to simulate phylogenies with this model, most likely because of its
intrinsic constrains on assortativity (both acute and chronic infections always generate new
acute infections).

To our knowledge, few attempts have been made in phylodynamics to tackle the issue
of host population heterogeneity. In 2018, a study used the structured coalescent model to
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investigate the importance of accounting for so-called ‘superspreaders’ in the recent Ebola
epidemics in West Africa (Volz and Siveroni, 2018). The same year, another study used the
birth-death model to study the effect of drug resistance mutations on the R0 of HIV strains
(Kühnert et al., 2018). Both of these are implemented in Beast2. We ran an analysis using
the BEAST 2 package bdmm with our data. We were unable to conclude anything from this
analysis. However, this is probably due to difficulties in estimating both evolutionary and
epidemiological parameters, when in this ABC inference study we inferred epidemiological
parameters using a fixed phylogeny.

Overall, we show that our ABC approach, whichwe validated for simple SIR epidemiological
models (Saulnier et al., 2017), can be applied to more elaborate models that current phylo-
dynamics methods have difficulties to capture. Further increasing the level of details in the
modelmay require to increase the number of simulations but also to introduce new summary
statistics. Another promising perspective would be to combine sequence and incidence data.
Although this could not be done here due to the limited sampling, such data integration can
readily be done with regression-ABC.

Material and methods

Epidemiological data

TheDat’AIDS cohort is a collaborative network of 23 FrenchHIV treatment centres covering ap-
proximately 25%ofHIV-infectedpatients followed in France (Clinicaltrials.gov refNCT02898987).
Host profiles have been established by field epidemiologists based on interviews and risk fac-
tors.

HCV sequence data

We included HCV molecular sequences of all MSM patients diagnosed with acute HCV geno-
type 1a infection at the Infectious Disease Department of the Hospices Civils de Lyon, France,
and for whom NS5B sequencing was performed between January 2014 and December 2017
(N = 68). HCV genotype 1a isolated from N = 145 non-MSM, HIV-negative, male patients
of similar age were analysed by NS5B sequencing at the same time for phylogenetic analysis.
This study was conducted following French ethics regulations. All patients gave their written
informed consent to allow the use of their personal clinical data. The study was approved by
the Ethics Committee of Hospices Civils de Lyon.

HCV testing and sequencing

HCV RNA was detected and quantified using the Abbott RealTime HCV assay (Abbott Molec-
ular, Rungis, France). The NS5B fragment of HCV was amplified between nucleotides 8256
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and 8644 by RT-PCR as previously described and sequenced using the Sanger method. Elec-
trophoresis and data collection were performed on a GenomeLabTM GeXP Genetic Analyzer
(BeckmanCoulter). Consensus sequenceswere assembled andanalysedusing theGenomeLabTM

sequence analysis software. The genotype of each sample was determined by comparing its
sequence with HCV reference sequences obtained from GenBank.

Nucleotide accession numbers

All HCV NS5B sequences isolated in MSM and non-MSM patients reported in this study were
submitted to theGenBankdatabase. The list of Genbank accessionnumbers for all sequences
is provided in Appendix.

Dated viral phylogeny

To infer the time-scaled viral phylogeny from the alignment we used a Bayesian Skylinemodel
in BEAST v2.5.2 (Bouckaert et al., 2014). The general time-reversible (GTR) nucleotide substi-
tutionmodel was used with a strict clock rate fixed at 1.3 ·10−3 based on data from Ref. (Gray
et al., 2011) and a gamma distribution with four substitution rate categories. The MCMC was
run for 100 million iterations and samples were saved every 100,000 iterations. We selected
the maximum clade credibility using TreeAnnotator BEAST2 package. The date of the last
common ancestor was estimated to be 1961.95with a 95%Highest Posterior Density (HPD) of
[1941.846; 1975.516]. When performing the same inference without the new hosts, we found
a similar estimate (1960) and the same 95% HPD of [1942; 1975], which we used as a prior
distribution to estimate the origin of the classical hosts t0 (Table 1).

