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Abstract 

Frameshifts in protein coding sequences are widely perceived as resulting in either non-functional or even 

deleterious protein products. Indeed, frameshifts typically lead to markedly altered protein sequences and 

premature stop codons. By analyzing complete proteomes from all three domains of life, we demonstrate 

that, in contrast, several key physicochemical properties of protein sequences exhibit significant robustness 

against +1 and -1 frameshifts in their mRNA coding sequences. In particular, we show that hydrophobicity 

profiles of many protein sequences remain largely invariant upon frameshifting. For example, over 2900 

human proteins exhibit a Pearson correlation coefficient between the hydrophobicity profiles of the 

original and the +1-frameshifted variants greater than 0.7, despite a median sequence identity between the 

two of only 6.5% in this group. We observe a similar effect for protein sequence profiles of affinity for 

certain nucleobases, their matching with the cognate mRNA nucleobase-density profiles as well as protein 

sequence profiles of intrinsic disorder. Finally, we show that frameshift invariance is directly embedded in 

the structure of the universal genetic code and may have contributed to shaping it. Our results suggest that 

frameshifting may be a powerful evolutionary mechanism for creating new proteins with vastly different 

sequences, yet similar physicochemical properties to the proteins they originate from. 

 

Significance Statement 

Genetic information stored in DNA is transcribed to messenger RNAs and then read in the process of 

translation to produce proteins. A frameshift in the reading frame at any stage of the process typically 

results in a significantly different protein sequence being produced and is generally assumed to be a source 

of detrimental errors that biological systems need to control. Here, we show that several essential 

properties of many protein sequences, such as their hydrophobicity profiles, remain largely unchanged 

upon frameshifts. This finding suggests that frameshifting could be an effective evolutionary strategy for 

generating novel protein sequences, which retain the functionally relevant physicochemical properties of 

the sequences they derive from. 
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Introduction 

Frameshifts in the mRNA coding sequences of proteins are typically considered to be unproductive events 

which, if unchecked, could result in non-functional and sometimes even deleterious protein products (1–4). 

This notion is mainly based on the dramatic difference between the primary sequences of wildtype proteins 

and their frameshifted counterparts. For example, the average sequence identity between wildtype human 

proteins and proteins obtained by +1 frameshifting their mRNAs is only 6.2% (Figure S1). Following results 

like this, it has been widely assumed that frameshifting produces polypeptides that are essentially 

unrelated to wildtype proteins in terms of their physicochemical properties and suitability to carry out 

biological function (5–7). Equally importantly, frameshifted mRNAs frequently contain premature stop 

codons and are in eukaryotes rapidly degraded by the nonsense-mediated decay machinery (8). It has even 

been suggested that the genetic code has been optimized such that the hidden stop codons would prevent 

extensive out-of-frame gene reading (6). This is supported by the fact that frameshifted mRNAs feature 

stop codons at a frequency that is typically higher than expected at random (9–11). In a more practical 

context, an introduction of frameshifts coupled to nonsense-mediated decay has become a standard 

strategy for disabling gene expression via CRISPR/CAS9 (12). 

 

On the other hand, it is also known that changes in the reading frame do not necessarily lead to unwanted 

consequences. For example, there exist several known genes that include frameshifts as compared to 

related genes in other species (13). Moreover, it has been suggested that frameshifts may result in proteins 

with completely novel functions (14, 15). Finally, instances of overlapping genes are well described not only 

in viruses, but even in human (16, 17). Programmed ribosomal frameshifting in these cases leads to 

translation of different functional protein sequences from the same mRNA. In a related context, it has long 

been known that codons with similar composition  encode amino acids with related physicochemical 

properties (18–20). Although the impact of this fact in the case of point mutations has been well 

appreciated, its influence in the case of frameshifts has only recently been addressed (21–24). In particular, 

Wang et al. showed that  standard amino acids and their frameshifted counterparts exhibit higher than 

expected similarity as captured by several classic substitution matrices (21, 24). They also showed that a 

frameshifted variant of E. coli β-lactamase may still be functional if all premature stop codons are either 

replaced by a sense codon or read through. Moreover, Geyer and Mamlouk recently showed that the 

polarity of the amino acids obtained by frameshifting correlates weakly, but significantly with the polarity 

of the original amino acids and that this may be an integral property of the genetic code (22). Finally, 

