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Obesity and brain topological organization
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Life expectancy and obesity rates have drastically increased in
recent years. An unhealthy weight is related to long-lasting bio-
logical deregulations that might compromise the normal course
of development and the so-called “successful aging”. The aim
of the current study was to test whether an obesity status could
mimic the functional organization of an otherwise healthy aged
brain. To this end, we included adults with (N = 32, mean age
34.5 ± 6.49) and without obesity (N = 34, mean age 32.7 ± 6.79) as
well as adolescents with obesity (N = 30, mean age 15.3 ± 2.64)
and normal-weight (N = 31, mean age 15.6 ± 2.60). A sample
of stroke-free non-obese and non-demented seniors was also en-
tered (N = 32, mean age 66.1 ± 7.43). Participants underwent
a resting-state MRI acquisition and graph-based measurements
of segregation, integration and robustness (i.e., mean degree and
strength) were calculated. Obesity in adults was accompanied
by a broad pattern of losses in network robustness when com-
pared to healthy-weight adults and seniors, as well as increases
in network segregation relative to elders. Differences in adoles-
cents followed the same direction yet did not survive multiple
comparison adjustment. No interaction emerged when explor-
ing the transition from childhood to adulthood accounting for
body-weight status. While more research is needed, we offer
preliminary evidence of an obesity status negatively rendering
network resilience, which could compromise the normal course
of aging.
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Introduction
Our life expectancy is longer than it has ever been before.
Above 30% of the population from Western developed coun-
tries will be older than 60 years by 2050 (World Health Or-
ganization, 2015). For this reason, research on the psychobi-
ological factors that have an impact on the so-called “suc-
cessful aging” is rapidly gaining popularity. One of such
factors is obesity. The World Health Organization (WHO)
estimates that the prevalence of obesity has tripled in the last
decades (WHO, 2017). Particularly, children and teenagers
with obesity represent a serious matter of concern as they
are most likely to stay overweight throughout life and de-
velop long-lasting medical comorbidities earlier than adults

(WHO, 2018). The far-reaching consequences of obesity in-
volve several chronic conditions, such as type II diabetes,
cardiovascular diseases and cancer (Wade, Carslake, Sattar,
Davey Smith, & Timpson, 2018). On a similar note, obe-
sity could accelerate brain aging (Ronan et al., 2016; Tzane-
takou, Katsilambros, Benetos, Mikhailidis, & Perrea, 2012),
increasing the odds of suffering late-onset dementia (Bischof
& Park, 2015). Neuroanatomical studies suggest that obesity
is associated with alterations in gray matter (GM) and white
matter (WM) composition in both adults (García-García et
al., 2018; Repple et al., 2018; Zhang et al., 2018) and ado-
lescents (Kennedy, Collins, & Luciana, 2016; Ou, Andres,
Pivik, Cleves, & Badger, 2015). Thus, morphologically at
least, this condition could induce changes in the brain that
resemble those prompted by aging.