Epidemiological model and simulations

We assume a Birth-Death model with two hosts types (Supplementary Figure S1) with ‘classi-
cal’ hosts (numbered 1) and newhosts (numbered 2). Thismodel is described by the following
system of ordinary differential equations (ODEs):

dI1
dt

= a1βI1 + (1− a2)νβI2 − γ1I1 (1a)

dI2
dt

= a2βνI2 + (1− a1)βI1 − γ2I2 (1b)

In the model, transmission events are possible within each type of hosts and between the
two types of hosts at a transmission rate β. Parameter ν corresponds to the transmission
rate differential between classical and new hosts. Individuals can be ‘removed’ at a rate γ1
from an infectious compartment (I1 or I2) via infection clearance, host death or change in
host behaviour (e.g. condom use). The assortativity between host types, which can be seen
as the percentage of transmissions that occur with hosts from the same type, is captured by
parameter ai.
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Table 1. Prior distributions for the birth-death model parameters over the three time
intervals. t0 is the date of origin of the epidemics in the studied area, t1 is the date of in-
troduction of 3rd generation HCV tests, t2 is the date of emergence of the epidemic in ‘new’
hosts and t3 is the time of the most recent sampled sequence.

Interval γi ν R(1) ai

[t0, t1] Unif(0.1, 4) 0 Unif(0.9, 6) Unif(0.5, 1)

[t1, t2] Unif(0.1, 3)

[t2, t3] Unif(0, 1)

& Unif(1, 10)

The effective reproduction number (denotedRt) is the number of secondary cases caused
by an infectious individual in a fully susceptible host population (Anderson and May, 1991).
We seek to infer the Rt from the classical epidemic, denoted R(1) and defined by R(1) =

β/γ1, as well as the Rt of the new epidemic, denoted R(2) and defined by R(2) = νβ/γ2 =

νR(1)γ1/γ2.
The doubling time of an epidemic (tD) corresponds to the time required for the number

of infected hosts to double in size. It is usually estimated in the early stage of an epidemic
when epidemic growth can assumed to be exponential. To calculate it, we assume perfect
assortativity (a1 = a2 = 1) and approximate the initial exponential growth rate by β − γ1 for
‘classical’ hosts and νβ−γ2 for ‘new’ hosts. Following (Wallinga and Lipsitch, 2007), we obtain
t
(1)
D = ln(2)/(β − γ1) and t(2)D = ln(2)/(νβ − γ2).
We consider three time intervals. During the first interval [t0, t1], t0 being the year of the

origin of the epidemic in the area of Lyon, we assume that only classical hosts are present. The
second interval [t1, t2], begins in t1 = 1997.3with the introduction of the third generationHCV
tests, whichwe assume to have affectedR(1) through the decrease of the transmission rate β.
Finally, the ‘new’ hosts appear during the last interval [t2, t3], where t2, which we infer, is the
date of origin of the second outbreak. The final time (t3) is set by the most recent sampling
date in our dataset (2018.39). The prior distributions used are summarized in Table 1 and
shown in Figure 2. Given the phylogeny structure suggesting a high degree of assortativity,
we assume the assortativity parameters, a1 and a2, to be higher than 50%. For the prior
distribution of parameter ν, we combined a uniform distribution from 0 to 1 with a uniform
distribution from 1 to 10. This was done to ensure that the probability to have ν < 1 is equal
to the probability to have ν > 1.

To simulate phylogenies, we use our TiPS simulator (Danesh, Saulnier, et al., 2020) imple-
mented in R via the Rcpp package. This is done in a two-step procedure. First, epidemiolog-
ical trajectories are simulated using the compartmental model in equation 1 and Gillespie’s
stochastic event-driven simulation algorithm (Gillespie, 1976). The number of individuals in
each compartment and the reactions occurring through the simulations of trajectories, such
as recovery or transmission events, are recorded. Using the target phylogeny, we knowwhen
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sampling events occur. For each simulation, each sampling date is randomly associated to a
host compartment using the observed fraction of each infection type (here 68% of the dates
associated with ’classical’ hosts type and 32% with ’new’ hosts). Once the sampling dates
are added to the trajectories, we move to the second step, which involves simulating the phy-
logeny. This step starts from the last sampling date and follows the epidemiological trajectory
through a coalescent process, that is backwards-in-time. Each backward step in the trajectory
can induce a tree modification given a probability and the population size: a sampling event
leads to a labelled leaf in the phylogeny, a transmission event can lead to the coalescence
of two sampled lineages or to no modification of the phylogeny (if one of the lineages is not
sampled).

