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Summary 
We show by using example of coeliac disease (CD) that a genomic risk assessment could significantly 

improve efficiency of disease diagnosing. It can detect novel highly deleterious rare variants 

(penetrance 100%, frequency ~1:6,700) as well as common protective variants (penetrance 0.03%, 

frequency ~1:3). However, the major translational gains with potential for multi-billion-dollar cost 

savings in Australia or USA alone, could be in assessing patients in cohorts with moderately elevated 

CD risk (3% -10%) exhibiting clinical symptoms or with family history of CD. The gains result from 

judicious re-direction of expensive confirmatory testing towards ~30% of the cohort with the highest 

likelihood of the condition (~90% of cohort CD cases), while avoiding costs, inconvenience and risk of 

side-complications for the remaining majority of ~70%.  

We build our estimates using concrete results of CD Genome Wide Association Studies (GWAS) 

already in the public domain1–4.  The largest of five Genomic Risk Score (GRS) models1 considered 

here deploys 228 directly genotyped Simple Nucleotide Polymorphisms (SNPs), while the simplest2 

uses only 6 SNPs. Thus,  a DNA profile supporting all these models can be easily accommodated on 

any commodity, Direct-to-Consumer5 (DTC), saliva-based genotyping platform. Once generated, such 

a generic profile of over 600,000 SNPs could assist medical practitioners in diagnosing this as well as 

thousands of other diseases on demand, virtually genotyping cost free.   

Motivation 
The conception of this paper was directly stimulated by a desire to respond to a harsh critique6 of 

two widely publicised recent studies7,8 of polygenic risk score (GRS) models for disease risk 

prediction.  This critique by Wald & Old, provocatively titled “Illusion of Polygenic Disease Risk 

Prediction” is concluded with a pessimistic statement “To our knowledge, no genome-wide polygenic 

score meets [a sufficiently strong association] requirement, and none is likely to do so with polygenic 

scores that emerge in the future” in order “to be seriously considered as a possible screening test”. 
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We share concerns about ability of GWASs assembling thousands of unrelated individuals to 

demonstrate convincing translational relevance of generated results, especially when those are 

gauged against well-established clinical tests or some genetic tests discovered in family studies. 

However, we do not share such total pessimism at all. Actually, we see numerous exciting novel 

opportunities, in particular, resulting from combing genomics with diverse complementary testing 

techniques into improved novel diagnostic protocols. This does not seem to be accounted for by 

Wald & Old6 and thus motivated this articulation of our perspective on that matter.   

The ideal genomic test for case-control GWAS should split data into two complementary subsets, 

one with very high, the other with very low penetrance of disease cases. In practice this is hardly 

ever possible, since genomes determine only susceptibility for disease development, while the 

actual onset of disease depends also on other factors, e.g. environmental triggers, which are 

typically not accessible during GWAS analysis. In some practical applications this can be 

compensated by combining genomics with independent clinical tests which effectively detect history 

of those exposures. However, one may reasonably expect that in some extreme genotype 

configurations the susceptibility is so high that sufficient, relatively weak triggers are almost 

certainly met by the carriers who become diseased. Similarly, on the opposite protective extreme, 

the “necessary-for-disease-development” genomic variants could be missing and so these people 

will be almost certainly disease free. Detection of such extreme genomic configurations has obvious 

practical implications1–4, even if it could be of relevance for a small fraction of the  population only. 

An obvious motivating example here is the case of deleterious mutations in the BRCA1 or BRCA2 

genes9,10: around 5-10% of breast cancer (BC) cases in women are attributed to some harmful 

mutations in those genes with estimated 5 fold increased risk (or penetrance)  to 80% for breast 

cancer (by the age 90)10. There are hundreds of known mutations in those genes, of which only some 

are known to be deleterious with approximately equal attribution of the risk between both genes. 

No one will question these days that a genetic test detecting some of  those deleterious mutations in 

BRCA1 gene is of prime medical concern, even if it could be of relevance for far less than 2.5-5% of 

possible BC cases, as it could a trigger need for some drastic preventive actions by some of the 

unfortunate carriers11.  Against this background, we shall proceed to re-analyse five CD risk models 

for the detection of highly deleterious and highly protective genetically determined strata, in 

particular.  