The functional organization of the brain is intricate. Distinct
and anatomically distant regions interact with each other con-
tributing to cognitive function. Graph-based indexes could
serve as proxies of the complex rendering of large-scale net-
works. Measures of segregation, such as modularity, repre-
sent how neighboring nodes tend to aggregate as independent
clusters (Rubinov & Sporns, 2010). This community-based
organization underpins the principle of brain economics with
highly specialized modules dedicated to the processing of
certain sources of information, mostly of sensory nature
(Wig, 2017). Integration indexes reflect instead to which
extent a priori unrelated modules interchange information.
A typical surrogate of integration is the characteristic path
length (path length, from now on). This parameter echoes the
shortest path between modules (Rubinov & Sporns, 2010).
Hence, the fewer the jumps, the greater the integration be-
tween communities. Well-balanced short and long-range
connections allow the rapid combination of resources neces-
sary for higher cognitive activity. Finally, degree and strength
mirror the network integrity and efficiency by averaging the
amount and the weight of connections a given node has with
the rest of the brain (Rubinov & Sporns, 2010). Densely in-
terconnected nodes are metabolically costly and commonly
referred to as “hubs” as they exert as bridges coupling remote
clusters (van den Heuvel & Sporns, 2013).
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Aging is associated with losses in the differentiation between
well-defined circuits. Independent clusters tend to enhance
their between-cluster communications at the expense of their
within-cluster interactions. In other words, aging is associ-
ated with decreases in modularity (Geerligs, Renken, Saliasi,
Maurits, & Lorist, 2015) and increases in path length (Sun,
Tong, & Yang, 2012). These losses in network discreteness
could reflect nodal strength reductions as well as trimming
or weakening of short-range connections (i.e., drops in de-
gree and strength) (Sala-Llonch et al., 2014). Similarly, dur-
ing childhood and adolescence, the brain progressively steps
from highly clustered and randomly wired communities to-
wards less modular and better connected ones (Boersma et
al., 2013). These are thought to reveal age-related changes
within GM/WM tissues (e.g., axonal pruning, cell-shrinkage)
(Cao et al., 2014).
To date, and to the best of our knowledge, only four studies
have explored the brain functional organization in obese indi-
viduals with graph-theoretical parameters, with three of them
conducted in adults. The first two reported lower modularity
in individuals with obesity when compared to healthy-weight
subjects (Baek, Morris, Kundu, & Voon, 2017; Chao et al.,
2018). The third and fourth study described global brain con-
nectivity decreases mainly among prefrontal circuits in both
adults and adolescents (Geha, Cecchi, Todd Constable, Ab-
dallah, & Small, 2017; Moreno-Lopez, Contreras-Rodriguez,
Soriano-Mas, Stamatakis, & Verdejo-Garcia, 2016). As men-
tioned above, decreases in modularity and network robust-
ness might in turn be symptomatic of premature aging as
these features are typical of the elderly. Because of these ob-
servations and their potential long-term consequences over
health, the current study had two aims. The first and main
objective was to compare the brain connectivity organization
of adults with and without obesity to otherwise healthy el-
ders. We further expect analogous connectivity profiles be-
tween adults with obesity and seniors. The second aim was
to test whether the differences in adults relative to their body-
weight status would be noticeable earlier in life. To this end,
we compared adolescents with and without obesity presum-
ing similar results as in the adults’ contrast. A supplemental
objective of this study was to explore whether an obesity sta-
tus could differently shape the brain topological organization
during maturation, or the transition from childhood to adult-
hood.

Methods
Participants. Two independently collected samples were in-
cluded in this work. One sample comprised 32 non-obese
healthy seniors (51-85 years old). The recruitment procedure
of this group is fully described in Abós et al. (2017). Briefly,
exclusion criteria consisted on presence of psychiatric or neu-
rological comorbidity, low global intelligence quotient esti-
mated by the WAIS-III Vocabulary subtest score (> 7 scalar
score) (Wechsler, 1999), and a Mini-Mental state examina-
tion score below 25 (Folstein, Folstein, & McHugh, 1975).
For the current work, senior participants with obesity (body
mass index [BMI] equal to or higher than 30 kg/m2) were

excluded (N = 4) as well as those presenting MRI patholog-
ical findings such as white matter hyperintensities unrelated
to the course of normal aging (N = 2).
The other sample included 61 adolescents (12-21 years old)
and 66 adults (22-48 years old) from public health care cen-
ters belonging to the Consorci Sanitari de Terrassa. This
sample was recruited in the context of a broader line of re-
search revolving around obesity and brain function. Part of
this sample was used in previous works (Ariza et al., 2012;
Caldú et al., 2019; García-García et al., 2013a, 2013b, 2013c,
2015; Marqués-Iturria et al., 2013, 2014, 2015; Ottino-
González et al., 2017, 2018, 2019). Thirty-two adults were
considered as obese and 34 as normal weight (BMI < 24.9
kg/m2). Following the cut-offs established by the WHO
(2012), 30 adolescents above the gender-based 95th BMI per-
centile were categorized as obese, and 31 teens oscillating
between the 5th and the 84th percentile were categorized as
healthy-weight (Cole, Flegal, Nicholls, & Jackson, 2007).
Thirty-four individuals with overweight (i.e., BMI 25 kg/m2