We implicitly assume that the sampling rate is low, which is consistent with the limited
number of sequences in the dataset. We also assume that the virus can still be transmitted
after sampling.

We simulate 60, 000 phylogenies from known parameter sets drawn in the prior distribu-
tions shown in Table 1. These are used to perform the rejection step and build the regression
model in the Approximate Bayesian Computation (ABC) inference.

ABC inference

Summary statistics

Phylogenies are rich objects and to compare them we break them into summary statistics.
These are chosen to capture the epidemiological information of interest. In particular, fol-
lowing an earlier study, we use summary statistics from branch lengths, tree topology, and
lineage-through-time (LTT) (Saulnier et al., 2017), and summary statistics based on the Lapla-
cian spectrum using the spectR function of the RPANDA R package (Lewitus and Morlon,
2016).

We also compute new summary statistics to extract information regarding the heterogene-
ity of the population, the assortativity, and the difference between the two R. To do so, we
annotate each internal node by associating it with a probability to be in a particular state
(here the host type, ‘classical’ or ‘new’). We assume that this probability is given by the ratio

P (Y ) =
number of descendent leaves labelled Y

number of descendent leaves
(2)

where Y is a state (or host type). Each node is therefore annotated with n ratios, n being the
number of possible states. Since in our case n = 2, we only follow one of the labels and use
the mean and the variance of the distribution of the ratios (one for each node) as summary
statistics.

In a phylogeny, cherries are pairs of leaves that are adjacent to a common ancestor. There
are n(n + 1)/2 categories of cherries. Here, we compute the proportion of homogeneous
cherries for each label and the proportion of heterogeneous cherries. We also consider pitch-
forks, which we define as a cherry and a leaf adjacent to a common ancestor, and introduce
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three categories: homogeneous pitchforks, pitchforks whose cherries are homogeneous for
a label and whose leaf is labelled with another trait, and pitchforks whose cherries are het-
erogeneous.

The Lineage-Through-Time (LTT) plot displays the number of lineages of a phylogeny over
time. In this plot, the number of lineages is incremented by one every time there is a new
branch in the phylogeny and is decreased by one every time there is a new leaf in the phy-
logeny. We use the ratios defined for each internal node to build an LTT plot for each label
type, which we refer to as ‘LTT label plot’. After each branching event in phylogeny, we incre-
ment the number of lineages by the value of the ratio of the internal node for the given label.
This number of lineages is decreased by one every time there is a leaf in the phylogeny. In
the end, we obtain n = 2 LTT label plots.

Finally, for each label, we compute some of our branch lengths summary statistics on
homogeneous clades and heterogeneous clades present in the phylogeny. Homogeneous
clades are defined by their root having a ratio of 1 for one type of label and their size being
greater than Nmin. For heterogeneous clades, we keep the size criterion and impose that
the ratio is smaller than 1 but greater than a threshold ε. After preliminary analyses, we set
Nmin = 4 leaves and ε = 0.7. We then obtain a set of homogeneous clades and a set of
heterogeneous clades, the branch lengths of which we pool into two sets to compute the
summary statistics of heterogeneous and homogeneous clades. Note that we always select
the largest clade, for both homogeneous and heterogeneous cases, to avoid redundancy.

Regression-ABC

We firstmeasuremulticollinearity between summary statistics using variance inflation factors
(VIF). Each summary statistic is kept if its VIF value is lower than 10. This stepwise VIF test leads
to the selection of 101 summary statistics out of 330.

We then use the abc function from the abc R package (Csillery et al., 2012) to infer posterior
distributions generated using only the rejection step. Finally, we perform linear adjustment
using an elastic net regression.

The abc function performs a classical one-step rejection algorithm (Beaumont et al., 2002)
using a tolerance parameter Pδ , which represents a percentile of the simulations that are
close to the target. To compute the distance between a simulation and the target, we use
the Euclidian distance between normalized simulated vectors of summary statistics and the
normalized target vector.

Before linear adjustment, the abc function performs smooth weighting using an Epanech-
nikov kernel (Beaumont et al., 2002). Then, using the glmnet package in R, we implement
an elastic-net (EN) adjustment, which balances the Ridge and the LASSO regression penalties
(Zou and Hastie, 2005). Since the EN performs a linear regression, it is not subject to the risk
of over-fitting that may occur for non-linear regressions (e.g. when using neural networks,
support vector machines or random forests).
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In the end, we obtain posterior distributions for t0, t2, a1, a2, ν, γ1, γ2, R(1),t1 and R(1),t2

using our ABC-EN regression model with Pδ = 0.05.

