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Abstract 

Heart failure (HF) is a leading cause of morbidity and mortality worldwide1. A small proportion of HF 

cases are attributable to monogenic cardiomyopathies and existing genome-wide association 

studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely 

unexplained2–4. We report the largest GWAS meta-analysis of HF to-date, comprising 47,309 cases 

and 930,014 controls. We identify 12 independent variant associations with HF at 11 genomic loci, 

all of which demonstrate one or more associations with coronary artery disease (CAD), atrial 

fibrillation, or reduced left ventricular function suggesting shared genetic aetiology. Expression 

quantitative trait analysis of non-CAD-associated loci implicate genes involved in cardiac 

development (MYOZ1, SYNPO2L), protein homeostasis (BAG3), and cellular senescence 

(CDKN1A). Using Mendelian randomisation analysis we provide new evidence supporting 

previously equivocal causal roles for several HF risk factors identified in observational studies, and 

demonstrate CAD-independent effects for atrial fibrillation, body mass index, hypertension and 

triglycerides. These findings extend our knowledge of the genes and pathways underlying HF and 

may inform the development of new therapeutic approaches.  
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Introduction 

Heart failure (HF) affects more than 30 million individuals worldwide and its prevalence is rising1. 

HF-associated morbidity and mortality remain high despite therapeutic advances, with five-year 

survival averaging ~50%5. HF is a clinical syndrome defined by fluid congestion and exercise 

intolerance due to cardiac dysfunction6. HF results typically from myocardial disease with 

impairment of left ventricular (LV) function manifesting with either reduced or preserved ejection 

fraction. Several cardiovascular and systemic disorders are implicated as aetiological factors, most 

notably coronary artery disease (CAD), obesity and hypertension; multiple risk factors frequently co-

occur and the contribution to aetiology has been challenging based on observational data alone7,8. 

Monogenic hypertrophic and dilated cardiomyopathy (DCM) syndromes are known causes of HF, 

although they account for a small proportion of disease burden9. HF is a complex disorder with an 

estimated heritability of ~26%2. Previous modest-sized genome-wide association studies (GWAS) of 

HF reported two loci, while studies of DCM have identified a few replicated loci10–14. We 

hypothesised that a GWAS of HF with greater power would provide an opportunity for: (i) discovery 

of genetic variants modifying disease susceptibility in a range of comorbid contexts, both through 

subtype-specific and shared pathophysiological mechanisms, such as fluid congestion; and (ii) 

provide insights into aetiology by estimating the unconfounded causal contribution of observationally 

associated risk factors by Mendelian randomisation analysis15. 

 

Results 

We conducted a large-scale GWAS comprising 47,309 cases and 930,014 controls of European 

ancestry across 26 studies from the The Heart Failure Molecular Epidemiology for Therapeutic 

Targets (HERMES) Consortium. Genotype data were imputed to either the 1000 Genomes Project 

(60%), Haplotype Reference Consortium (35%) or study-specific reference panels (5%). We 

performed a fixed-effect inverse variance-weighted meta-analysis relating 8,281,262 common and 
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low-frequency variants (minor allele frequency > 1%) to HF risk (Figure 1). We identified 12 

independent genetic variants, at 11 loci associated with HF at genome-wide significance (P < 5 x 

10-8), including 10 loci not previously reported for heart failure (Figure 2, Table 1). The quantile-

quantile, regional association plots and study-specific effects for each independent variant are 

shown in Supplementary Figures 1-3. We replicated two previously-reported associations for HF 

and three of four loci for DCM (Bonferroni-corrected P < 0.05) (Supplementary Table 1). Using 

linkage disequilibrium score regression (LDSC)16, we estimated the heritability of HF in UK Biobank 

(h2g) on the liability scale, as 0.088 (standard error (SE) = 0.013), based on an estimated disease 

prevalence of 2.5%17. 

 

GWAS meta-analysis
26 studies
European ancestry 

8,246,881 variants
47,309 HF cases
930,014 controls

Gene based association

• Burden test (MAGMA)
• Predicted gene expression 

(MetaXcan)    

LD score regression

• SNP heritability (h2g)
• Genetic correlation with HF risk 

factors

12 independent variants, 11 independent loci P < 5 x 10-8

Variant effects on gene expression
• eQTL analysis (heart, blood)
• Colocalisation analysis
• Serum protein QTL analysis

Functional variant consequence

• Chromatin states (HaploReg)
• Coding variation (CADD)

Pleiotropy scan

• Association with HF risk factors 
• Association with diseases and 

traits in UK Biobank and GWAS 
Catalog 

Causal analysis HF risk factors
• Mendelian randomisation
• mtCOJO conditional analysis to 

estimate mediation

Characterisation of HF loci Secondary analyses
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Figure 1. Study design and analysis workflow. Overview of study design to identify and characterise heart 

failure associated risk loci and for secondary cross-trait genome-wide analyses. Abbreviations: GWAS, 

genome-wide association study; QTL, quantitative trait locus; MAGMA, Multi-marker Analysis of GenoMic 

Annotation; SNP, single nucleotide polymorphism; mtCOJO , multi-trait-based conditional and joint analysis.
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Figure 2. Manhattan plot of genome-wide heart failure associations. The x-axis represents the genome in physical order; the y-axis shows −log10 P values for 

individual variant association with heart failure risk from the meta-analysis (n = 977,323). Suggestive associations at a significance level of P < 1 x 10-5 are indicated 

by the blue line, while genome-wide significance at P < 5 x 10-8 is indicated by the red line. Meta-analysis was performed using a fixed-effect inverse-variance 

weighted model. Independent genome-wide significant variants are annotated with the nearest gene(s).  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 10, 2019. ; https://doi.org/10.1101/682013doi: bioRxiv preprint 

https://doi.org/10.1101/682013


Page 17 of 46 

 