to 29.9 kg/m2, or between the 85th and 94th percentiles for
adolescents) were not included in this study. Here, we were
interested in addressing the two extremes of the BMI contin-
uum, since including overweight subjects could introduce un-
wanted artefacts. For instance, the presence of normal-weight
obese individuals (i.e., healthy-weight participants exhibiting
excessive abdominal adiposity) or athletic-like persons mis-
classified as overweight according to their BMI.
As in previous work, we excluded participants with car-
diometabolic comorbidities (i.e., type II diabetes, hyperc-
holesterolemia, hypertension), as well as those with past or
present neurological or psychiatric disorders. Individuals un-
derwent three visits. The first consisted of a fasting blood
sample extraction and a medical exploration. The second
visit included an extensive neuropsychological evaluation in
which subjects with a Vocabulary subtest scalar score below
7 were discarded (WAIS-III or WISC-IV) (Wechsler, 1999,
2007). The third and last visit comprised a magnetic reso-
nance imaging (MRI) acquisition at the Hospital Clínic de
Barcelona.
Additionally, participants from all five groups exhibiting ex-
cessive head motion were discarded (N = 16). Excessive
movement was defined as (1) mean interframe head motion
greater than 0.3 mm translation or 0.3° rotation, and (2) max-
imum interframe head motion greater than 1 mm translation
or 1° rotation.

MRI acquisition. Images were acquired with a 3T Siemens
scanner (MAGNETOM Trio, Siemens, Germany). Each par-
ticipant underwent a T1-weighted structural image for co-
registration and parcellation purposes with the MPRAGE-3D
protocol [echo time (TE) = 2.98 ms; repetition time (TR) =
2300 ms; inversion time = 900 ms; 256 mm field of view
[FOV]; matrix size = 256 x 256; voxel size = 1.0 x 1.0 x 1.0
mm3). Resting-state volumes were collected using a multi-
slice gradient-echo EPI sequence covering the whole brain
(TE = 19 ms; TR = 2000 ms; 3 mm slice thickness; 90° flip
angle; 220 mm FOV; voxel size = 1.7 x 1.7 x 3.0 mm3).
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Image pre-processing. Basic functional image preprocess-
ing, using AFNI (http://afni.nimh.nih.gov/afni) and FSL
(https://www.fmrib.ox.ac.uk/fsl) tools, included: discarding
the first five volumes to allow magnetization stabilization,
despiking, motion correction, brain extraction, grand-mean
scaling (to keep signal variation homogeneous across sub-
jects), linear detrending, and high-pass filtering (maintain-
ing frequencies above 0.01 Hz). Functional images and T1-
weighted volumes were co-registered and then non-linearly
normalized to the MNI ICBM152 template. Then, images
were non-linearly transformed to MNI space at 3 x 3 x 3 mm3

voxel size using SPM (http://www.fil.ion.ucl.ac.uk/spm/).
To remove the effects of head motion and other non-neural
sources of signal variation from the functional data sets,
we used an independent component analysis (ICA)-based
strategy for Automatic Removal of Motion Artifacts (ICA-
AROMA) (Pruim et al., 2015). This method uses individual
resting-state data to perform ICAs and automatically identify
artifact-related independent components. The time courses of
components considered as artifactual were stored to be used
as regressors during network computation.
The six motion parameters obtained from the realign-
ment procedure, as well as the average white matter and
cerebrospinal fluid signals were kept as regressors in
network reconstruction. To generate the corresponding
white matter and cerebrospinal fluid (lateral ventricle)
masks, T1-weighted structural images were segmented
using FreeSurfer (https://surfer.nmr.mgh.harvard.edu/). The
resulting binary masks were linearly transformed from
structural to native functional space using FSL-FLIRT
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT). To prevent
these masks from extending to the adjacent gray matter due
to resampling blur in linear transformation, white matter
masks were then “eroded” by applying a threshold of 0.9,
while ventricular masks were thresholded at 0.3.