Parametric bootstrap and cross-validation

Our goodness-of-fit validation consists in simulating 10, 000 additional phylogenies from pa-
rameter sets drawn in posterior distributions. We then compute summary statistics and
perform a goodness of fit using the gfitpca function from the abc R package (Csillery et al.,
2012). The function performs principal component analysis (PCA) using the simulated sum-
mary statistics. It displays envelopes containing a given percentage, here 90%, of the simu-
lations. The projection of the observed summary statistics is displayed to check if they are
contained or not in the envelopes. If the posterior distribution is informative, we expect the
target data to be contained in the envelope. This analysis was performed either on the pos-
terior distribution, or on a uniform distribution based on the 95% HPD posterior distribution
of each parameter, the latter being less informative.

To assess the robustness of our ABC-EN method to infer epidemiological parameters of
our BD model, we also perform a ‘leave-one-out’ cross-validation as in (Saulnier et al., 2017).
This consists in inferring posterior distributions of the parameters from one simulated phy-
logeny, assumed to be the target phylogeny, using the ABC-EN method with the remaining
59, 999 simulated phylogenies. We run the cross-validation 100 times with 100 different tar-
get phylogenies. We consider three parameter distributions θ: the prior distribution, the prior
distribution reduced by the feasibility of the simulations and the ABC inferred posterior dis-
tribution. For each of these parameter distributions, we measure the median and compute,
for each simulation scenario, the mean relative error (MRE) such as:

MRE =
1

100

100∑
i=1

| θi
Θ
− 1 | (3)

where Θ is the true value.
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Appendix

I1 I2
γ1 γ2

βν(1 − a2)

β(1 − a1)

βνa2βa1

Figure S1. Diagram of the birth-death model with host heterogeneity. The intensity of
the colour is proportional to the correlation coefficients.

Figure S2. Densities of the inferred doubling times. The density of the doubling time for
the ’classical’ hosts before 1997 is in blue dashed line, and after 1997 in blue solid line. The
density of the doubling time for the ‘new’ hosts is in red. (t(2),t3D ).
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Figure S3. Correlation heat map between the posterior distributions for the model
parameters. The intensity of the colour is proportional to the correlation coefficients.

Peer Community In Evolutionary Biology 23 of 29

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 11, 2020. ; https://doi.org/10.1101/689158doi: bioRxiv preprint 

https://doi.org/10.1101/689158
http://creativecommons.org/licenses/by-nc/4.0/


m
e
a

n
C

lu
s
tS

iz
e

_
A

1
_
1m

e
a
n

C
lu

s
tS

iz
e

_
A

2
_

1
m

e
d

ia
n

A
_

A
1

_
1

m
e
d

ia
n
A

_
A

2
_

1
m

in
H

e
ig

h
t_

A
1

_
1

n
c
lu

s
te

rs
_

A
1

_
1

n
ti
p
_

A
2

_
1

v
a

rA
_

A
2

_
1

v
a

rE
_

A
1

_
1

S
ta

ts
 l
a
b

e
l

4

6

8

0

5

10

15

10

20

30

0

3

6

9

12
35

40

45

50

55

5

10

0

20

40

60

0

50

10
0

15
0

20
0

0

50

10
0

15
0

T
a

rg
e

t

B
o

o
ts

tr
a

p m
e
a

n
C

lu
s
tS

iz
e

_
A

1
_
0

.7m
e
a

n
C

lu
s
tS

iz
e

_
A

2
_
0

.7
m

e
d

ia
n

A
_

A
1

_
0

.7
m

e
d

ia
n

A
_

A
2

_
0

.7
n

c
lu

s
te

rs
_

A
1

_
0
.7

n
c
lu

s
te

rs
_

A
2

_
0
.7

n
ti
p
_

A
1

_
0

.7
v
a

rE
_

A
1

_
0
.7

v
a

rE
_

A
2

_
1

S
ta

ts
 l
a
b

e
l

50

10
0

0

5

10

15
2.