GWAS Results 

We use GWAS data for CD composed of four different ethnic cohorts: British (UK), Dutch (NL), Finish 

(FIN) and Italian (IT), comprised altogether of 3796 cases and 8154 controls (see Suppl. Table 1). 

Genotyping data were accessed from https://www.ebi.ac.uk/ega/studies/EGAS00000000057 under 

accession number EGAD00010000286 and originally used in the series of papers 12 1,2 reporting the 

main risk models used here. The largest UK cohort (1849 cases and 4936 controls) was used for 

discovery (training) where applicable. The combined remaining 3 cohorts,  𝐹𝐼𝑁 ∪ 𝐼𝑇 ∪ 𝑁𝐿, were used 

for independent testing (1947 cases & 3218 controls). We consider 5 different models of risk 

stratification as follows: 

(i) GRS228 which uses 228 SNPs selected by the a penalised regression applied to the UK 

cohort1; 
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(ii) HDQ15 based on specific configurations of 4 Human Leucocyte Antigen (HLA) haplotypes 

imputed to data using HIBAG_HLA algorithm 13 and splitting data into 15 disjoint CD risk 

strata ordered according to the risk assessed in the UK cohort 2; see Suppl. Table 4; 

(iii) HDQ17 – based on calls of 6 directly measured HLA SNPs and developed by application of 

machine learning and human expertise to UK-cohort data2; see Suppl. Table 5; 

(iv) TD – a HLA-based CD risk model splitting data into 5 different expert determined risk 

categories developed independently of this GWAS data by Tye-Din, et al,4; 

(v) ROM - another HLA-based CD risk model splitting data into 3 different, expert-

determined risk categories developed by Romanos, et al.3. 

Note that that GRS228 using 228 SNPs generates stratification with over 11,000 different values in our 

data, which is complex and ‘noisy’ in comparison to a handful of level-based parsimonious 

stratifications from any of remaining four models. In Figure 1 we show five Receiver Operating 

Characteristic (ROC) curves for those risk models with the Area Under the Curve (AUC), a typical 

metric used to quantify classification performance, displayed in the legend. All curves, except for 

ROM model, look very similar, especially in the extreme ends: the ‘deleterious’ left-hand-side-

bottom corner marked as a pink rectangle and the ‘protective’ right-hand-side upper corner, marked 

in green. In the zoomed inserts we start seeing some differences between individual ROC curves, 

though they are still hard to interpret. We need to examine the shape of the extreme ends of these 

ROC curves, focusing especially on the steepness at the curve onset as well as its flatness at the top. 

To that end, in Figure 2.A we plot a precision-recall  curve in terminology of information retrieval[ref] 

or, in the epidemiological terms, the penetrance versus sensitivity, which is the fraction of diseased 

people in the sub-population of carriers of genotypes falling into the tail of the distribution versus 

the rate of detecting cases (y-coordinate in Figure 1). For the protective corner in Figure 2.B we plot 

penetrance vs. specificity, which is the rate of detecting disease-free controls (x-coordinate in Figure 

1). The penetrance is estimated from the independent test data on the combined Finish, Italian and 

Dutch cohorts under prevalence 𝐾𝐶𝐷 = 1%, which is an estimated prevalence of CD in the European 

population14 as well as in Australia4 and USA15,16. In Figure 3 we show statistical significance (p-

values) for all those models obtained from the Fisher exact test: we clearly see that all results for the 

tails larger than 1.5% are statistically very significant. 