Table 1. Variants associated with heart failure at genome-wide significance  

rsID Chr Position (hg19) Nearest gene(s)a Function Risk/ ref 
allele RAF (%) OR (95% CI) P-value I2HET PHET 

rs660240 1 109817838 CELSR2 UTR3 C / T 0.79 1.06 (1.04-1.08) 3.25E-10 0 0.513 
rs17042102 4 111668626 PITX2, FAM241A intergenic A / G 0.12 1.12 (1.09-1.14) 5.71E-20 43.1 0.008 
rs11745324 5 137012171 KLHL3 intronic G / A 0.77 1.05 (1.03-1.07) 2.35E-08 5.7 0.381 
rs4135240 6 36647680 CDKN1A intronic T / C 0.66 1.05 (1.03-1.07) 6.84E-09 43.8 0.009 
rs55730499 6 161005610 LPA intronic T / C 0.07 1.11 (1.08-1.14) 1.83E-11 21.1 0.164 
rs140570886 6 161013013 LPA intronic C / T 0.02 1.24 (1.16-1.3) 7.69E-11 24.8 0.133 
rs1556516 9 22100176 CDKN2B-AS1 ncRNA_intronic C / G 0.48 1.06 (1.05-1.08) 1.57E-15 12.8 0.269 
rs600038 9 136151806 ABO, SURF1 intergenic C / T 0.21 1.06 (1.04-1.08) 3.68E-09 0 0.729 
rs4746140 10 75417249 SYNPO2L, AGAP5 intergenic G / C 0.85 1.07 (1.05-1.09) 1.10E-09 9.7 0.319 
rs17617337 10 121426884 BAG3 intronic C / T 0.78 1.06 (1.04-1.08) 3.65E-09 55 0.000 
rs4766578 12 111904371 ATXN2 intronic T / A 0.47 1.04 (1.03-1.06) 4.90E-08 10.6 0.308 
rs56094641 16 53806453 FTO intronic G / A 0.42 1.05 (1.03-1.06) 1.21E-08 17.4 0.215 

 

The table shows the 12 independent variants associated with HF at the genome-wide significance level (association P-value < 5x10-8) in the meta-
analysis of 29 studies. Meta-analyses were carried out using an inverse variance weighted fixed-effect approach. The I2HET describes the percentage of 
variation across the 29 studies that is due to heterogeneity. PHET was derived from a Cochran's Q-test (two-sided) for heterogeneity. aNearest gene 
with a functional protein or RNA (e.g. anti-sense RNA) product that either overlaps with the sentinel variant, or for intergenic variants, the nearest 
genes up- and downstream, respectively (separated by comma). Abbreviations: Chr, chromosome; ref, reference; RAF, risk allele frequency; OR, odds 
ratio; CI, confidence intervals; HET, heterogeneity; I2, I-squared. 
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Next, we investigated associations between the identified loci and other traits that may provide 

insights into aetiology. First, we queried the NHGRI-EBI GWAS Catalog18 and a large database of 

genetic associations in UK Biobank (http://www.nealelab.is/uk-biobank), and identified several 

biomarker and disease associations at each locus (Supplementary Tables 2-3). Second, we tested 

for associations of identified loci with ten known HF risk factors, including cardiac structure and 

function measures, using GWAS summary data (Supplementary Table 4)19–26. Six sentinel variants 

were also associated with CAD, including established loci such as CDKN2B-AS1 (9p21) and LPA21. 

Four variants were associated with atrial fibrillation (AF), a common antecedent and sequela of 

HF27. To estimate whether the HF risk effects were mediated wholly or in part by risk factors 

upstream of HF (e.g. CAD), we conditioned HF GWAS summary statistics on nine HF risk factors 

using mtCOJO28 (Supplementary Table 5). Conditioning on AF attenuated the HF risk effect by > 

50% for the PITX2 / FAM241A locus but not other AF-associated loci (KLHL3, SYNPOL2 / AGAP5), 

conditioning on CAD fully attenuated effects for two of the six CAD loci (LPA, CDKN2B-AS1) and 

conditioning on BMI ablated the effect of the FTO locus (Supplementary Figure 4 and 

Supplementary Table 5). Next we performed hierarchical agglomerative clustering of loci based on 

cross-trait associations to identify groups related to HF subtypes (Figure 3). Among HF loci not 

associated with CAD, a group of four clustered together, of which two (KLHL3 and SYNPO2L / 

AGAP5) were associated with AF and two (BAG3 and CDKN1A) with reduced LV systolic function 

(fractional shortening) (Bonferroni-corrected P < 0.05); we highlight the results for these loci in our 

reporting of subsequent analyses to identify candidate genes. Notably, genetic associations with 

DCM at the BAG3 locus have been reported previously13,14.  
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Figure 3. Associations of HF risk variants with traits relating to disease subtypes and risk factors. This bubble plot shows associations between the identified HF loci and risk 
factors and quantitative imaging traits, using summary estimates from UK Biobank (DCM, dilated cardiomyopathy) and published GWAS summary statistics. Number in bracket 
represents sample size (for quantitative traits) or number of cases (for binary traits) used to derive the GWAS summary statistics. The size of the bubble represents the absolute Z 
score for each trait, with the direction oriented towards the HF risk allele. Red / blue indicates a positive / negative cross-trait association (i.e. increase / decrease in disease risk or 
increase / decrease in continuous trait). We accounted for family-wise error rate at 0.05 by Bonferroni correction for the 10 traits tested per HF locus (P < 4.5e-4); traits meeting this 
threshold of significance for association are indicated by dark colour shading. Agglomerative hierarchical clustering of variants was performed using the complete linkage method, 
based on Euclidian distance. Where a sentinel variant was not available for all traits, a common proxy was selected (bold text). For the LPA locus, associations for the more common 
of the two variants at this locus are shown. Bold text represents variants whose estimates are plotted, upon which we performed hierarchical agglomerative clustering using the 
complete linkage method based on Euclidian distance. Abbreviations: FS, fractional shortening; LVD, left ventricular dimension; DCM, dilated cardiomyopathy; AF, atrial fibrillation; 
CAD, coronary artery disease; LDL-C, low density lipoprotein cholesterol; T2D, type 2 diabetes; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure.
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We performed gene-based association analyses using MAGMA29 to identify tissues and aetiological 

pathways relevant to HF. Thirteen genes were associated with HF at genome-wide significance, of 

which four were located within 1Mb of a sentinel HF variant and expressed in heart tissue 

(Supplementary Table 6). Tissue specificity analysis across 53 tissue types from the Genotype 

Tissue Expression (GTEx) project identified the atrial appendage as the highest ranked tissue for 

gene expression enrichment excluding reproductive organs (Supplementary Figure 5). We sought 

to map candidate genes to the HF loci by assessing the functional consequences of sentinel 

variants (or their proxies) on gene expression, and protein structure/abundance using quantitative 

trait locus (QTL) analyses. Given enrichment for gene expression of HF-associated genes in the 

atrial appendage, we prioritised heart tissues for mapping studies, including QTL analysis.  