5

5.
0

7.
5

10
.0

0

5

10

15

20

5

10

0

2

4

6

80

10
0

12
0

14
0

16
0
0

50

10
0

15
0

0

50

10
0

T
a

rg
e

t

B
o

o
ts

tr
a

p

m
e
d

ia
n
E

_
A

2
_

0
.7

m
in

H
e

ig
h
t_

A
2

_
0

.7
v
a

rA
_

A
2

_
0
.7

v
a

rE
_

A
2
_

0
.7

S
ta

ts
 l
a
b

e
l

0

10

20

30

0

20

40

60

0

10
0

20
0

30
0

0

50

10
0

15
0

T
a

rg
e

t

B
o

o
ts

tr
a

p

n
o

rm
.a

s
y
m

m
e

tr
y

n
o

rm
.e

ig
e

n
v
a
lu

e
n
o

rm
.m

o
d

a
lit

ie
s

s
td

.a
s
y
m

m
e

tr
y

s
td

.m
o
d

a
lit

ie
s

S
p
e

c
t

12

16

20

1.
2

1.
3

1.
4

1.
0

1.
5

2.
0

2.
5

3.
0

0.
4

0.
8

1.
2

1.
6

0

10
0

20
0

30
0

40
0

T
a

rg
e

t

B
o

o
ts

tr
a

p

e
in

d
e

x
L

a
d

d
e

rS
iz

e
h

2
in

d
e

x
L
a

d
d

e
rS

iz
e

h
in

d
e
x
L

a
d

d
e
rS

iz
e

m
e
d

ia
n
L

a
d

d
e
rL

e
n

g
th

m
e

d
ia

n
L

a
d
d

e
rR

a
ti
o

m
e

d
ia

n
L

a
d
d

e
rS

iz
e

n
L

a
d

d
e

rs
v
a

rL
a

d
d

e
rR

a
ti
o

v
a

rL
a

d
d

e
rS

iz
e

N
e
w

 s
ta

ts

0

2

4

6
1.

00

1.
25

1.
50

1.
75

2.
00
2.

0

2.
5

3.
0

3.
5

4.
0

3

6

9

2

4

6

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

44

48

52

20

40

60

0.
3

0.
6

0.
9

1.
2

T
a

rg
e

t

B
o

o
ts

tr
a

p

h
2
c
e

n
te

rI
S

C
s
iz

e
h
2

lo
w

e
rI

E
M

s
iz

e
m

e
a
n

IS
P

s
iz

e
m

e
d
ia

n
IS

C
s
iz

e
m

e
d

ia
n

IS
P

le
n

g
th

n
IS

C
v
a
rI

S
P

le
n

g
th

v
a

rI
S

P
s
iz

e

N
e
w

 s
ta

ts

0

25

50

75

10
0

96
.7

5

97
.0

0

97
.2

5

97
.5

0

97
.7

5
2.

76

2.
78

2.
80

2.
82

0.
00

0.
25

0.
50

0.
75

1.
00

5

10

15

0

2

4

6

25

50

75

10
0

12
5 0.
62

0.
63

0.
64

0.
65

T
a

rg
e

t
B

o
o

ts
tr

a
p

Fi
gu

re
S4
.D

is
tr
ib
ut
io
ns

of
se
le
ct
ed

su
m
m
ar
y
st
at
is
ti
cs
.T
he

do
ts
re
pr
es
en
tt
he

m
ed
ia
n
an
d
th
e
ho

riz
on

ta
lli
ne
sr
ep
re
se
nt
th
e
95
%
H
PD

.
Re
d
di
st
rib

ut
io
ns

co
rr
es
po

nd
to

th
e
su
m
m
ar
y
st
at
is
tic
s
co
m
pu

te
d
fr
om

th
e
10
,0
00

ph
yl
og
en
ie
s
si
m
ul
at
ed

fr
om

th
e
po

st
er
io
rd

is
tr
ib
ut
io
n.

Bl
ac
k
do

ts
re
pr
es
en
tt
he

va
lu
es

of
se
le
ct
ed

su
m
m
ar
y
st
at
is
tic
s
co
m
pu

te
d
fr
om

th
e
ta
rg
et
ph

yl
og
en
y.
Su
m
m
ar
y
st
at
is
tic
s
ar
e
re
pr
es
en
te
d

by
gr
ou

p.