Wnetrzak and coworkers showed that the genetic code may have been optimized in part to lessen the 

impact of frameshift mutations (23). Importantly, however, all of these studies analyzed a limited set of 

amino-acid property scales only, focused exclusively on the genetic code and did not investigate the impact 

of frameshifting on realistic biological sequences. As we aim to show in this study, it is precisely in such a 

context that the impact of frameshifting can best be assessed. 
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The structure, dynamics and, ultimately, biological function of proteins are determined by the 

physicochemical properties of their sequence. For example, sequence hydrophobicity profiles of membrane 

proteins allow one to accurately identify the number and the location of their transmembrane segments 

(25). Even in the case of cytosolic proteins, the hydrophobic/polar alterations in the primary sequences are 

thought to be important determinants of their tertiary folds (26). Moreover, nucleobase-affinity sequence 

profiles of proteins have been suggested to provide relevant information about their propensity to interact 

with RNA (27–30). Finally, the lack of well-defined tertiary structure in the case of intrinsically disordered 

proteins is directly encoded in the primary sequences and their physicochemical properties (31). How does 

frameshifting in mRNA sequences affect different physicochemical properties of the corresponding protein 

sequences? Are there sequence properties that may be invariant with respect to frameshifts? If so, to what 

extent is such invariance embedded in the genetic code and can it be used in an evolutionary process to 

generate novel protein sequences from a physicochemically optimized starting point? 

 

To address these questions, we have analyzed the complete sets of annotated protein sequences in three 

representative organisms and compared them against their +1 and -1 frameshifted counterparts using a set 

of more than 600 different physicochemical properties of amino acids. Our results show that several such 

properties exhibit pronounced robustness against frameshifting, a finding with potentially wide-reaching 

biological implications.  

 

Results 

Effect of frameshifting on individual amino-acid properties We have first evaluated the impact of 

frameshifting when it comes to different properties of individual amino acids. A frameshift of the genetic 

code table produces a total of 232 pairs involving original and all possible respective frameshifted amino 

acids (64 x 4 - 24 pairs involving stop codons).  As a measure of the impact of frameshifting, we have 

calculated the Pearson R correlation coefficient over this set of pairs for each of the 604 different amino-

acid property scales studied (Figure 1A). The significance of individual correlations was determined by 

comparing the Pearson R for a given scale against those obtained by scales with randomly chosen elements 

(see Methods for details). As an alternative, we have also compared Pearson Rs obtained for the universal 

genetic code against those obtained by randomizing the code while keeping its block structure preserved, 

with extremely similar results. Importantly, a large number of studied scales exhibit weak or no correlation 

between the original and the frameshifted amino acids (Figure 1A, Tables S1, S2). Moreover, even for the 

best-performing scales, the observed Pearson Rs barely exceed 0.4 (Figure 1A). Despite this, the p-value 

analysis suggests that there exists a subset of scales which perform outstandingly well as compared to 

randomized controls (Figure 1B).  

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 27, 2019. ; https://doi.org/10.1101/684076doi: bioRxiv preprint 

https://doi.org/10.1101/684076


 

 

Specifically, while most scales exhibit p-values > 0.1, those in the hydrophobicity category stand out, with 

over 100 scales exhibiting p-values < 0.05 and some reaching p-values < 10-4 (Figures 1A, 1B and Tables S1, 

S2). As representative examples, we highlight two consensus hydrophobicity scales (Figure 1A):  the Factor 

1 scale, derived by Atchley et al. (32) via factor analysis of more than 500 different amino-acid scales 

including over 100 hydrophobicity scales (p-value = 1,4 x 10
-3

) and its predecessor derived by Kidera et al. 