Connectivity matrix computation. To reconstruct the
functional connectome, the brain needs to be divided into a
set of nodes; network edges connecting pairs of nodes are
then defined as a measure of relationship between their re-
spective time courses. In this work, we used the Brainnetome
atlas (Fan et al., 2016), a cross-validated connectivity-based
parcellation scheme that divides the cerebrum into 210 cor-
tical and 36 subcortical gray matter regions, taken as net-
work nodes. To reflect the main dimension of signal variation
across each region (Friston et al., 2006), the first eigenvari-
ates of the time series of all voxels included in each region
mask were extracted using fslmeants and taken as the time
course of the corresponding nodes.
Individual 246 x 246 connectivity matrices were then recon-
structed by calculating the standardized regression coefficient
between the time courses of nodes i and j, while also entering
the ICA-AROMA artifact time courses, six motion param-
eters, and white matter and cerebrospinal fluid mean time
courses as regressors. This produces fully connected and
undirected brain networks with 30,135 unique edges with val-
ues ranging between -1 and 1.

Moreover, a group temporal-concatenation spa-
tial ICA was performed using FSL’s MELODIC
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC) with a
pre-determined dimensionality of 15 independent com-
ponents. The spatial and power spectral characteristics
of the resulting components were inspected to identify
10 well-established networks (Griffanti et al., 2017): two
primary visual networks (PVN and PVN2), secondary
visual network (SVN), default mode network (DMN), dorsal
attentional network (DAN), anterior default mode network
(aDMN), right and left frontoparietal networks (FPN),
sensory-motor network (SM) and the salience network (SN)
(see Supplementary Figure 1). Two additional networks were
identified as the medial temporal network (MTN) (including
the hippocampus and the amygdala) and the striatal-thalamic
network (STN).
These data-driven spatial maps were used to assign the
Brainnetome’s nodes to specific brain networks for further
regional graph-based measurements calculation, using in-
house MATLAB scripts. Specifically, the Z-maps generated
by MELODIC corresponding to the 12 networks of interest
were thresholded at Z ≥ 2. Subsequently, each Brainnetome
node was considered to belong to a network if over 60% of
its voxels overlapped with this network’s thresholded map.
When this overlap occurred for more than one network, the
sum of the Z-values across all overlapping voxels was con-
sidered, and the node was assigned to the network with the
highest Z-value sum. In total, 153 of the 246 Brainnetome
nodes were ascribed to one of the 12 networks of interest, as
shown in Supplementary Table 1.

Global and regional measurements estimation. Global
network parameters were computed using the Brain Connec-
tivity Toolbox (Rubinov & Sporns, 2010) and in-house MAT-
LAB scripts.
Normalized weighted global measures were computed by av-
eraging the ratio between the actual measure and those ob-
tained through randomly rewiring the connectivity matrix
500 times using Maslov-Sneppen’s degree-preserving algo-
rithm. After setting negative edge weights to zero, we com-
puted the characteristic path length, defined as the average
minimum number of edges that need to be traversed between
each pair of network nodes (Rubinov & Sporns, 2010).
As non-normalized global parameters, the modularity coef-
ficient was estimated using the Louvain algorithm and in-
dicating the degree to which a network can be subdivided
into well-defined modules with few intermodular connec-
tions. This was also calculated after setting negative edges
to zero, but maintaining positive edge weights.
We also assessed two other complementary non-normalized
metrics: the mean network degree (i.e., average number of
positive connections linked to a node, across all brain nodes)
and the mean network strength (i.e., average of unthresholded
connection strength across all edges, positive and negative),
both of which can be understood as measures of network effi-
ciency and integrity, or robustness. Regional parameters such
as nodal degree and strength were calculated by averaging the
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total number of connections and weights between nodes as-
cribed to each ICA-based network and the rest of the brain.

Statistical analysis
Sociodemographic variables as well as the mean interframe
translational and rotational movements of the head were
examined across groups. Non-parametrical tests were ap-
plied when data assumptions were violated. All compar-
isons, including post-hoc pairwise contrasts, of both global
and regional graph-based measures were conducted with
permutation-based tests (10,000 permutations).
One-factor univariate general linear models (GLMs) were
conducted in adults and seniors. To avoid comparisons of
non-interest, differences in adolescents were tested in inde-
pendent models. Post-hoc pairwise t-tests were performed
for contrasts that emerged as statistically significant. Cu-
mulative odds for false-positive results were prevented with
Bonferroni-adjustments. Here, the raw p-values were multi-
plied by k variables for omnibus tests (i.e., by 4 for global
graph-based measures, and by 12 for regional degree and
strength parameters), and by n contrast of interest (e.g., adults
with obesity vs. healthy-weight adults, adults with obesity
vs. seniors and healthy-weight adults vs. seniors) in post-hoc
comparisons. Statistical significance was set at Bonferroni-
adjusted p-value < 0.05. Likewise, effect sizes (i.e., Cohen’s
d [d] or eta-partial squared [ηp2]) and bias-corrected and ac-
celerated bootstrap (10,000 simulations) confidence intervals
(CI) at 95% (90% for two-factor ANCOVAs) were calculated
for each significant pairwise contrast.
Moreover, and apart from body-weight status (i.e., healthy-
weight vs obesity) main effects, we explore interactions be-
tween the former and developmental stage (i.e., adult vs ado-
lescent) with two-factor univariate GLMs. All statistical
analyses were performed with R version 3.5.0 (R Core Team,
2018).