Peer Community In Evolutionary Biology 24 of 29

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 11, 2020. ; https://doi.org/10.1101/689158doi: bioRxiv preprint 

https://doi.org/10.1101/689158
http://creativecommons.org/licenses/by-nc/4.0/


m
e
a
n
C

lu
s
tS

iz
e
_
A

1
_
1m

e
a
n
C

lu
s
tS

iz
e
_
A

2
_
1

m
e
d
ia

n
A

_
A

1
_
1

m
e
d
ia

n
A

_
A

2
_
1

m
in

H
e
ig

h
t_

A
1
_
1

n
c
lu

s
te

rs
_
A

1
_
1

n
ti
p
_
A

2
_
1

v
a
rA

_
A

2
_
1

v
a
rE

_
A

1
_

1

S
ta

ts
 l
a
b

e
l

4

6

8

0

5

10

15

10

20

30

0

3

6

9

12
35

40

45

50

55

5

10

0

20

40

60

0

50

10
0

15
0

20
0

0

50

10
0

15
0

T
a

rg
e

t

B
o

o
ts

tr
a

p m
e
a
n
C

lu
s
tS

iz
e
_
A

1
_
0
.m

e
a
n
C

lu
s
tS

iz
e
_
A

2
_
0
.

m
e
d
ia

n
A

_
A

1
_
0
.7

m
e
d
ia

n
A

_
A

2
_
0
.7

n
c
lu

s
te

rs
_
A

1
_
0
.7

n
c
lu

s
te

rs
_
A

2
_
0
.7

n
ti
p
_
A

1
_
0
.7

v
a

rE
_

A
1
_
0
.7

v
a
rE

_
A

2
_

1

S
ta

ts
 l
a
b

e
l

50

10
0

0

5

10

15
2.

5

5.
0

7.
5

10
.0

0

5

10

15

20

5

10

0

2

4

6

80

10
0

12
0

14
0

16
0
0

50

10
0

15
0

0

50

10
0

T
a

rg
e

t

B
o

o
ts

tr
a

p

m
e
d
ia

n
E

_
A

2
_
0
.7

m
in

H
e
ig

h
t_

A
2
_
0
.7

v
a
rA

_
A

2
_
0
.7

v
a
rE

_
A

2
_
0
.7

S
ta

ts
 l
a
b

e
l

0

10

20

30

0

20

40

60

0

10
0

20
0

30
0

0

50

10
0

15
0

T
a

rg
e

t

B
o

o
ts

tr
a

p

n
o
rm

.a
s
y
m

m
e
tr

y
n
o
rm

.e
ig

e
n
v
a
lu

e
n
o
rm

.m
o
d
a
lit

ie
s

s
td

.a
s
y
m

m
e
tr

y
s
td

.m
o

d
a
lit

ie
s

S
p
e

c
t

12

16

20

1.
2

1.
3

1.
4

1.
0

1.
5

2.
0

2.
5

3.
0

0.
4

0.
8

1.
2

1.
6

0

10
0

20
0

30
0

40
0

T
a

rg
e

t

B
o

o
ts

tr
a

p

e
in

d
e
x
L
a
d
d
e
rS

iz
e

h
2
in

d
e
x
L
a
d
d
e
rS

iz
e

h
in

d
e
x
L
a
d
d
e
rS

iz
e

m
e
d
ia

n
L
a
d
d
e
rL

e
n
g
th

m
e
d
ia

n
L
a
d
d
e
rR

a
ti
o

m
e
d
ia

n
L
a
d
d
e
rS

iz
e

n
L
a
d
d
e
rs

v
a
rL

a
d

d
e
rR

a
ti
o

v
a
rL

a
d

d
e
rS

iz
e

N
e
w

 s
ta

ts

0

2

4

6
1.

00

1.
25

1.
50

1.
75

2.
00
2.

0

2.
5

3.
0

3.
5

4.
0

3

6

9

2

4

6

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

44

48

52

20

40

60

0.
3

0.
6

0.
9

1.
2

T
a

rg
e

t

B
o

o
ts

tr
a

p

h
2
c
e
n
te

rI
S

C
s
iz

e
h
2
lo

w
e
rI

E
M

s
iz

e
m

e
a
n
IS

P
s
iz

e
m

e
d
ia

n
IS

C
s
iz

e
m

e
d
ia

n
IS

P
le

n
g
th

n
IS

C
v
a
rI

S
P

le
n
g

th
v
a
rI

S
P

s
iz

e

N
e
w

 s
ta

ts

0

25

50

75

10
0

96
.7

5

97
.0

0

97
.2

5

97
.5

0

97
.7

5
2.