 

Since the identified HF variants were located in non-coding regions, we investigated if sentinel 

variants were in linkage disequilibrium (LD, r2 > 0.8) with non-synonymous variants with predicted 

deleterious effects. We identified a missense variant in BAG3 (rs2234962; r2 = 0.99 with sentinel 

variant rs17617337) associated previously with DCM and progression to HF, and three missense 

variants in SYNPO2L (rs34163229, rs3812629, rs60632610; all r2 > 0.9 with sentinel variant 

rs4746140)13,14,30. All 4 missense variants had Combined Annotation Dependent Depletion scores 

>20 suggesting deleterious effects (Supplementary Table 7).   

 

Given the enrichment of genes expressed in heart tissue from the MAGMA analysis, we examined 

the effects of HF variants on cis gene expression in LV, left atrium and right atrium auricular region 

tissues, using data from the Myocardial Applied Genomics Network (MAGNet) and Genotype-

Tissue Expression (GTEx) project. Three of 12 variants were significantly associated with the 

expression of one or more genes located in cis in at least one heart tissue (Bonferroni-corrected P < 

0.05) (Supplementary Table 8). Given the modest sample sizes of myocardial eQTL studies, we 
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also investigated a large whole blood eQTL dataset (eQTLGen consortium, n = 31,684) and found 

associations with cis gene expression (P < 5x10-8) for 8 of 12 sentinel variants (Supplementary 

Table 9)31. For most HF variants, heart eQTL associations were consistent with those for blood 

traits; however, for intronic HF sentinel variants in BAG3, CDKN1A and KLHL3 we detected 

expression of the corresponding gene transcripts in blood only.  

 

Next, to prioritise among candidate genes identified through eQTL associations, we estimated the 

posterior probability for a common causal variant underlying associations with gene expression and 

HF at each locus, by conducting pairwise Bayesian colocalization analysis 32.  We found evidence 

for colocalization (posterior probability > 0.7) for MYOZ1 and SYNPO2L in heart, PSRC1 and ABO 

in heart and blood; and CDKN1A in blood (Supplementary Tables 8 and 9). PSRC1 and MYOZ1 

were also implicated in a transcriptome-wide association analysis performed using predicted gene 

expression based on GTEx human atrial and ventricular expression reference data 

(Supplementary Table 10). Using serum protein QTL data from the INTERVAL study (N = 3,301), 

we also identified significant concordant cis associations for BAG3 and ABO (Supplementary 

Table 11)33.  

 

The evidence linking candidate genes with HF risk loci is summarised in Supplementary Table 12, 

and candidate genes are described in the Supplementary Note. At HF risk loci associated with 

reduced systolic function of AF, but not with CAD, the annotated functions of candidate genes 

related to myocardial disease processes, and traits that may influence clinical expressivity, such as 

renal sodium handling. For example, the sentinel variant at the SYNPO2L / AGAP5 locus was 

associated with expression of MYOZ1 and SYNPO2L, encoding two α-actinin binding Z-disk cardiac 

proteins. MYOZ1 is a negative regulator of calcineurin signalling, a pathway linked to pathological 

hypertrophy34,35 and SYNPO2L is implicated in cardiac development and sarcomere maintenance36. 
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The HF sentinel variant at the BAG3 locus was in high LD with a non-synonymous variant 

associated previously with DCM,14 and was associated with decreased cis gene expression in 

blood. BAG3 encodes a Z-disc-associated protein that mediates selective macroautophagy and 

promotes cell survival through interaction with apoptosis regulator BCL237. CDKN1A encodes p21, a 

potent cell cycle inhibitor that mediates post-natal cardiomyocyte cell-cycle arrest38 and is implicated 

in LMNA-mediated cellular stress responses39. KLHL3 is a negative regulator of the thiazide-

sensitive Na+Cl- cotransporter (SLC12A3) in the distal nephron; loss of function variants cause 

familial hyperkalaemic hypertension (FHHt) by increasing constitutive sodium and chloride 

resorption40. The sentinel variant at this locus was associated with decreased gene expression and 

could predispose to sodium and fluid retention. Notably, thiazide diuretics inhibit SLC12A3 to 

restore sodium and potassium homeostasis in FHHt and are effective treatments for preventing 

hypertensive HF 41. 

 

Although many risk factors are associated with HF, only myocardial infarction and hypertension 

have an established causal role in randomised controlled trials (RCTs)42. Important questions 

remain about causality for other risk factors. For instance, type 2 diabetes (T2D) is a risk factor for 

HF, yet it is unclear if the association is mediated via CAD risk or by direct myocardial effects, which 

may have important preventative implications43. Accordingly, we investigated potential causal roles 

for modifiable HF risk factors using GWAS summary data. First, we estimated the genetic 

correlation (rg) between HF and 11 related traits using bivariate LDSC. For eight of the eleven traits 

tested, we found evidence of shared additive genetic effects with estimates of rg ranging from -0.25 

to 0.67 (Supplementary Table 13). The estimated CAD-HF rg was 0.67, suggesting 45% (rg2) of 

variation in genetic risk of HF is accounted for by common genetic variation shared with CAD, and 

that the remaining genetic variation is independent of CAD. 
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Next, we estimated the causal effects of the eleven HF risk factors using Generalised Summary-

data-based Mendelian Randomisation, which accounts for pleiotropy by excluding heterogenous 

variants based on the HEIDI test (Online Methods, Supplementary Figure 6, Supplementary 