Results
Sociodemographics. As expected, groups differed in age
(F(4,153) = 420, p < 0.001) and years of education (F(4,153)
= 24.62 p < 0.001). Post-hoc tests revealed no significant
differences between adults with and without obesity in age
(p-adjusted = 0.674) or education (p-adjusted = 0.854). Simi-
larly, healthy-weight and obese adolescents were comparable
in terms of age (p-adjusted = 0.999) and years of education
(p-adjusted = 0.732). All five groups were equally distributed
for sex (x2 = 1.22, p = 0.875) (see summary in Table 1).

Table 1. Sociodemographics across groups (mean and standard deviation)

Groups Age Education N/Females
OB adult 34.53 (6.49) 13.88 (2.92) 32/20
HW adult 32.68 (6.79) 14.62 (2.75) 34/18

Senior 66.13 (7.43) 11.22 (4.26) 32/17
OB young 15.27 (2.64) 8.57 (2.45) 30/15
HW young 15.64 (2.60) 9.52 (2.19) 31/16

OB = participant with obesity, HW = healthy-weight individual.

MRI quality check. Rotational movements of the head did
not diverge between groups (H(4) = 4.32, p = 0.364). By con-
trast, head translational movements did prove different (H(4)
= 38.90, p < 0.001). Post-hoc contrasts revealed that such
displacements were more marked for elders and adults with
obesity, as both of them differed from the other groups yet
not from each other. Consequently, head translational move-
ments were controlled for all further graph-theoretical anal-
yses including these groups, either by introducing it as a co-
variate or by regressing out its effects from the variable of
interest.

Global graph-based results. Adults and seniors exhibited
differences in modularity (F(3,94) = 5.71, p-adjusted = 0.020),
mean degree (F(3,94) = 5.56, p-adjusted = 0.024), and mean
strength (F(3,94) = 4.81, p-adjusted = 0.039).
Post-hoc tests exposed that the contrast between adults with
obesity and without did not pass the Bonferroni adjustment
(raw p-value = 0.024). Still, individuals with obesity showed
lower mean degree (t = 2.69, p-adjusted = 0.012, d = -0.66;
CIbca95% [-1.11, -0.19]) and mean strength (t = 2.74, p-
adjusted = 0.015, d = -0.68; CIbca95% [-1.10, -0.21]) when
compared to their normal-weight counterparts. Relative to
seniors, adults with obesity presented greater modularity (t =
-3.94, p-adjusted = 0.002, d = 0.99; CIbca95% [0.45, 1.55]),
as well as lower mean degree (t = 3.38 , p-adjusted = 0.007,
d = -0.85; CIbca95% [-1.32, -0.37]) and strength (t = 2.81,
p-adjusted = 0.025, d = -0.70; CIbca95% [-1.16, -0.22]).
Normal-weight adults did not differ from non-obese elders
for any of the abovementioned. Results are depicted below
in Figure 1.
While analogous to adults, differences in adolescents in mean
degree and strength did not survive multiple comparison cor-
rection (0.034 and 0.033, raw p-values for each contrast) (see
Figure 3 and Figure 4). Additionally, mean and standard
deviation across groups for graph-based parameters are in-
cluded in the Supplementary Table 2.