The key observations underpinning our analysis can be summarised as follows. Firstly, in Figure 1 we 

observe a characteristic ‘kink’ at the sensitivity level ~90% splitting data into a ‘deleterious’ part 

containing 90% of cases and the `protective’ part containing remaining ~10% of cases. Secondly, 

some “tiny” differences in ROC curves in Figure 1 between GRS228 and other model are actually 

linked to very significant differences in the performance as shown in Figure 2. In particular, in Figure 

2A we see that the GRS228 model at the extreme ‘deleterious’ tail (for sensitivity ≈ 1.5%) conveys 

the ultimate risk, the penetrance 100%. This is 6 times larger than the highest risk for any of the 

remaining four models. These specific genotype configurations picked by GRS228 (present in 9FIN + 

5IT + 17NL + 18UK samples) have a potential to progress aetiological knowledge of CD and should be 

investigated further. Moreover, we observe the penetrance ~40% for GRS228 high risk tail containing 

up to 5% of CD cases, again warranting a follow up investigation.  

On the opposite, ‘protective end’, GRS228 performs noticeably worse than any remaining four 

parsimonious models. It is represented here by a relatively noisy (black) curve, presumably affected 

by a noise injected by multiple, redundant probes. At this extreme, by using HDQ15 or HDQ17 risk 
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models we can select subpopulations encompassing ~30% controls, with very low disease risk 

(penetrance ~0.03%), which corresponds to a drop by a ratio ~3500:1 with respect to the top 

penetrance segment of 1.5% for GRS228. If you directly use the parsimonious CD-risk stratification 

based on the HDQ17 model (red curve), then we identify the top risk segment encompassing 18% 

cases with penetrance >14%, which is ~500 times higher than the penetrance <0.03% observed for 

the bottom 25% of risk distribution according to that model.  

Commodity Genotyping 
As it has been mentioned above the genetic testing required by our risk models is very simple: for 

comparison, the risk models used by Khera et al. 7   and Inouye et al. 8 are relying on millions of SNPs 

and other covariates. The simple genotyping required by our models can be delivered at a very low 

cost leveraging popular DTC genotyping platforms. For example, Illumina’s GSA microarray5 utilised 

by AncestryDNA or 23andme, already contains 4 out of 6 SNPs used by HDQ17 model and 61 SNPs 

used by 𝐺𝑅𝑆228 ; other required SNPs could be appended or replaced by appropriate proxies. 

Independently, ROM, TD and HDQ15 models can be readily implemented on such platforms by using 

additional HLA imputation algorithms. As for the future, the genotyping of the whole population is 

becoming a practical possibility. At the current cost of AU$99 per person in Australia 

(MyHeritageDNATM ) it will cost AU$2.5Billion to genotype every of 25Million Australians, which is 

1.4% of the estimated annual health expenditure in Australia 2016–17 (AU$180.7Billions; 

reference17, page 5). Once such profiles are generated, they could be utilised by their owners as 

cost-free, life-time resources for the assessment of life style choices and of risks for thousands of 

diseases (it is estimated that there are ~8,000 heritable conditions of interest which new-borns 

should be tested18). Such sharing will reduce cost of genotyping to a negligible expense per 

diagnosis, or to 0, if a person has already acquired such a popular profile for some other reasons. 

Note that AncestryDNA kit is currently, June 2019, advertised by Amazon for USA at US$ 99. 

Translational Implications 
 Now we translate the above observations into three specific clinical scenarios with some estimates 

of costs and benefits (see Methods and Supplementary Materials for more detailed explanations). 

Given that only 30% to 40% of CD cases are currently diagnosed, improving the diagnosis of CD is 

now recognized as an important goal for clinicians [6] and application of genomic risk prediction 

lowering costs as outlined below can contribute towards practical realisation of this goal. 

Detecting highly penetrant rare variants in general population 
For argument sake, we estimate that in Australia the subpopulation with CD risk of 100% estimated 

using GRS228 model (Figure 2.A) is around 4,000 people (approximately 25Million / 6,700). If a simple 

saliva-based GRS228-like risk score had been used to detect this vulnerability early in their life, then 

these people would have been saved from coeliac suffering since birth, by adopting an appropriate 

diet. In case of USA, with 327Million citizen, this translates to ~49,000 people.  Note that these 

cohorts although relatively small, are actually larger than the total numbers of sufferers from  many 

other malicious multifactorial conditions we do care about such as  Primary Sclerosing Cholangitis 

(PSC), the prime indication for liver transplant, with prevalence  in Europe19 ranging from 1/446,000-
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1/6,170. The searching for such rare variants would become very economical if multiple (hundreds) 

of diseases could be evaluated in parallel using a single DNA profile. 