76

2.
78

2.
80

2.
82

0.
00

0.
25

0.
50

0.
75

1.
00

5

10

15

0

2

4

6

25

50

75

10
0

12
5 0.
62

0.
63

0.
64

0.
65

T
a

rg
e

t
B

o
o

ts
tr

a
p

Fi
gu

re
S4
.D

is
tr
ib
ut
io
ns

of
se
le
ct
ed

su
m
m
ar
y
st
at
is
ti
cs
.T
he

do
ts
re
pr
es
en
tt
he

m
ed
ia
n
an
d
th
e
ho

riz
on

ta
lli
ne
sr
ep
re
se
nt
th
e
95
%
H
PD

.
Re
d
di
st
rib

ut
io
ns

co
rr
es
po

nd
to

th
e
su
m
m
ar
y
st
at
is
tic
s
co
m
pu

te
d
fr
om

th
e
10
,0
00

ph
yl
og
en
ie
s
si
m
ul
at
ed

fr
om

th
e
po

st
er
io
rd

is
tr
ib
ut
io
n.

Bl
ac
k
do

ts
re
pr
es
en
tt
he

va
lu
es

of
se
le
ct
ed

su
m
m
ar
y
st
at
is
tic
s
co
m
pu

te
d
fr
om

th
e
ta
rg
et
ph

yl
og
en
y.
Su
m
m
ar
y
st
at
is
tic
s
ar
e
re
pr
es
en
te
d

by
gr
ou

p.

Peer Community In Evolutionary Biology 25 of 29

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 11, 2020. ; https://doi.org/10.1101/689158doi: bioRxiv preprint 

https://doi.org/10.1101/689158
http://creativecommons.org/licenses/by-nc/4.0/


R
1

t1
R

1

t2 ν a1 a2 γ1 γ2 t0 t2

Prior

Prior
(simulated)

ABC posterior
(uniform)

0.
2

0.
3

0.
4

0.
5

0.
6

0.
75

1.
00

1.
25

1.
50 0.

5
0.

6
0.

7

0.
13

2

0.
13

6

0.
14

0

0.
14

4

0.
15

7

0.
15

8

0.
15

9

0.
16

0

0.
16

1

0.
16

2 2 4 6 8

0.
52

5

0.
55

0

0.
57

5

0.
60

0

0.
00

2

0.
00

3

0.
00

4

0.
00

5

0.
00

12
6

0.
00

12
7

0.
00

12
8

0.
00

12
9

0.
00

13
0

RE

Figure S5. Cross-validation results. Each column corresponds to one of the inferred pa-
rameters. The first line shows the prior distribution. The second line shows the distribution
of values for which a phylogeny could be simulated. The third line shows the inference after
then ABC. For the rejection step of the ABC, the tolerance level was set to Pδ = 0.05. The
rectangles show the mean relative errors and their standard errors computed for 100 target
sets with known values (see the Methods).
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Figure S7. Variation in posterior distribution estimated from different inferred phylo-
genies. The dots represent the median and the horizontal lines represent the 95% highest
posterior density (HPD) of each distribution. Grey distributions correspond to the prior, or-
ange distributions correspond to the different posterior distributions computed from 100
phylogenies drawn at random in the posterior distribution of trees inferred by Beast2 and
red distributions correspond to the ABC-EN posterior distributions.
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Figure S8. Density distributions of the tMRCA for the observed Beast2 phylogeny (in
black) and for the 100 phylogenies drawn at random in the posterior distributions of
trees inferred by Beast2 (in red).
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Figure S9. Diagram of the alternative model where all infected hosts first go through
an acute phase (Ai) before recovering or progressing to the chronic phase (Ci). ω is
the proportion of infections that clear before becoming chronic, σ is the rate at which acute
infections become chronic, and other parameters are identical to those in the main text. The
equations governing the dynamics of the system can be written as dAi

dt = aiβi(Ai + Ci) +

(1− aj)βj(Aj + Cj)− σAi and dCi

dt = σ(1− ω)Ai − γiCi with i 6= j, β1 = β and β2 = νβ.
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