(33) using similar means (p-value = 5 x 10-4). A high degree of significance is also reached by several 

individual scales in other categories including the knowledge-based scale of amino-acid affinity for the 

RNA/DNA nucleobase guanine (28) and the amino-acid β-propensity scale obtained by a neural network 

model predicting the secondary structure of proteins (34). Interestingly, the widely-studied polar 

requirement scale (35), which in Figure 1 is placed in the hydrophobicity category, also displays p-values 

close to 10-3 (Tables S1, S2). Finally, significant results, albeit with somewhat higher p-values, are obtained 

by some other scales in the β-propensity category as well as some scales in the α-propensity category 

(Figure 1B, Tables S1, S2). On the other hand, an enrichment analysis via Fisher's exact test suggests that 

hydrophobicity is the only significantly enriched category among scales with p-values < 0.01. This fact does 

not change even with a somewhat different assignment of hydrophobicity scales (27). In conclusion, the 

architecture of the universal genetic code ensures that hydrophobicity of amino acids is significantly 

retained upon frameshifting, while other amino-acid properties are less well conserved, with some specific 

exceptions. 

 

Effect of frameshifting on complete protein sequences How do the above observations translate in the case 

of realistic biological sequences? To address this question, we have analyzed in a proteome-wide manner 

the impact of frameshifting on the sequence profiles corresponding to different amino-acid properties as 

studied above. We use the Pearson R to compare the profiles before and after frameshifting and scales 

with randomly chosen values to assess significance (see Methods for details). In Figure 2A, we show the 

distributions of Pearson R obtained by comparing wildtype profiles in human with their +1 or -1 

frameshifted counterparts in the case of the Factor 1 consensus hydrophobicity scale (32), with the 

medians and the first quartiles indicated. In particular, the Factor 1 scale exhibits a median Pearson 

correlation of 0.54 between the original and the +1-frameshifted profiles over all human proteins, a value 

which is outperformed by only 7 out a million randomized property scales (p-value < 7 x 10-6). Note also 

that this p-value is significantly lower than that obtained for Factor 1 in the case of the genetic code only 

(Tables S1, S2). On the other hand, the median correlation of R = 0.44 for the comparison of wildtype and -1 

frameshifted sequences is significantly lower than in the +1 case.  Since the genetic code does not 

differentiate between +1 and -1 shifts, this property must be rooted in the specific sequences studied or 

the varying degree to which hydrophobicity is determined by bases at different positions inside codons.  
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While obviously not all human sequences exhibit significant similarity between the wildtype Factor 1 

profiles and their frameshifted variants, for a high number of proteins this is indeed the case. In order to 

illustrate this fact, in Figure 2B we show the Factor 1 hydrophobicity sequence profile of wildtype Ser/Thr 

protein phosphatase 4 regulatory subunit 4 (Uniprot ID Q6NUP7) overlaid with the hydrophobicity profile 

of its +1 and -1 frameshifted variants (Figure 2B top and bottom, respectively). This protein has been 

chosen because its Pearson R = 0.66 between wildtype and +1 frameshifted profiles corresponds to the first 

quartile of the whole distribution of human proteins. Remarkably, despite an underlying sequence identity 

of only 6.5%, the two profiles exhibit undeniable, quantitative similarity (Figure 2B) and the same goes for 

the wildtype vs. -1 comparison (Figure 2B, R = 0.71, sequence identity = 6.3%). What is particularly striking 

is the sheer number of sequences with high similarity between wildtype and frameshifted profiles. For 

example, if one restricts oneself to just the sequences with undeniably high correlation of R > 0.7, this 

subset in the case of +1 frameshifts includes more than 2900 proteins with an average sequence identity 

with wildtype sequences of only 6.5%. Finally, we have carried out the above analysis for the complete 

proteomes of M. jannaschii and E. coli with largely similar results (Figure S1).  

 

How do other scales compare in this regard? As expected from the results obtained for the genetic code 

only, hydrophobicity scales dominate among the scales with the highest median Pearson Rs for sequence 

comparison in all three organisms studied (Figure 3A, S2). Most remarkably, the two consensus 

hydrophobicity scales (Factor 1 (32) and Kidera et al. (33) scale) rank among the top four scales in this 

regard in human, where they are also joined by the Levitt hydrophobicity scale (36) and the knowledge-

based scale of amino-acid affinity for guanine (28)(Figure 3A). In general, the scales which are significantly 

resistant to frameshifts at the level of the genetic code also exhibit significant invariance when it comes to 

complete sequence profiles (Figure 3B, S3). As illustrated above for the Factor 1 scale, for a number of 

scales this occurs with a pronounced increase in statistical significance, especially in human and M. 