Table 14). Consistent with evidence from RCTs, we found evidence for causal effects of higher 

diastolic blood pressure (OR = 1.30 per 10 mmHg, P = 9.13 x 10-21) and systolic blood pressure 

(OR = 1.18 per 10 mmHg, P = 4.8 x 10-23), and higher risk of CAD (OR = 1.36, P = 1.67 x 10-70) on 

HF. We found a standard deviation increment of body mass index (BMI) (equivalent to 4.4 kg/m2 

[men] - 5.4 kg/m2 [women]44) accounted for a 74% higher HF risk (P = 2.67 x 10-50), consistent with 

previous reports 45,46. We identified evidence supporting causal effects of genetic liability to AF (OR 

of HF per 1 log odds higher AF = 1.19 , P = 1.40 x 10-75) and T2D (OR of HF per 1 log odds higher 

T2D = 1.05, P = 6.35 x 10-05) and risk of HF. We did not find supportive evidence for a causal role 

for higher heart rate or lower glomerular filtration rate despite reported observational 

associations47,48.  

 

To investigate whether risk factor effects on HF were mediated by CAD and AF, we performed 

analyses conditioning for CAD and AF using mtCOJO. We observed attenuation of the effect of T2D 

after conditioning for CAD (OR = 1.02, P = 0.19), suggesting at least partial mediation by CAD risk 

rather than through direct myocardial effects of hyperglycaemia. Similarly, the effects of low density 

lipoprotein cholesterol (LDL-C) were fully explained by effects of CAD on HF risk (OR = 1.00, P = 

0.80). Conversely, the effects of blood pressure, BMI, and triglycerides were only partially 

attenuated, suggesting causal mechanisms independent of those associated with AF and CAD 

(Figure 4, Supplementary Table 14).  
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Figure 4. Conditional Mendelian randomisation analyses of HF risk factors. Forest plot of HF risk factors 
with significant causal effect HF risk estimated using Mendelian randomisation, implemented with GSMR. 
Diamonds represent the odds ratio and the error bars indicate the 95% confidence interval. The unadjusted 
estimates represent the risk of HF as estimated from the HF GWAS data, while the adjusted estimates 
represent risk of HF conditioned using GWAS summary statistics for atrial fibrillation (Adjusted for AF) or 
coronary artery disease (Adjusted for CAD) estimated using the mtCOJO method. For binary traits (coronary 
artery disease, atrial fibrillation, type 2 diabetes), the MR estimates represent average causal effect per 
natural-log odds increase in the trait risk. For continuous traits, the MR estimates represent average causal 
effect per standard deviation increase in the reported unit of the trait. Abbreviations: LDL, low density 
lipoprotein; HDL, high density lipoprotein; CAD, coronary artery disease; AF, atrial fibrillation.
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We identify 12 independent variant associations for HF risk at 11 genomic loci by leveraging 

genome-wide data on 47,309 cases and 930,014 controls, including 10 loci not previously 

associated with HF. The identified loci were associated with modifiable risk factors and traits related 

to LV structure and function. Conditioning for CAD, AF and blood pressure traits demonstrated that 

the effects of some loci (e.g. CDKN2B-AS1 or 9p21) were mediated wholly via risk factor trait 

associations (e.g. CAD); however, for 8 of 12 variants the attenuation of effects was <50% 

suggesting alternative mechanisms may be important. Those loci associated with reduced LV 

systolic function or AF mapped to candidate genes implicated in processes of cardiac development, 

protein homeostasis, and cellular senescence. We use genetic causal inference and conditional 

analysis to explore the syndromic heterogeneity and causal biology of HF and provide new insights 

into aetiology. Mendelian randomisation analysis confirms previously reported casual effects for BMI 

and provides new evidence supporting the causal role of several observationally-linked risk factors 

including AF, elevated blood pressure (DBP and SBP), LDL-C, CAD, triglycerides, and T2D. Using 

conditional analysis we demonstrate CAD-independent effects for AF, BMI, blood pressure, and 

estimate that the effects of T2D are mostly mediated by an increased risk of CAD.  

 

The heterogeneity of aetiology and clinical manifestation of heart failure are likely to have reduced 

statistical power. We identify a modest number of genetic associations for HF compared to other 

cardiovascular disease GWAS of comparable sample size, such as for AF, suggesting that an 

important component of HF heritability may be more attributable to specific disease subtypes than 

components of a final common pathway49.  Subsequent studies will explore emerging opportunities 

to define HF subtypes and longitudinal phenotypes in large biobanks and patient registries at scale 

using standardised definitions based on diagnostic codes, imaging and electronic health records. 

We speculate that future analysis of HF subtypes may yield additional insights into the genetic 

architecture of HF to inform new approaches to prevention and treatment.  
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Online Methods 

Samples. Participants of European ancestry from 26 cohorts (with a total of 29 distinct datasets) 

with either a case-control or population-based study design were included in the meta-analysis, as 

part of the Heart Failure Molecular Epidemiology for Therapeutic Targets (HERMES) Consortium. 

Cases included participants with a clinical diagnosis of heart failure of any aetiology with no 

inclusion criteria based on left ventricular ejection fraction; controls were participants without HF. 

Definitions used to adjudicate heart failure status within each study are detailed in the 

Supplementary Table 15 and baseline characteristics for each study are provided in 

Supplementary Table 16. We meta-analysed data from a total of 47,309 cases and 930,014 

controls. All included studies were ethically approved by local institutional review boards and all 

participants provided written informed consent.   

 

Genotyping and imputation. All studies used high-density genotyping arrays and performed 

genotype calling and pre-imputation quality control (QC) as reported in Supplementary Table 17. 