Regional nodal degree and strength results. Adults and
seniors diverged in the average number of inward and out-
ward connections in the DMN (F(3,94) = 5.97, p-adjusted =
0.048). Here, adults with obesity displayed lesser regional
degree than healthy-weight adults in the DMN (t = 3.21, p-
adjusted = 0.008, d = -0.79; CIbca95% [-1.26 -0.33]) and
seniors( t = 3.15, p-adjusted = 0.007, d = -0.79; CIbca95%
[-1.26 -0.28]).
Groups also diverged in the DMN strength connectivity
(F(3,94) = 7.02, p-adjusted = 0.022). Adults with obe-
sity demonstrated lower strength when rivalled against their
healthy-weight peers (t = 3.67, p-adjusted = 0.001, d = -
0.90; CIbca95% [-1.33, -0.44]) and non-obese elders (t =
2.57, p-adjusted = 0.031, d = -0.64; CIbca95% [-1.03, -0.17]).
Healthy-weight adults did not prove different from seniors
neither for degree nor strength in the DMN (see Figure 3).
What is more, differences in the regional degree (F(3,94) =
6.61, p-adjusted = 0.008) emerged in the SMN. In con-
trast to healthy-weight adults, adults with obesity revealed
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Figure 1. Network profiles of adults with obesity, healthy-weight adults and seniors.

lesser nodal degree (t = 3.45, p-adjusted = 0.005, d = -
0.85; CIbca95% [-1.35, -0.36]). The contrast from adults
with obesity and elders did not survive Bonferroni adjust-
ment (raw p-value = 0.041). Groups also differed in the SMN

Figure 2. Network profiles of adolescents with and without obesity.

strength (F(3,94) = 6.23, p-adjusted = 0.031). Adults with obe-
sity did also show lesser strength than healthy-weight adults
within this network (t = 3.54, p-adjusted = 0.002, d = -0.87;
CIbca95% [-1.37, -0.38]). The contrast between this group
and elders did not emerge as statistically significant. Adults
without obesity did not differ from seniors for any measure
of the SMN. Results are displayed in Figure 4.
Adolescents with and without obesity only proved different
in the regional degree (t = 2.98, p-adjusted = 0.043, d = -0.76;
CIbca95% [-1.27 -0.24]) and strength (t = 3.10, p-adjusted =
0.041, d = -0.79; CIbca95% [-1.31 -0.24]) of the PVN (see
Figure 5).

Body-weight status and age interaction. There were no
significant interactions between body-weight status and age
for any graph-theoretical measurement as presented in Fig-
ure 6. No interaction emerged for regional indexes either.
Independent of age, participants with obesity differed from
their healthy-weight peers in modularity (F(1,122) = 11.08, p-
adjusted = 0.005, ηp2 = 0.074, CIbca90%[0.02 0.16]), mean
degree (F(1,122) = 12.95, p-adjusted < 0.001, ηp2 = 0.080,
CIbca90% [0.02 0.16]) and mean strength (F(1,122) = 12.25,
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DRAFTFigure 3. Group comparison for DMN regional degree and strength. OB = par-
ticipants with obesity, HW = healthy-weight individuals, *<0.05, **<0.01, ns = non-
significant.

p-adjusted < 0.001, ηp2 = 0.094, CIbca90%[0.03 0.18]).

Discussion
Obesity is a preventable health problem associated with
the development of long-lasting cardiometabolic disorders
(Wade et al., 2018) and late-onset dementia (Bischof & Park,
2015; Deckers, van Boxtel, Verhey, & Köhler, 2017). The
current work aimed to shed a broader light on whether the
network profile of adults with obesity could mirror the typ-
ical rendering seen in the elderly. Likewise, we intended
to extend the findings described in adults with and without
obesity to adolescents. Lastly, we explored whether an obe-
sity status could differently shape the rendering of large-scale
networks when moving from childhood to adulthood. Re-
garding the first objective, and contrary to what was initially
postulated, adults with obesity differed from the group of el-
ders. Participants with obesity demonstrated greater modu-
larity in comparison to the later. Moreover, individuals with
obesity exhibited lower mean degree and strength not only
when compared to non-obese seniors but also to healthy-
weight adults. Still, some of these findings stood in line with
the literature, which might suggest that some aging-related
features might be intensified in adults with obesity. Strik-
ingly, normal-weight adults did not diverge from seniors in
any graph-theoretical parameter. Speculations on such in-

consistency with seminal works are further discussed in this
section. In relation to the second aim, differences between
youngsters did not pass multiple comparison corrections for
global properties but for regional ones. Concretely, adoles-
cents with obesity exhibited differences in visual-related net-
works. Lack of results in global-based parameters will be
disclosed separately for this group. Finally, no interaction
emerged as significant between body-weight status and de-
velopmental stage for any of the abovementioned.