jannaschii (Figure 3B, S3). Finally, we have analyzed the enrichment of different Gene Ontology (GO) 

functional categories in the top quartile of human proteins when it comes to the matching between Factor 

1 hydrophobicity profiles of wildtype and +1 and -1 frameshifted variants (i.e. R+ > 0.66 and R-> 0.55).  In the 

case of +1 frameshifts, there is a significant enrichment of integral membrane proteins with approximately 

one third of all proteins in the top quartile group having this GO annotation (Figure 3C), while for -1 

frameshifts, one observes an enrichment of RNA-binding functions and nucleolus localizations (Figure 3C 

and Table S3). 

 

The strong +1 frameshift invariance in the hydrophobicity profiles of many membrane proteins is 

exemplified in Figure 4 in the case of sodium/potassium/calcium exchanger 1 (Uniprot ID O60721). The 

wildtype Factor 1 hydrophobicity profile of this transmembrane protein differs only slightly from its +1 

frameshifted variant (R+ = 0.90), despite their markedly different primary sequences (sequence identity = 
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5.4%). The wildtype protein consists of an extracellular domain (residues 1-452), followed by five 

transmembrane helices (residues 453-606), a cytoplasmic domain (residues 607-907) and six further 

transmembrane helices (residues 908-1100). Importantly, these regions can easily be identified by 

analyzing the Factor 1 hydrophobicity profile (blue line) with the transmembrane helices adopting 

extremely low values and the intervening soluble linkers and domains adopting significantly higher values 

(Figures 4A-C). Remarkably, despite the extreme difference from the wildtype sequence, the +1 

frameshifted variant exhibits a pronounced similarity in its alteration of hydrophobic and hydrophilic 

regions, with the first transmembrane stretch (Figure 4B) showing a somewhat closer matching than the 

second (Figure 4C).  To illustrate the dramatic difference between the two protein sequences, in Figure 4D 

we highlight an N-terminal stretch in which only two out of 19 residues align with each other (Figure 4D) 

and a C-terminal stretch where not a single residue out of 31 is identical (Figure 4E). Moreover, trying to 

align these short sequences with BLASTp using multiple scoring matrices and even the highest expectation 

thresholds still leads to no alignment being found. Despite this, the high similarity in the hydrophobicity 

profiles of wildtype and frameshifted sequences in these regions is obvious (Figure 4D and 4E). On the 

other hand, the region shown in Figure 4E brings to light one property that does change drastically upon 

frameshifting. Namely, while the absolute value of electrostatic charge is largely retained upon +1 

frameshifting, the shift results in an inversion of the sign of the charge. Specifically, the wildtype Glu 

residues are frameshifted to mostly Arg and Lys residues. This suggests that, while hydrophobicity is mostly 

unaffected, the charge profile of frameshifted variants show major differences with respect to wildtype 

profiles. In fact, at a whole proteome level, the +1 frameshifting produces sequences whose net charge is 

negatively correlated with the wildtype net charge (R = -0.45), although charge density profiles show no 

significant relationship (median R = -0.15). 

 

Frameshifting and mRNA-protein complementarity hypothesis Recently, we have demonstrated a strong 

degree of matching between nucleobase-density profiles of mRNA coding sequences and the nucleobase-

affinity profiles of the proteins they encode (27–30). For example, the purine density profiles of human 

mRNA coding sequences match their cognate proteins’ guanine-affinity profiles, as derived by using a 

knowledge-based scale of affinity between individual nucleobases and amino acids, with a median Pearson 

|R| of 0.80.  We have used this to hypothesize that mRNAs and the proteins encoded by them could bind in 

a complementary, co-aligned fashion, especially if unstructured (27–30). As indicated above, some 

nucleobase-affinity profiles of proteins, such as GUA-affinity profiles (Figure 5A) in all studied organisms 

and ADE-affinity profile in M. jannaschi (SI2) exhibit significant robustness against frameshifts. Importantly, 

the matching of cognate mRNA/protein profiles is also retained after frameshift events (Figure 5B). For 

example, the purine density profiles of wildtype mRNAs match GUA-affinity profiles of the +1 frameshifted 

variants of their encoded proteins with a median Pearson |R| of 0.71 and those of -1 frameshifted variants 

with a median Pearson |R| of 0.76, reflecting a high level of profile similarity even in typical cases (Figures 
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5B, 5C). This is, in part, a consequence of the above robustness in the GUA-affinity profiles, but even more 

so a natural corollary of the fact that mRNA nucleobase-density profiles are unaffected by frameshifts 

combined with the original observation that protein GUA-affinity profiles match their mRNA PUR-density 

profiles. 