Studies performed imputation using one or more of the following reference panels: 1000 Genomes 

(Phase 1 or Phase 3) 1, Hapmap 2 NCBI build 362, Haplotype Reference Consortium (HRC)3, the 

Estonian Whole Genome Sequence reference4, or a reference sample based on 15,220 whole 

genome sequences of Icelandic individuals. The following software tools were used by studies for 

phasing: Eagle5, MaCH6, SHAPEIT7; and imputation: mimimac28, IMPUTE29. For imputation to the 

HRC reference panel, the Sanger Imputation Server 

(https://www.sanger.ac.uk/science/tools/sanger-imputation-service) was used. The deCODE study 

was imputed using study specific procedures10. Methods for phasing, imputation and post-

imputation QC for each study are detailed in Supplementary Table 17.  
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Study-level genome wide association analysis. Genome-wide association (GWA) analysis for 

each study was performed locally according to a common analysis plan, and summary level 

estimates were provided for meta-analysis. Autosomal single nucleotide polymorphisms were 

tested for association with HF using logistic regression, assuming additive genetic effects. For the 

Cardiovascular Health Study, HF association estimates were generated by analysis of incident 

cases using a Cox proportional hazards model. All studies included age and sex (except for single 

sex studies) as covariates in the regression models. Principal components (PCs) were included as 

covariates for individual studies as appropriate. The following tools were used for study-level GWA 

analysis: ProbABEL11, mach2dat (http://www.unc.edu/~yunmli/software.html), QuickTest12, 

PLINK213, SNPTEST14, or R15 as detailed in Supplementary Table 17.  

  

Quality control on study summary-level data. Quality control of summary-level results for each 

study was performed according to the protocol described in Winkler et al.16. In brief, we used the 

EasyQC tool to harmonise variant IDs and alleles across studies and to compare reported allele 

frequencies with allele frequencies in individuals of European ancestry from the 1000 Genomes 

imputation reference panel17. We inspected P-Z plots (reported P value against P value derived 

from the Z score), beta and standard error distributions, and Manhattan plots to check for 

consistency and to identify spurious associations. For each study, variants were removed if they 

satisfied any one of the following criteria: imputation quality < 0.5, minor allele frequency < 0.01, 

absolute betas and standard errors > 10. Specific quality control measures were applied to two 

studies where genotyping of cases and controls was performed on different platforms, as 

described in Sinnott et al.18 and Johnson et al.19. To check for study-level genomic inflation, we 

examined quantile-quantile plots and calculated the genomic inflation factor (lGC). For three studies 

where some degree of genomic inflation was observed (lGC > 1.1), genomic control correction was 

applied (Supplementary Table 17)20. 
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Meta-analysis. Meta-analysis of summary data was conducted using the fixed-effect inverse-

variance weighted approach implemented in METAL (released March 25 2011)21. Variants were 

included if they were present in at least half of all studies. We tested for inflation of the meta-

analysis test statistic due to cryptic population structure by estimating the linkage disequilibrium 

score regression (LDSC) intercept, implemented using LDSC v1.0.022 As the LD score regression 

intercept indicated no inflation (LD score intercept of 1.0069), no further correction was applied to 

the meta-analysis summary estimates. To identify variants independently associated with HF, we 

analysed the genome-wide results using FUMA v1.3.223, selecting a random sample of 10,000 UK 

Biobank participants of European ancestry as an LD reference dataset 24. Variants were filtered 

using a P value < 5 x 10-8 and independent genomic loci were LD-pruned based on an r2 < 0.1. We 

calculated Cochrane’s Q and I2 statistics to assess whether the effect estimates for HF sentinel 

variants were consistent across studies25.  

 

Heritability (h2
g) estimation. To estimate the proportion of HF risk explained by common variants 

we estimated h2
g on the liability scale using LDSC on the UK Biobank summary data (6,504 HF 

cases, 387,652 controls), assuming a population prevalence of 2.5%26. This approach assumes 

that a binary trait has an underlying continuous liability, and above a certain liability threshold an 

individual becomes affected. We can then estimate the genetic contribution to the continuous 

liability. Sample ascertainment can change the distribution of liability in the sampled individuals 

and needs to be adjusted for, which requires making assumptions about the population prevalence 

of the trait.  

 

LD reference dataset. A LD reference was created including 10,000 UKB participants of European 

ancestry, based on HRC-imputed genotypes (referred to henceforth as UKB10K). European 

individuals were identified by projecting the UK Biobank samples onto the 1000G Phase 3 
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samples. A genomic relationship matrix was constructed using HapMap3 variants, filtered for MAF 

> 0.01, pHWE < 10-6 and missingness < 0.05 in the European subset, and one member of each pair 

of samples with observed genomic relatedness greater than 0.05 was excluded to obtain a set of 

unrelated European individuals. Random sampling without replacement was used to extract a 

subset of 10,000 unrelated individuals of European ancestry. Variants with a minor allele count 

(MAC) > 5, a genotype probability > 0.9 and imputation quality > 0.3 were converted to hard calls. 

This LD reference dataset was used for downstream summary-based analysis and for identifying 

SNP proxies. 

 

Gene Mapping Analysis 

Gene set enrichment analysis. A gene-based and gene-set enrichment analysis of variant 

associations was performed using MAGMA27, implemented by FUMA v1.3.2 23. This analysis was 

performed using summary-level meta-analysis results. First, a gene-based association analysis to 

identify candidate genes associated with HF was conducted. Second, a tissue-enrichment analysis 

of HF associated genes was performed using gene expression data for 30 tissues from GTEx. 

Finally, a gene-set enrichment analysis was performed based on pathway annotations from the 

Gene Ontology database28. For all MAGMA analyses, multiple testing was accounted for by 

Bonferroni correction. 

 

Missense consequences of sentinel variants and proxies. We queried the protein-coding 

consequence of the sentinel variants and proxies (r2 > 0.8) using the Combined Annotation 

Dependent Depletion (CADD) score29, implemented using FUMA v1.3.223. The CADD score 

integrates information from 63 distinct functional annotations into a single quantitative score, 

ranging from 1 to 99, based on variant rank relative to all 8.6 billion possible SNVs of the human 

reference genome (GRCh37). Sentinel SNPs or proxies with CADD score > 20 were identified. A 
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CADD score of 20 indicates that the variant is ranked in the top 1% of highest scoring variants, 

while a CADD score of 30 indicates the variant is ranked in the top 0.1%. 