Modularity. This index can be generally regarded as a proxy
of network segregation, which stands for how clustered the
brain is in terms of sharing and processing information
(Sporns, 2013). Adults with obesity showed a pattern of en-
hanced cliquishness relative to seniors (and healthy-weight
adults to some extent) with relatively large effect sizes. The
increases in segregation are in contrast to what has been por-
trayed in previous obesity work (Baek et al., 2017; Chao et
al., 2018). Nevertheless, it is also fair to point out that those
studies were conducted in individuals diagnosed with eating
disorders or in seeking for treatment (i.e., bariatric surgery).
None of the subjects included had any psychiatric diagnosis
nor were recruited for treatment purposes. In connection to
the aim of the current study, the network profile we found is
the opposite of what is described in the elderly. As the brain

Figure 4. Group comparison for SMN regional degree and strength. OB = par-
ticipants with obesity, HW = healthy-weight individuals, *<0.05, **<0.01, ns = non-
significant.
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pants with obesity, HW = healthy-weight individuals, *<0.05.

ages, modularity tends to decrease (Cao et al., 2014), which
can be a consequence from the progressive scattering of intra-
network connections (Geerligs et al., 2015; Sala-Llonch,
Bartrés-Faz, & Junqué, 2015; Sala-Llonch et al., 2014). Al-
though such configuration could benefit the processing of
sensory-specific information, higher-level cognitive activity
may in turn deteriorate (Sporns, 2013). Excessively iso-
lated clusters would not be able to exchange information effi-
ciently. This finding may relate to the well-known increment
in the processing times that elders and subjects with obesity
tend to show in their cognitive performance (Deckers et al.,
2017; Sala-Llonch et al., 2014). Also, an escalation in mod-
ularity could entail a vulnerability to cardiovascular-related
disconnection syndromes (e.g., aphasia) (Siegel et al., 2018).
It is widely acknowledged that obesity constitutes a risk fac-
tor for coronary heart disease, cerebrovascular disease and
heart failure, even among those metabolically healthy (Ca-
leyachetty et al., 2017). In fact, it is very likely that obese
individuals presenting a relatively favorable health condition
will qualify as unhealthy later in life (Mongraw-Chaffin et al.,
2016). That said, the large-scale network configuration here
described admits a second lecture; being obese may represent
a downside in the face of cardiovascular events potentially
happening during the course of aging.

Global and regional mean degree and strength. These
parameters, respectively, mirror the number of edges con-
nected to a given node and the average weight of such links.
Therefore, both return a global reading of the network in-
tegrity and efficiency, or robustness. Our results showed
that adults with obesity revealed a lower mean degree and
strength when compared to healthy-weight adults with effect
sizes ranging from medium to large. These results are par-
tially in line with the study conducted by Geha et al. (2017).
In this work, the authors presented a measure of global brain
connectivity, defined as the number of connections each node
has with others. As mentioned above, one of the conse-
quences of aging on the brain is the trimming of short-range
edges and the scattering of nodes (Sala-Llonch et al., 2014).
Individuals with obesity did show losses in overall network
robustness. This increase in network frailty could indeed be
echoing symptoms of premature aging (Geerligs et al., 2015;
Sala-Llonch et al., 2015, 2014).
What is more, when examined regionally, we found group
differences in sensory-driven (i.e., SMN) and task-negative
networks (i.e., DMN), which support our previous findings
suggesting reductions in whole-brain network-resilience. In
addition, adolescents with obesity presented lower degree
and strength in primary-visual networks (i.e., PVN). The
functional properties of sensory-processing circuits (e.g.,
SMN and PVN) were found to linearly decrease with age
(Zonneveld et al., 2019). Other work have also reported
that subjects with obesity feature alterations within tactile
and visual-processing networks (Doucet et al., 2017; García-
García et al., 2013; Geha et al., 2017). Also, the DMN,
which is considered as a biomarker for unsuccessful aging