Detecting CD in the symptomatic subpopulation  
The estimated CD prevalence in the cohort showing CD suggestive symptoms1,16,20 is 3%. Using 

prevalence ratio as a guide, we have estimated that 33% (=1%/3%) of the population displays CD-

symptoms. This means that at some point ~8.3Million of Australians need to be considered for lower 

bowel endoscopy, ‘the gold standard’ CD-confirmatory procedure. The total cost of that procedure 

would be AU$8.3 Billion (@AU$1000 / person1,4), with efficiency 1:33, i.e. of 1 CD-hit per 33 

endoscopies. However, using prioritisation by HDQ17 risk model (or any of other 4 models but TD), 

we expect to detect 50% and 90% of CD cases with hit rates increased to 1: 5.8 and 1:9.2 by using 

only ~725,000 and ~2,029,000 endoscopies, respectively (see Supplementary Table 6 and 

Supplementary Figures 6). In comparison to random application of the procedure to 50% and 90% of 

this cohort this will save 3,442,000 and 5,426,000 endoscopies costing AU$3.442Billion and 

AU$5.426Billion, respectively.  

By extrapolating these savings to the population of 327Million of US citizens, where cost of 

endoscopies (in US$) are very similar to Australia, the estimated saving would be of ~US$45.0 Billion 

and ~US$ 70.9 Billion for detection of 50% and 90% of CD-cases, respectively.  

The genotyping overheads are ≤ AU$0.83 Billion and ≤ US$ 10.9 Billion, respectively, which is the 

cost of genotyping de novo of each person in the cohort at $100 /person. This, in the worst case, will 

make only 24% and 15% of estimated above savings on endoscopies, for targeted 50% and 90% CD-

detection rates, respectively. 

Detection of CD for the first-degree relatives of CD sufferers  
We estimate that the cohort of first-degree relatives of CD sufferers  (CDFDR ) in Australia has 

approximately 0.25 Million ≈ 25Million × 1% × 33% × 3  people (assuming prevalence in the 

general population 1% with only 33% CD-cases diagnosed and 3 CD-undiagnosed first-degree 

relatives per known CD case). In this cohort, with prevalence1,21,22 of 10%, we expect 1 CD case 

detected per 10 endoscopies in random screening. However, if we select ~30% of this cohort with 

the highest risk according to HDQ17 risk model we should detect ~90% CD-cases with average hit rate 

1 per 3.3 endoscopies. This would save >151,000 endoscopies and AU$ 151Million in comparison 

with screening of 90% of CDFDR uniformly. This saving scaled to the USA will amount of 

US$1.975Billion. Note that the detection of the remaining 10% CD cases in CDFDR requires 

significantly increased efforts, generating in excess of 30 endoscopies per single successful detection 

on average (see Supplementary Table 7 and Figure 7). The genotyping overheads for this scenario 

are  ≤ AU$25 Million and ≤ US$ 327Million, respectively, which is below 17% of the estimated 

savings on endoscopies.  

Interestingly, the estimated efficiency of 1 CD hit per 3.3 endoscopies discussed above is much 

higher than for an alternative, CD-dedicated blood based HLA typing test, which1 ‘at 10% CD 

prevalence […] would generate over five unnecessary endoscopies per correct endoscopy’. Thus this 

once-off test offers significantly lower hit rate (1:6) at a higher cost, namely, at AU$120/sample and  

typically US $150/sample or greater  in USA1. 
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Discussion 
In simple terms, the savings in the last two scenarios leverage ability of genomics risk models to 

concentrate 90% of CD cases in 30% of a cohort translating to a 3-fold increase in efficiency of the 

expensive confirmatory procedures. The main cost saving comes from sacrificing the detection of 

the remaining 10% of cases, which would require scanning of the remaining 70% of the cohort with 

efficiency 21 times lower (21= (90%/30%) : (10%/70%)). One may expect that similar results could be 

achieved using alternative, more established diagnostic techniques, e.g.  serological and histological  

assessments1,4,23, but genomic risk assessment shows here translational potential and should be 

seriously considered as an alternative or a complement to those techniques. For instance, under our 

modelling assumptions, if the confirmatory endoscopy test is directed to the stratum of the 

symptomatic cohort containing 50% of the highest HDQ17-risk cases (Suppl. Table 6, row 4), we 

expect to detect 125,000 CD cases, which is more than  75,000-100,000 CD cases (30%-40% ) 

currently diagnosed6–8,24,25 in Australia. This detection can be achieved using 125,000 × 5.8 ≈