 

Frameshifting and intrinsic disorder of protein sequences All of the sequence profiles discussed above can 

be derived as a function of individual amino-acid property scales. However, intrinsic disorder is a more 

complex property which not only depends on the nature of individual amino acids in a given stretch but is 

also significantly context dependent. We have employed IUPred (37), a widely used algorithm for predicting 

intrinsic disorder in proteins, to analyze the impact of frameshifting on this important property of protein 

sequences. Overall, the average disorder of wildtype protein sequences correlates with the average 

disorder of their +1 and -1 frameshifted counterparts with Pearson Rs of 0.49 and 0.41 over the complete 

human proteome, respectively (Figure S4). Moreover, with a median Pearson R between wildtype and +1 

frameshifted disorder profiles of human sequences of 0.42, intrinsic disorder ranks among the top 10% of 

all properties studied here (Figure S5). While this value of median R is arguably modest, one should 

emphasize that still there exist close to 2800 proteins in the human proteome for which the +1 

frameshifted disorder profiles correlate with the wildtype profiles with a Pearson R > 0.7. 

 

Discussion 

Our results suggest that an inherent property of the universal genetic code is that frameshifting yields 

vastly different protein sequences which, nevertheless, retain select physicochemical properties of the 

original sequences in a significant number of cases. On the one hand, this feature can be seen as a sign of 

robustness of the genetic code and especially real sequences, with regards to frameshifting. On the other 

hand, it also suggests a plausible novel mechanism for the evolution of protein sequences. Namely, our 

results suggest that frameshifting insertion and deletion mutations enable major jumps in protein sequence 

space, while at the same time ensuring that some of the already optimized physicochemical properties of 

the original sequences are preserved (Figure 6A). This, in turn, could increase the chances of jumps being 

productive. For example, the hydrophobic/hydrophilic sequence patterns are thought to be a key feature of 

proteins when it comes to determining the nature of their 3-dimensional structures. By keeping the 

hydrophobicity profile unaffected, the frameshifted sequence increases its chances of being able to adopt a 

well-defined fold. Recently, Gardner and colleagues (38) have demonstrated that RNAs and proteins exhibit 

a surprising similarity in their robustness towards both point mutations as well as frameshifting insertion 

and deletion mutations. A priori, one would expect that proteins are significantly more sensitive towards 

frameshifting mutations in comparison to RNA, but this was not seen. Our present results provide now a 

potential explanation for the observed similarity: it is possible that frameshift mutations analyzed by 
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Gardner et al. resulted in protein sequences with largely retained hydrophobicity profiles, which in turn, 

would have resulted in similar secondary and tertiary structure predictions.  

 

When it comes to an exact mechanism of how new sequences could be generated via frameshifting, a 

scenario one could envision involves gene duplication with an accompanying frameshift (Figure 6B). This 

would likely result in a number of premature stop codons that would need to be mutated out, but this 

burden could be more than compensated for by having a physicochemically optimized starting point for 

further evolution. Naturally, not the whole sequence would need to be changed: one can also envision local 

frameshift events resulting in hybrid sequences which are part wildtype, part new, increasing exponentially 

the combinatorial richness of the resulting sequences. In this sense, our results capture the most extreme 

case i.e. the full-length frameshifts, while realistic frameshift events over shorter stretches are expected to 

show even higher levels of profile similarity between wildtype proteins and their locally frameshifted 

variants. Recently, Tripathi and Deem (39) provided evidence suggesting that the retention of 

physicochemical properties of amino acids upon point mutations, a known feature of the universal genetic 

code, improves the exploration of functional nucleotide sequences at intermediate evolutionary time 

scales. Our prediction is that similar conclusion applies not only to single-nucleotide substitutions, as 

explored by these authors, but also to the much more impactful, sequence-altering instances of both local 

and global frameshifting mutations. 