Figure 6. Age and body-weight status interactions for global graph-related indexes.
OB = participants with obesity, HW = healthy-weight individuals.
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(Buckner, Andrews-Hanna, & Schacter, 2008; Palmqvist et
al., 2017), is extremely vulnerable to the negative effects of
obesity-related comorbidities such as type II diabetes (Wang,
Ji, Lu, & Zhang, 2016), hypertension (Haight et al., 2015),
and dyslipidemia (Spielberg et al., 2017). To date, few stud-
ies have described alterations in the DMN relative to present
obesity (Beyer et al., 2017; Doucet et al., 2017; Figley, Asem,
Levenbaum, & Courtney, 2016; Tregellas et al., 2011).

Interestingly, no meaningful differences were found between
healthy-weight adults and seniors. Literature is consistent in
describing modularity reductions in elders (Geerligs et al.,
2015; Song et al., 2014), a finding we failed to replicate.
Likewise, no differences in network robustness emerged as
significant for this contrast. It is important to remark, how-
ever, that none of the participants in the senior group was
obese, a condition that alone (Beyer et al., 2017; Doucet
et al., 2017), or in conjunction with its medical complica-
tions (Haight et al., 2015; Spielberg et al., 2017; Wang et al.,
2016), proved enough to yield differences in network con-
nectivity. This criterion is often overlooked in healthy-aging
literature. Following this line, the seniors’ group was also
composed by literate individuals, free from stroke and cog-
nitively intact. Although more research is needed, we cannot
rule out the possibility that such sample might not have been
representative of the elder population. Therefore, some of the
results hereby presented should be taken with caution.

Yet analogous to the results in adults, differences in adoles-
cents did not survive multiple comparison correction. Nev-
ertheless, evidence of loses in network robustness in adoles-
cents with obesity are documented in a recent work (Moreno-
Lopez et al., 2016). As some of the functional alterations
might already be noticeable earlier in life, this contrast should
be further tested with enough-powered samples. Here, and
regardless of age, individuals with obesity differed from their
healthy-weight peers in measures of modularity and network
robustness. Put differently, we did not witness an interaction
between body-weight status and developmental stage. This
supports the idea of obesity impacting brain circuits at very
early stages of life. This inference, preliminary as it is, should
be properly confirmed with longitudinal studies.

In line with the observations exposed earlier, the current work
has limitations that need to be addressed in the future. First,
the study’s cross-sectional nature precludes concluding upon
causality. Longitudinal approaches would help disentangle
whether the transition from childhood to adulthood and to el-
derhood is different in the presence of an unhealthy weight.
Second, our modest sample size (N = 159) might have lim-
ited our statistical power to catch any subtle disparity be-
tween groups (i.e., adolescents with and without obesity con-
trasts). Third, to have had a group of elders with obesity
would have allowed exploring the impact of such condition
across all possible age ranges. In the spirit of this, the elders
included in this study exhibited some traits (i.e., stroke-free,
non-demented and non-obese) that may not fit the natural
characteristics of this population. Consequently, we advise
reservation upon some of the conclusions here thrown. By
contrast, two strong points of this work were the efforts in

controlling type I errors and the no inclusion of participants
with neurological or psychiatric comorbidities likely prompt-
ing differences in network properties (Baek et al., 2017; Chao
et al., 2018).
In sum, compared to non-obese seniors, volunteers with obe-
sity exhibited increases in network segregation. Relative to
healthy-weight adults and elders, this group also revealed
global and regional reductions in network robustness. Over-
all, an obesity status represents a potentially avoidable hin-
drance that could negatively affect network resilience. Al-
though more research is needed, this scenario might compro-
mise the normal course of aging in individuals with obesity.
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Supplementary Material

Supplementary Figure 1. Plots disclose the spatial maps corresponding to 10 networks of interest characterized through independent component analysis. The x, y or z
MNI coordinates of the slices shown are indicated. In coronal and axial slices, the right hemisphere is displayed on the left side of the image. R: right; L: left.
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Supplementary Table 1. Brainnetome atlas regions (http://atlas.brainnetome.org/) assigned to each of the 12 brain networks of interest.
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