725,000  endoscopies, which is ≈ 8.7% of the symptomatic cohort and only ~2.9% of the Australian 

population.   Note that in this case the endoscopy hit rate of over 1:5.8 is almost twice better than 

the disease frequency among siblings of CD-cases.  

Obviously, this could be achieved over years, gradually as patients with suggestive symptoms turn 

for assessment. (Such a delay could be, for instance, due to an earlier asymptomatic period of 

disease or to a development of disease in adulthood 22,23,26–29, which could also lead to repeated 

assessments of some individuals,  increasing effective size of the symptomatic cohort, etc.)   

Finally, note that all five CD risk models considered here comfortably exceed formal benchmarks 

used or reported in paper 7–8,24,25 and used by Wald and Old as foundation of their pessimistic paper6 

(see Supplementary Tables 2 and 3 and a discussion following them). Thus, this plainly falsifies Wald 

and Old’s the statement6 that no genome-wide polygenic risk score models are likely to meet their 

formal standards of association accuracy23,24.  However, we still concede that none of these models 

fulfils classical expectations  for  a medical screening test standing on its own, and also that none is 

able of  explaining the majority of CD heritability4, which is often expected of genomic risk 

modelling. But as it has been argued here and elsewhere1,2 that does not preclude those models 

from producing potentially highly useful practical results which is an ultimate goal in this game. In 

particular, we have demonstrated above that relatively moderate risk prediction improvements, of 

order 3 - 4 times over cohort average, could lead to substantial translational gains in suitable clinical 

context as long as the genomic risk assessment could be delivered at affordable cost.  However, this 

is a statement of technical capability. The final success will require to overcome a number of 

additional hurdles, such as the issue of privacy, reliability of genotyping tests and a demonstration of 

benefits in rigorous clinical trials among the other issues. 

 

Conclusions 
On this note we re-iterate our opinion that the pilot results, such as those outlined above for CD, 

have enormous translational potential and should be seriously considered for 

developing/incorporation into novel disease screening tests along more established clinical 

techniques. The compact genotyping facilitating such risk models allows for accommodation of 

adapt this material for any purpose without crediting the original authors. 
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or 

The copyright holder has placed this preprint (whichthis version posted July 2, 2019. ; https://doi.org/10.1101/687889doi: bioRxiv preprint 

https://doi.org/10.1101/687889


Xta4cd_v19 Extreme Polygenic Risk Strata in a Coeliac Disease GWAS 190630 

7 
 

profiles for hundreds of other disorders using a single commodity, DTC-like, genotyping platforms, 

which will promote ubiquity and minimise diagnostic costs.  

Finally, we should stress that success of such deployments depends also on successful development 

of supporting datamining techniques and dedicated software tools for data driven detection of rare 

variant strata conveying statistically significant extreme associations, discovery of compact 

(parsimonious) risk models and for incorporation of interactions among genomic and non-genomic 

factors for further improvements in model compactness and accuracy.  
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Methods 
All five risk models used in the paper are exactly the same as in 2. All risk models were calibrated on 

UK cohort, the remaining 3 cohorts were used for an independent test.  In summary: 

1. GRS228 : We recall, this risk model uses 228 SNPs selected by the penalised regression applied to 

the UK cohort (Abraham et al. 2014; see Supplementary Methods for more detail) . An explicit 

text file describing the model, grs.txt, and a procedure for the generating risk scores from it are 

available at http://dx.doi.org/10.6084/m9.figshare.154193. This procedure generates 11,863 

different scores for our data, hence for a simplicity of data processing and plotting, these scores 

were rounded to 500 levels uniformly distributed between the lowest and the highest value. 