 

Expression quantitative trait analysis. To determine if HF sentinel variants had cis-effects on 

gene expression, we queried two expression quantitative trait loci (eQTL) datasets based on RNA 

sequencing of human heart tissue - the Genotype-Tissue Expression (GTEx) v7 resource 30 and the 

Myocardial Applied Genomics Network (MAGNet) repository 

(http://www.med.upenn.edu/magnet/). The GTExv7 sample included 272 left ventricular (LV) and 

264 right atrium auricular (RAA) non-diseased tissue samples from European (83.7%) and African 

Americans (15.1%) individuals. The MAGNet repository included 89 LV and 101 LA tissue samples 

obtained from rejected donor tissue from hearts with no evidence of structural disease; and 89 LV 

samples from individuals with dilated cardiomyopathy, obtained at the time of transplantation. 

eQTL analysis of the LV data from MAGNet analysis was performed using 

the QTLtools package31 in DCM with adjustment for age, sex, disease status and the first 3 genetic 

PCs. To account for observed batch effects, a surrogate variant analysis was performed using the 

R package SVAseq32 and 22 additional covariates were identified and included in the model. eQTL 

datasets for LA tissue from MAGNet, and heart tissue from GTEx we derived as previously 

reported33,34. We queried HF sentinel variants for eQTL associations with genes located either fully 

or partly within a 1 megabase (Mb) upstream or downstream of the sentinel variant (referred to as 

cis-genes). We accounted for multiple testing by adjusting a significance threshold of P < 0.05 for 

the total number of SNP-cis-gene tests performed across the four heart tissue eQTL datasets (P < 

4.73E-05 for a total of 1,056 SNP-gene associations). Baseline characteristics for the MAGNet 

study are provided in Supplementary Table 18. We also queried sentinel HF variants for 

associations with cis-gene expression in blood from the eQTLGen consortium (N = 31,684)35. Given 

the large sample size, we used a stringent genome-wide significance threshold of P < 5 x 10-8 to 

identify significant blood eQTLs. 
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Colocalisation analysis. Bayesian colocalisation analysis was performed using coloc  to test 

whether shared associations with gene expression and heart failure risk were consistent with a 

single common causal variant hypothesis36. We tested all genes with significant cis-eQTL 

association by analysing all variants within a 200 kilobase window around the gene using eQTL 

summary data for heart tissues and whole blood, and HF summary data from present study. We 

set the prior probability of a SNP being associated only with gene expression, only with HF, or with 

both traits as 10-4, 10-4, and 10-5. For each gene, we report the posterior probability that the 

association with gene expression and HF risk is driven by a single causal variant. We consider a 

posterior probability of ³ 0.7 as providing evidence supporting a causal role for the gene as a 

mediator of HF risk. 

 

Transcriptome-wide association analysis. We employed the S-PrediXcan method37 implemented 

in the MetaXcan software (https://github.com/hakyimlab/MetaXcan) to identify genes whose 

predicted expression levels in heart tissue are associated with HF risk. Prediction models trained 

on GTExv7 heart tissue datasets were applied to the HERMES meta-analysis results. Only models 

that significantly predicted gene expression in the GTEx eQTL dataset (FDR <0.05) were 

considered. A total of 4859 genes were tested in left ventricle tissue and 4467 genes for right atrial 

appendage. Genes with an association P < 5.36×10−6 (0.05 / (4859 + 4467)) were considered to 

have gene expression profiles significantly associated with HF. 

 

Protein quantitative trait analysis in blood.  We queried both cis- and trans- protein QTL (pQTL) 

associations based on measures for serum proteins mapping to 3000 genes in 3,301 healthy 

individuals from the INTERVAL study38. We accounted for multiple testing by adjusting a 
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significance threshold of P < 0.05 for the total number of tests for all variants and proteins tested 

(36,000 tests). 

 

Association of HR risk loci with other phenotypes 

GWAS Catalog. We queried associations (with P < 1 x 10-5) of sentinel variants and proxies (r2 > 

0.6) with any trait in the NHGRI-EBI Catalog of published GWAS (accessed 21 January 2019)39,40.  

 

UK Biobank phenotypes. We report associations (where P < 1 x 10-5) for the sentinel variants with 

traits in the UK Biobank cohort using the MRBase PheWAS database (http://phewas.mrbase.org/, 

accessed 17 Jan 2019). The database contains GWA summary data for 4,203 phenotypes 

measured in 361,194 unrelated individuals of European ancestry from the UK Biobank data. 

 

HF-related phenotypes. We queried GWAS data for ten traits related to HF risk factors, 

endophenotypes and related disease traits using summary-level data from the largest available 

GWAS study (either publicly available or through agreement with study investigators). The following 

phenotypes were considered: fractional shortening (FS), left ventricular dimension (LVD)41, dilated 

cardiomyopathy (DCM); atrial fibrillation (AF)42, coronary artery disease (CAD)43, low density 

lipoprotein cholesterol (LDL-C)44, type 2 diabetes (T2D)45; body mass index (BMI)46, systolic blood 

pressure (SBP), and diastolic blood pressure (DBP)47. For DCM, a GWAS was performed in the 

UKB among individuals of European ancestry with cases defined by the presence of ICD10 code 

I42.0 as a main/secondary diagnosis or primary/secondary cause of death with non-cases as 

referents, using PLINK2. Logistic regression was performed with adjustment for age, sex, 

genotyping array, and the first ten principal components.  
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Hierarchical agglomerative clustering. We performed hierarchical agglomerative clustering on a 

locus level using the complete linkage method based on the associations with related traits as 

described above. Where a sentinel variant is not available in any of the other traits summary 

results, a common proxy is used in place of the sentinel variant. For the LPA locus, we used 

associations for a proxy of the more common variant (rs55730499). Dissimilarity structure was 

calculated using Euclidean distance based on the Z-score (beta of continuous traits or log odds of 

disease risk divided by standard error) of the cross-trait associations. We accounted for multiple 

testing at family-wise error rate of 0.05 by Bonferroni correction for the 10 traits tested per HF 

locus (110 tests),and considered P < 4.5e-4 (0.05 / 110) as our significance threshold for 

association. 