 

Starting with the pioneering work of Alff-Steinberger and others (18–20), it has already been suggested that 

compositionally similar codons encode amino acids with similar physicochemical properties, implying that 

the genetic code may have been optimized for robustness against not only point mutations, but also 

frameshifts. While all the previous analyses have been performed for the code alone and involved a limited 

number of amino-acid property scales, our results elevate these findings to biologically realistic sequences 

in multiple organisms and a comprehensive set of different amino-acid properties. Such generalization is 

relevant for multiple reasons. First, even in the best cases, the correlations for different amino-acid 

property scales at the level of the genetic code are relatively weak (Figure 1A) and only in combination with 

realistic protein sequences can one gauge the full impact of frameshifting. In fact, our results show that, 

even in the most optimal cases, not all sequences exhibit the same degree of frameshift invariance and that 

some classes of protein functions may be significantly more pronounced in this regard. On the other hand, 

our results show that for thousands of proteins, frameshift invariance is so strong that it indeed might have 

direct, biologically relevant repercussions. Second, our results demonstrate that frameshift invariance 

applies to a whole category of different hydrophobicity scales and not just select examples. We find it 

particularly indicative that two consensus hydrophobicity scales (Figure 3A, Tables S1, S2), derived 

previously by considering hundreds of individual scales, rank in the very top when it comes to frameshift 

invariance.  
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Finally, our results suggest that, in addition to hydrophobicity, frameshift invariance could apply to several 

other protein sequence properties including affinity to some nucleobases and structural disorder. We do 

not exclude the possibility that all the invariant properties in the end reduce to one common fundamental 

characteristic. For example, it has been suggested that RNA-binding, a process with a strong dependence 

on hydrophobic forces, was one of the most important functions of ancient proteins (40, 41) and that the 

genetic code was shaped in response to the physicochemical pressures related to such interactions (30, 35, 

42). It is possible that the frameshift invariant properties discussed above all partly reflect protein ability to 

interact specifically with nucleic acids in an unstructured context. The present results also provide a 

generalization of our recent complementarity hypothesis in that we propose that mRNAs not only bind 

their cognate proteins, if unstructured, but also their frameshifted variants (27–30). 

 

Our work opens up several directions for future work. First, it would be important to quantitate the exact 

potential of frameshifting to provide possible shortcuts in the evolutionary exploration of functional protein 

sequences. Second, an important frontier concerns a study of more complex protein properties, which are 

directly dependent on their primary structure. For example, to what extent are secondary and tertiary 

structures of wildtype proteins related to those of their frameshifted variants? Finally, can one detect 

evidence that frameshifting has indeed played a relevant role during protein sequence evolution? Future 

studies should shed light on these exciting questions and possibilities. 

 

Materials and Methods 

Data sets Complete annotated proteomes of Methanocaldococcus jannaschii, Escherichia coli and Homo 

sapiens together with their mRNA coding sequences were analyzed. Protein sequences were obtained from 

the UniProtKB database (43) with the maximal-protein-evidence-level set to 4, including only reviewed 

Swiss-Prot entries. The mRNA coding sequences for each protein were downloaded from the European 

Nucleotide Archive Database (44).  Sequences including non-canonical amino acids or nucleobases were not 

analyzed.  

 

Amino-acid scales The majority of the amino-acid property scales studied were extracted from the AAindex 

database (45, 46), and were complemented by additional consensus scales derived by Atchley and 

coworkers (32) and a number of recently derived nucleobase/nucleotide affinity scales (47–50). In the rare 

cases when individual amino acids were not defined in a given scale, they were treated identically to stop 

codons (see below). The full set of scales was grouped into six categories following the procedure by Tomii 

et al. (51) who grouped the scales available in the AAindex into six meaningful categories: “Alpha and Turn 

propensity”, “Beta propensity”, “Composition”, “Hydrophobicity”, “Physical and Chemical Properties” and 

“Other”. Additional scales not included in the original analysis by Tomii et al. were added to the existing 
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categories using the same method, except for nucleobase-affinity scales which were added as a further 

category. In our presentation of the data, categories “Composition”, “Physical and Chemical Properties” 

and “Other” were collapsed into a single category “Other”, since all showed no significant effect upon 

frameshifting and the differences between the groups were not evident. 