2. ROM, TD, HDQ15 : For these 3 models required 4-digit HLA-DQA1 and HLA-DQB1 genotypes for 

each sample were imputed using the R package HIBAG (HLA Genotype Imputation with Attribute 

Bagging) 13. Based on the specific combination of those haplotype each sample was allocated to 

one of the 3 for ROM 3, of 6 for TD 4 and  of 15 for HDQ15 2 subsets (strata). For each stratum the 

risk of disease was represented by the ratio of CD-cases to the fraction of controls falling into it, 

which is a data estimate of the positive likelihood ratio (LR+) (sometimes also referred to as the 

positive likelihood ratio (PLR) of the odds ratio with reference to the population odds (OR). The 

explicit formulae follow for completeness and the numerical values are given in Supplementary 

Tables 4 & 5. 

𝐿𝑅+(𝕊) ≔ 𝑂𝑅(𝕊) ≔ 𝑃𝐿𝑅(𝕊) ≔
|𝕊 & 𝐶𝑎𝑠𝑒 |

|𝕊 & 𝐶𝑜𝑛𝑡𝑟𝑜𝑙|

|𝐶𝑜𝑛𝑡𝑟𝑜𝑙 |

|𝐶𝑎𝑠𝑒|
⁄ ∼

𝐏[𝕊|𝐶𝑎𝑠𝑒]

𝐏[𝕊|𝐶𝑜𝑛𝑡𝑟𝑜𝑙]
 . 

(Here 𝕊 denotes a stratum in question; | | denotes the cardinality and 𝐏 stands for the 

probability and 𝐶𝑎𝑠𝑒 / 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 denote the subset of cases and controls in the data.)  

In our binary classification analysis (bases on ROC curves analysis) only the order of strata is 

really accounted for (but not the explicit values of scoring function, i.e. 𝐿𝑅+ in this case). We 

have used the ordering on UK cohort to that end. This ordering agrees perfectly with the risk 

order allocated in the original papers introducing ROM and TD models. 

3. HDQ17 : This model introduced in 2 stratifies data into 17 categories according to the allele calls 

for 6 specific SNPs, see Suppl. Table 5. As before we have used the 𝐿𝑅+(𝕊) values for UK-cohort 

in Suppl. Table 5 in order to rank the CD-risk for those strata.  

 

Given the prevalence 𝐾𝐶𝐷  of the disease in the population and a genomic stratum 𝕊 we estimated 

the penetrance 𝑓(𝕊), i.e. the probability of being diseased while a carrier of genotype in 𝕊, also 

known as the positive predictive value (PPV): 

𝑓(𝕊) = 𝑃𝑃𝑉(𝕊) ≔
𝐿𝑅+(𝕊) ∗ 𝐾𝐶𝐷

(1 − 𝐾𝐶𝐷) + 𝐿𝑅+(𝕊) ∗ 𝐾𝐶𝐷

=  
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝕊) ∗ 𝐾𝐶𝐷

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝕊) ∗ 𝐾𝐶𝐷 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝕊) ∗ (1 − 𝐾𝐶𝐷)
 

           ∼ 𝐏[𝐶𝑎𝑠𝑒 |𝕊 ] ,  
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where 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝕊) ≔  
|𝕊 & 𝐶𝑎𝑠𝑒 |

|𝐶𝑎𝑠𝑒|
 

 and 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝕊) ≔  
|𝕊 & 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 |

|𝐶𝑜𝑛𝑡𝑟𝑜𝑙|
. 

Note that in the main results of this paper we have exclusively analysed strata 𝕊 defined by the 

extreme deleterious or extreme protective tails of the risk distributions (see Figure 2, the 

Supplementary Figures 2, 4 and Supplementary Tables 4 & 5). 

The inverse of the penetrance provides a dataset-based estimate of the number of tests 

(endoscopies) which will be required to detect a single CD-case in the genomic stratum 𝕊. It has 

been used in generation of Supplementary Tables 6&7 and Figures 5&6 on which the discussion of 

the Translational Implications in the paper was based. 