 

Genetic correlation analysis 

We estimated genetic correlation between HF and eleven risk factors using LD score regression22 

on the GWAS summary statistics for each trait: AF42, CAD43, LDL-C, high density lipoprotein 

cholesterol (HDL-C), triglycerides (TG)44, T2D45; BMI46, SBP, DBP47, heart rate (HR)48 and estimated 

glomerular filtration rate (eGFR)49. 

 

Mendelian randomisation analysis 

We performed two sample Mendelian randomisation analysis using the Generalized summary data-

based Mendelian randomisation (GSMR)50 implemented in GCTA v1.91.7beta51. To identify 

independent SNP instruments for each exposure, GWAS-significant SNPs (P < 5x10-08) for each 

risk factor were pruned (r2 < 0.05; LD window of 10,000kb; using the UKB10K LD reference). We 

then estimated the causal effect of the risk factor on the disease trait according to the MR 

paradigm. The HEIDI test implemented in GSMR was used to detect and remove (if HEIDI p-value 

<0.01) variants showing horizontal pleiotropy i.e. having independent effects on both exposure and 
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outcome, as such variants do not satisfy the underlying assumptions for valid instruments. As 

sensitivity analyses, we estimated the causal effects of known risk factors on HF risk other 

statistical methodology and software - the R package TwoSampleMR52 was used to select 

independent variant instruments for the exposure using the same parameters as per the GSMR 

analysis (P < 5x10-8; r2 <0.05; LD window of 10,000kb), except the TwoSampleMR package uses 

the 1000 Genomes as the LD reference. Causal estimates based on the inverse-variance weighted 

(IVW)53, MR-Egger and median weighted methods54 were then calculated using the 

MendelianRandomization55 R package. To enable comparison of MR estimates between traits, we 

present effect estimates corresponding to the risk of HF for a 1-standard deviation (SD) higher risk 

factor of interest. Where the original GWAS conducted rank based inverse normal transformation 

(RINT) of a trait prior to GWAS, we used the per-allele beta coefficients following RINT to 

approximate the equivalent values on the standardised scale, as has been conducted previously. 

 

To determine if the causal effects of the continuous risk factors on HF were mediated via their 

effects on CAD or AF risk, we repeated the GSMR analysis after conditioning the HF summary 

statistics on CAD and AF GWAS summary statistics, as described below. 

 

Conditional analysis. To estimate the effects of HF risk variants after adjusting for risk factors 

which showed a significant causal effect on HF in the MR analyses, we performed the Multi-trait 

Conditional and Joint Analysis (mtCOJO) on summary data, as implemented in GCTA 

v1.91.7beta51. HF summary statistics were adjusted for AF34, CAD43, LDL-C, HDL-C, triglycerides44, 

DBP, SBP47 and BMI46 using GWAS summary data. The UKB10K LD reference was used.  

 

Reporting summary. Further information is provided in the Nature Research Reporting Summary.  
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Data availability. The data sets generated during this study are available from the corresponding 

author upon reasonable request. The summary GWAS estimates for this analysis are available on 

the Cardiovascular Disease Knowledge Portal (http://www.broadcvdi.org/). 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 10, 2019. ; https://doi.org/10.1101/682013doi: bioRxiv preprint 

https://doi.org/10.1101/682013


Page 41 of 46 

 

Online Methods References 
 
1. The 1000 Genomes Project Consortium. A map of human genome variation from 

population-scale sequencing. Nature 467, 1061–73 (2010). 

2. International HapMap Consortium et al. A second generation human haplotype map of over 

3.1 million SNPs. Nature 449, 851–61 (2007). 

3. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. 

Genet. (2016). doi:10.1038/ng.3643 

4. Mitt, M. et al. Improved imputation accuracy of rare and low-frequency variants using 

population-specific high-coverage WGS-based imputation reference panel. Eur. J. Hum. 

Genet. 25, 869–876 (2017). 

5. Loh, P.-R., Palamara, P. F. & Price, A. L. Fast and accurate long-range phasing in a UK 

Biobank cohort. Nat. Genet. 48, 811–816 (2016). 

6. Li, Y., Willer, C. J., Ding, J., Scheet, P. & Abecasis, G. R. MaCH: using sequence and 

genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34, 

816–834 (2010). 

7. Delaneau, O., Zagury, J.-F. & Marchini, J. Improved whole-chromosome phasing for disease 

and population genetic studies. Nat. Methods 10, 5–6 (2013). 

8. Fuchsberger, C., Abecasis, G. R. & Hinds, D. A. minimac2: faster genotype imputation. 

Bioinformatics 31, 782–784 (2015). 

9. Howie, B. N., Donnelly, P. & Marchini, J. A Flexible and Accurate Genotype Imputation 

Method for the Next Generation of Genome-Wide Association Studies. PLoS Genet. 5, 

e1000529 (2009). 

10. Kong, A. et al. Detection of sharing by descent, long-range phasing and haplotype 

imputation. Nat. Genet. 40, 1068–1075 (2008). 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 10, 2019. ; https://doi.org/10.1101/682013doi: bioRxiv preprint 

https://doi.org/10.1101/682013


Page 42 of 46 

 

11. Aulchenko, Y. S., Struchalin, M. V & van Duijn, C. M. ProbABEL package for genome-wide 

association analysis of imputed data. BMC Bioinformatics 11, 134 (2010). 

12. Kutalik, Z. et al. Methods for testing association between uncertain genotypes and 

quantitative traits. Biostatistics 12, 1–17 (2011). 

13. Chang, C. C. et al. Second-generation PLINK: Rising to the challenge of larger and richer 

datasets. Gigascience (2015). doi:10.1186/s13742-015-0047-8 

14. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for 

genome-wide association studies by imputation of genotypes. Nat. Genet. (2007). 

doi:10.1038/ng2088 

15. R Core team. R Core Team. R: A Language and Environment for Statistical Computing. R 

Foundation for Statistical Computing , Vienna, Austria. ISBN 3-900051-07-0, URL 

http://www.R-project.org/. (2015). 