 

Genetic code analysis For each codon in the genetic code table, four associated frameshift codons were 

constructed by adding one of the four possible bases to the last two bases of the original codon, thereby 

creating the +1 frameshift graph, yielding 64×4 pairs of native and respective frameshift codons. Due to this 

graph being cyclic, there was no need to separately consider the -1 frameshifts. All pairs containing a stop 

codon were excluded from the set, resulting in 232 frameshift pairs. Utilizing the universal genetic code, all 

codons were translated to their corresponding amino acids. Applying one of the 604 amino acid property 

scales to both original and frameshifted amino acids produced a set of numerical pairs for which the sample 

Pearson R correlation coefficient was calculated. To compare the resulting 604 correlation coefficients 

against an appropriate background, we carried out the same procedure with 106 scales each containing 20 

values randomly chosen between 0 and 1. Based on the standard deviation of this random background, Z-

scores were calculated for each of the 604 scales, which in turn were used to calculate p-values from an 

analytic Gaussian distribution. Extremely similar results were obtained by randomizing the genetic code 

while keeping its box-like nature intact.  

 

Sequence frameshift generation The frameshifted variants of individual protein sequences were generated 

by removing the first four bases (+1 shift) or the first two bases (resulting in the -1 shift) in their wildtype 

mRNA coding sequences and translating them using the universal genetic code. This approach was chosen 

so that negative shifts could be performed without the need to have additional genomic information 

beyond the original coding sequence. Prior to frameshifting, the AUG codon at the beginning of each 

sequence was removed from all original wildtype sequences in order to enable comparison between 

equally long protein sequences. The effect of this on the obtained results is negligible since the first three 

bases contain identical information in all sequences (AUG in mRNAs, Met in protein sequences). 

 

Profile Calculation and Comparison Protein sequences were converted to numerical profiles by exchanging 

each amino acid with its respective scale value and smoothing. In the case of mRNA, only used for the 

comparison with nucleobase-affinity profiles of proteins, codons were converted to a number between 0-3 

representing the number of specific bases they contained. Both protein and mRNA sequences were 

subsequently smoothed using 21-residue/codon windows, as used previously (27), to reduce noise and 

highlight global features. The profiles of different physicochemical properties corresponding to wildtype 

and frameshifted protein sequences were compared by using the Pearson R correlation coefficient. For 

each property in question, the full distribution of Pearson Rs between wildtype and frameshifted profiles of 
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all sequences in a given proteome was evaluated and its median used to assess the associated statistical 

significance in comparison with a randomized background. Specifically, we have derived the distribution of 

Pearson R between wildtype and frameshifted profiles for a given proteome for 105 scales with 20 values 

randomly chosen between 0 and 1. The standard deviation of the distribution of median values 

corresponding to this randomized background was subsequently used to calculate the Z-scores and p-

values for each of the 604 property scales studied. 

 

 

Stop codons In most cases translation of frameshifted mRNA sequences introduces premature stop codons 

in the resulting protein sequences. For the calculation of sequence profiles corresponding to different 

physicochemical properties of frameshifted variants, such positions were excluded from the calculation of 

the average value in a local window, while the size of the window was reduced by their number. 

 

GO term enrichment The analysis of the enrichment of gene ontology (GO) terms in a target set defined as 

the top quartile of the distribution of Pearson Rs for Factor 1 frameshifts in human using GOrilla (36) and 

REVIGO (37) tools. In GOrilla, we used the list of 17083 genes in the H. sapiens dataset as the background, 

for which 16281 GO terms were found. In order to reduce the redundancy of the GOrilla output, each 

ontology enrichment list - cellular compartment (CC), molecular function (MF) and biological process (BP) - 

was fed into REVIGO together with the associated multiple-hypothesis corrected p-values. We used the 

Lin’s measure of similarity with a similarity parameter of 0.5, characterized as a small allowed similarity. In 

the main text, we present the top four significant hits in the CC ontology for both +1 and -1 frameshifts, 

while the total output of the GO analysis can be found in the supporting information (Table S3). 