𝑁𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑒𝑛𝑑𝑜𝑠𝑐𝑜𝑝𝑖𝑒𝑠_𝑝𝑒𝑟_1_𝐶𝐷_𝑐𝑎𝑠𝑒(𝕊) ≔
1

𝑓(𝕊)
=

1

𝑃𝑃𝑉(𝕊)
 

                            =  1 +
𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝕊) ∗ (1 − 𝐾𝐶𝐷)

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝕊) ∗ 𝐾𝐶𝐷
 . 

Each stratum 𝕊 splits our case-control data into a 2x2 contingency table. The classical Fisher Exact 

test was used to assess significance of such partitions against a null hypothesis that 𝕊 was selected 

by random drawing of |𝕊| samples from the data. For the extreme protective and extreme 

deleterious tails of the risk distributions such p-values are plotted in Figure 3 and Supplementary 

Figure 3. 
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Figures  
 

 

 

 

Figure 1: ROC Curves for five different risk models tested on the independent test data (the 
combined three cohorts Finish (FIN), Dutch (NL) and Italian (IT)). The extreme deleterious 
(South-West corner) and protective (North-East corner)  stratification regions are marked as 
pink and blue rectangles, respectively, with two inserts presenting a higher resolution views. 
All curves, with an exception of TD model, look close to each other with hardly any difference 
noticeable by visual inspection. Note that the AUCs, shown in the legend, are very close to 
each other and, especially for the three top models, do not differentiate between these 
models in a meaningful way.  
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Figure 2: Plots penetrance versus sensitivity and specificity for the independent test data (𝐅𝐈𝐍 ∪
𝐈𝐓 ∪ 𝐍𝐋 cohorts combined). (A) The penetrance vs. sensitivity or, equivalently, the precision vs. 
recall, or the positive predictive value (PPV) vs. true positive rate (TPR), etc. (B) The penetrance vs. 
specificity, or PPV vs. true negative rate (TNR), etc. We assume prevalence KCD=1%, an estimated 
population penetrance of coeliac disease in the European population14 as well as in Australia4 and 
USA. Two panels are designed to show unfolding of singularities at the deleterious and protective 
corners of the ROC curves shown as pink and blue rectangles in Figure 1, respectively. We show 
results of testing on the combined three off-training cohorts (Finish, Dutch and Italian). Note the 
highly desired significant drops in prevalence between the most deleterious strata in left panel and 
the most protective strata in the right panel with impressive ratios, 3500: 1 and 500:1, in particular. 
Note also that all parsimonious risk models, i.e. other than GRS228, have very stable tails (horizontal 
tail lines) extending to 20-30% in the x-axis dimension. On the other hand, the plots for GRS228 are 
relatively noisy, which is expected, as they reflect contributions from over 200 independent terms. 
Furthermore, the parsimonious models clearly outperform GRS228 at the protective extremes (right 
panel) which, somewhat indirectly, reflects a relatively good knowledge of link between coeliac 
disease and relatively common HLA variants. However, at the deleterious corner (left panel) GRS228 
clearly outperforms all remaining models reaching ultimate penetrance 100% for the extreme 

stratum encompassing ~1.5% of CD-cases (p-value < 𝟏𝟎−𝟗 , see Figure 3). None of these remarkable 
features and differences are apparent if analysis is reduced to comparisons of AUC values or a 
superficial visual inspection or ROC curves in Figure 1. 
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Figure 3: Significance for the extreme tail strata according to the Fisher exact test. The nominal 

𝐩𝐯𝐚𝐥𝐮𝐞 = 𝟎. 𝟎𝟓 and the standard genome wide 𝐩𝐯𝐚𝐥𝐮𝐞 = 𝟓 × 𝟏𝟎−𝟖 significance levels are marked 
with blue and red horizontal chain lines. Note that in this independent test all extreme tail-strata of 

size  ≳ 𝟏. 𝟓% become very significant, with p-values ≲ 𝟏𝟎−𝟖 . Note that even the nominal level 0.05 
of significance (blue chain line) is appropriate as there are no penalties for multiple choices involved 
here.   
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