16. Winkler, T. W. et al. Quality control and conduct of genome-wide association meta-analyses. 

Nat. Protoc. (2014). doi:10.1038/nprot.2014.071 

17. Auton, A. et al. A global reference for human genetic variation. Nature (2015). 

doi:10.1038/nature15393 

18. Sinnott, J. A. & Kraft, P. Artifact due to differential error when cases and controls are 

imputed from different platforms. Hum. Genet. 131, 111–119 (2012). 

19. Johnson, E. O. et al. Imputation across genotyping arrays for genome-wide association 

studies: assessment of bias and a correction strategy. Hum. Genet. 132, 509–522 (2013). 

20. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 

(1999). 

21. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: Fast and efficient meta-analysis of 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 10, 2019. ; https://doi.org/10.1101/682013doi: bioRxiv preprint 

https://doi.org/10.1101/682013


Page 43 of 46 

 

genomewide association scans. Bioinformatics (2010). doi:10.1093/bioinformatics/btq340 

22. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity 

in genome-wide association studies. Nat. Genet. (2015). doi:10.1038/ng.3211 

23. Watanabe, K., Taskesen, E., Van Bochoven, A. & Posthuma, D. Functional mapping and 

annotation of genetic associations with FUMA. Nat. Commun. (2017). doi:10.1038/s41467-

017-01261-5 

24. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. 

Nature 562, 203–209 (2018). 

25. Higgins, J. P. T., Thompson, S. G., Deeks, J. J. & Altman, D. G. Measuring inconsistency in 

meta-analyses. BMJ  Br. Med. J. (2003). doi:10.1136/bmj.327.7414.557 

26. Benjamin, E. J. et al. Heart Disease and Stroke Statistics—2018 Update: A Report From the 

American Heart Association. Circulation 137, e67–e492 (2018). 

27. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set 

analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015). 

28. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 

(2000). 

29. Kircher, M. et al. A general framework for estimating the relative pathogenicity of human 

genetic variants. Nat. Genet. 46, 310–5 (2014). 

30. GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–5 

(2013). 

31. Delaneau, O. et al. A complete tool set for molecular QTL discovery and analysis. Nat. 

Commun. 8, 15452 (2017). 

32. Leek, J. T. svaseq: removing batch effects and other unwanted noise from sequencing data. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 10, 2019. ; https://doi.org/10.1101/682013doi: bioRxiv preprint 

https://doi.org/10.1101/682013


Page 44 of 46 

 

Nucleic Acids Res. 42, (2014). 

33. GTEx Consortium et al. Genetic effects on gene expression across human tissues. Nature 

550, 204–213 (2017). 

34. Roselli, C. et al. Multi-ethnic genome-wide association study for atrial fibrillation. Nat. Genet. 

50, 1225–1233 (2018). 

35. Võsa, U. et al. Unraveling the polygenic architecture of complex traits using blood eQTL 

meta-analysis. bioRxiv (2018). 

36. Giambartolomei, C. et al. Bayesian Test for Colocalisation between Pairs of Genetic 

Association Studies Using Summary Statistics. PLoS Genet. 10, e1004383 (2014). 

37. Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene 

expression variation inferred from GWAS summary statistics. Nat. Commun. 9, 1825 (2018). 

38. Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 (2018). 

39. Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. 

Nucleic Acids Res. (2014). doi:10.1093/nar/gkt1229 

40. MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome-wide association 

studies (GWAS Catalog). Nucleic Acids Res. (2017). doi:10.1093/nar/gkw1133 

41. Wild, P. S. et al. Large-scale genome-wide analysis identifies genetic variants associated 

with cardiac structure and function. J. Clin. Invest. 127, 1798–1812 (2017). 

42. Roselli, C. et al. Multi-ethnic genome-wide association study for atrial fibrillation. Nat. Genet. 

50, 1225–1233 (2018). 

43. Nikpay, M. et al. A comprehensive 1,000 Genomes-based genome-wide association meta-

analysis of coronary artery disease. Nat. Genet. 47, 1121–1130 (2015). 

44. Willer, C. J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 10, 2019. ; https://doi.org/10.1101/682013doi: bioRxiv preprint 

https://doi.org/10.1101/682013


Page 45 of 46 

 

45, 1274–1283 (2013). 

45. Scott, R. A. et al. An Expanded Genome-Wide Association Study of Type 2 Diabetes in 

Europeans. Diabetes 66, 2888–2902 (2017). 

46. Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. 

Nature 518, 197–206 (2015). 

47. Warren, H. R. et al. Genome-wide association analysis identifies novel blood pressure loci 

and offers biological insights into cardiovascular risk. Nat. Genet. 49, 403–415 (2017). 

48. Eppinga, R. N. et al. Identification of genomic loci associated with resting heart rate and 

shared genetic predictors with all-cause mortality. Nat. Genet. 48, 1557–1563 (2016). 

49. Gorski, M. et al. 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney 

function. Sci. Rep. 7, 45040 (2017). 

50. Zhu, Z. et al. Causal associations between risk factors and common diseases inferred from 

GWAS summary data. Nat. Commun. (2018). doi:10.1038/s41467-017-02317-2 

51. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide 

complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011). 

52. Hemani, G. et al. The MR-Base platform supports systematic causal inference across the 

human phenome. Elife (2018). doi:10.7554/eLife.34408 

53. Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis with 

multiple genetic variants using summarized data. Genet. Epidemiol. (2013). 

doi:10.1002/gepi.21758 

54. Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid 

instruments: effect estimation and bias detection through Egger regression. Int. J. 

Epidemiol. 44, 512–525 (2015). 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 10, 2019. ; https://doi.org/10.1101/682013doi: bioRxiv preprint 

https://doi.org/10.1101/682013


Page 46 of 46 

 

55. Yavorska, O. O. & Burgess, S. MendelianRandomization: An R package for performing 

Mendelian randomization analyses using summarized data. Int. J. Epidemiol. (2017). 

doi:10.1093/ije/dyx034 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 10, 2019. ; https://doi.org/10.1101/682013doi: bioRxiv preprint 

https://doi.org/10.1101/682013