 

Intrinsic disorder The disorder propensity of a given protein sequence was calculated using IUPred (37) and 

the ‘long’ setting for the size of disorder detection. Disorder profiles obtained from IUPred were smoothed 

using the same window of 21 residues as in case of other profiles for consistency. Since IUPred cannot 

handle stop codons, they were accounted for by creating two sequences in silico, one with the previous 

residue replacing the stop codon and one using the following residue. Disorder was calculated for both 

versions and averaged. 

 

Data Access All relevant original data is provided as Supplementary Material to this publication. In case of 

already published data, the original publications are cited, and data should be accessed at the original 

source. All data necessary to replicate our results is accessible. 
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Figure Legends 

 

Figure 1. Frameshifting the genetic code A) Pearson correlation coefficients R of frameshifted genetic 

codes and the resulting p-values obtained by randomization for 604 amino acid properties, with select 

scales indicated. B) p-values of 604 scales grouped by different scale categories (alpha: alpha and turn 

propensity; beta: beta propensity; hydro: hydrophobicity, nuc: nucleobase/nucleotide affinity; other). 

 

Figure 2. Comparison of wildtype and frameshifted sequence profiles for Factor 1 consensus 

hydrophobicity scale A) Distributions of Pearson R for wildtype vs. +1 frameshift and wildtype vs. -1 

frameshift comparisons for proteins in human proteome with the medians indicated (N = 17083). B) 

Comparison of wildtype and frameshifted Factor 1 profiles for Serine/Threonine phosphatase 4 regulatory 

subunit 4 protein (UniProtID Q6NUP7). The associated Pearson R in the case of +1 frameshifts (0.66) 

corresponds to the first quartile of the human distribution. 

 

Figure 3. Frameshifting the sequences A) Histogram of median Pearson correlation coefficients R for 604 

scales when comparing wildtype and +1 frameshifted profiles in human for all investigated scales, grouped 

by category. The expected density derived by a random model is shown as a dashed line. B) Comparison of 

p-values for frameshifted genetic code and frameshifted sequences for 604 amino acid properties. C) 

Enrichment of cellular compartment of GO terms in the top quartile of human sequences according to 

Pearson R between wildtype and +1 or -1 frameshifted Factor 1 profiles.  

 

Figure 4. Invariance of hydrophobicity profile of a transmembrane protein upon frameshift A) Factor 1 

hydrophobicity profiles of wildtype sodium/potassium/calcium exchanger (UniprotID O60721) and its +1 

frameshifted variant with relevant regions indicated with dashed lines.  Closeup of the profiles in the first 

(B) and the second (C) transmembrane domain of the protein. D) Comparison of amino-acid wildtype and 

+1 frameshifted sequences in a region outside the transmembrane domains together with the associated 

Factor 1 profiles. E) Inversion of the charge pattern upon +1 frameshift with retained hydrophobicity 

profile. 

 

Figure 5. Guanine-affinity and frameshifting A) distributions of Pearson R between GUA-affinity profiles of 

wildtype and +1 or -1 frameshifted human protein sequences (N = 17083) B) distributions of Pearson R 

between mRNA purine-density profiles and their cognate protein’s GUA-affinity profiles in human for 

wildtype, +1 and -1 frameshifted sequences (right). C) Comparison of mRNA purine-density profile and 

protein GUA-affinity profiles for wildtype, +1 and -1 frameshifted sequences of nuclear RNA export factor 

(UniprotID: Q9GZY0) whose Pearson R corresponds to the median of the distribution of wildtype purine-

density vs. GUA-affinity Pearson Rs in human.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 27, 2019. ; https://doi.org/10.1101/684076doi: bioRxiv preprint 

https://doi.org/10.1101/684076


 

 

 

Figure 6. A) Frameshifts enable major jumps in protein sequence space with virtually no change in 

physicochemical sequence property space. B) Model of how frameshifts can be used to create new genes. 

An insertion or deletion in an existing gene results in a novel gene containing several premature stop 

codons. These stop codons are then removed by either single point mutations or by another indel-induced 

frameshift. 
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