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Abstract

Medical imaging applications are challenging for machine learning and computer vision
methods, in general, for two main reasons: it is difficult to generate reliable ground
truth and databases are usually too small in size for training state of the art methods.
Virtual images obtained from computer simulations could be used to train classifiers
and validate image processing methods if their appearances were comparable (in texture
and color) to the actual appearance of intra-operative medical images. Recent works
focus on style transfer to generate artistic images by combining the content of an image
and the style of another one. A main challenge is the generation of pairs with similar
content ensuring preservation of anatomical features, especially across multi-modal data.
This paper presents a deep-learning approach to content-preserving style transfer of
intra-operative medical data for realistic virtual endoscopy. We propose a
multi-objective optimization strategy for Generative Adversarial Networks (GANs) to
obtain content-matching pairs that are blended using a siamese u-net architecture
(called Content-net) that uses a measure of the content of activations to modulate skip
connections. Our approach has been applied to transfer the appearance of bronchoscopic
intra-operative videos to virtual bronchoscopies. Experiments assess images in terms of,
both, content and appearance and show that our simulated data can substitute
intra-operative videos for the design and training of image processing methods.

Introduction 1

State of the art methods in computer vision need huge amounts of data with 2

unambiguous annotations for their training. In the context of medical imaging this is, in 3

general, a very difficult task due to limited access to clinical data, the time required for 4

manual annotations and variability across experts. The particular field of intervention 5

guiding has the extra difficulty of intra-operative recordings probably requiring the 6

alteration of standard protocols. These facts have encourage the development of 7

computational methods for the simulation of realistic medical imaging data from the 8

available scans. In this context, virtual endoscopy could be useful to train intervention 9

support methods. 10

In order to obtain realistic data useful for data augmentation and validation of 11

machine learning and image processing methods, simulations should resemble 12

intra-operative recordings. We consider that style transfer could be used to endow 13

virtual endoscopic images with the content and texture of intra-operative videos using 14

modern techniques for artistic style transfer. 15

The basic idea of style transfer [1, 2] is to transform input images appearance 16

according to one or more style images while preserving structure and content of input 17
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images. Recent works [3, 4] have shown the power of Generative Adversarial Networks 18

(GANs) and Convolutional Neural Networks (CNNs) in general for artistic style transfer. 19

The main difference between artistic style transfer and realistic simulations of 20

endoscopic procedures is that in the latter, stylized images should preserve the structure 21

of simulated data. This follows from the fact that style structure encodes the 22

anatomical content of the image and, thus, it should be preserved. 23

This work addresses the generation of realistic endoscopic images using 24

intra-operative video data to augment the appearance of virtual endoscopy. We present 25

a two-stage method based on CNNs that maps virtual images to the intra-operative 26

domain preserving their anatomical content. 27

Related work 28

State-of-art techniques for artistic style transfer based on CNNs use a system of two 29

different neural networks (a generative network and a discriminative one) to obtain 30

stylized images achieving a compromise between preservation of input image content 31

and style images texture and appearance. The first network is an auto-encoder that 32

generates stylized images from the input images. The output of this auto-encoder is the 33

input of a discriminative network that classifies between style and input images to 34

assess how much stylized images appearance matches the actual style. This general 35

scheme has several variants concerning, especially, the kind of loss function used to train 36

the network. 37

In [3, 5] the generative network minimizes a loss function that includes two terms. 38

One term (feature reconstruction loss) penalizes that stylized images deviate in content 39

from input images, while the second one (style reconstruction loss) measures the 40

similarity between stylized images and style appearance. The feature reconstruction loss 41

is given by the L2 difference between feature maps of input and stylized images. The 42

style reconstruction loss is given by the Frobenius norm of the difference between the 43

Gram matrices of the stylized and style images feature maps. As explained in both 44

works, since Gram matrices encode probabilistic distribution correlations, minimizing 45

the style reconstruction loss preserves stylistic features from the style image but does 46

not necessarily preserve its spatial structure (as illustrated in Fig 1(b)). 47

Other approaches [6] are based on deep markovian models and transform images 48

locally instead of globally. To do so, feature maps are split into patches which are the 49

input of the classifier that discriminates between real and virtual appearances. 50

Like [3, 5] the loss function also includes a content regularization term to preserve the 51

spatial structure of images. However, the fact that style is locally transferred also leads 52

to a loss of anatomical content in style images (Fig 1(c)). 53

New approaches such as [4] use Generative Adversarial Networks (GANs) in order to 54

transform images from one domain A (like virtual simulations) into a domain B (like 55

interventional videos). The novelty of [4] is that a cyclic term is added in order to make 56

the domain transfer bijective (A→ B → A and B → A→ B). Although, the method 57

also adds a regularization term to preserve the spatial structure of the stylized virtual 58

images, content information is still lost as shown in Fig 1(d). 59

Fig 1. Virtual image stylized with different state-of-art methods.

Contributions 60

We present a two-stage algorithm for the augmentation of virtual endoscopic images 61

using intra-operative videos based on convolutional neural networks. First, we use 62

cycleGAN in a multi-objective optimization scheme to obtain pairs of virtual and 63
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intra-operative style images that share some content information. The content and 64

appearance of these image pairs are blended using a siamese u-net architecture that 65

modulates skip connections by a measure of neuron activation content. The 66

contributions of our work are the following: 67

1. A multi-objective approach to GANs. A main challenge with GANs [7] is the 68

selection of the epochs most suitable for a given problem. Due to the oscillating 69

behavior of adversarial training, most of the cases this is done manually, which 70

leads to subjective errors depending on the observer. In this work, we propose a 71

multi-objective optimization approach based on the Pareto front [8] to select the 72

epoch achieving the best compromise between content preservation and style 73

transfer. 74

2. A siamese u-net network (ContentNet) for blending content and appearance of 75

image pairs. We introduce an auto-encoder with siamese encoders and skip 76

connections to the decoder. Skip connections are modulated by a measure of the 77

information according to the type of information filters respond to. Modulation is 78

used to fine tune the amount of virtual anatomical content and intra-operative 79

appearance of final simulations. This way we can produce images with several 80

degrees of interventional artifacts from the same pair of images obtained from 81

multi-objective GANs. 82

Materials and methods 83

Augmentation of Virtual Endoscopic Images using 84

Intra-operative Data 85

To obtain realistic textured endoscopic images is a very complicated task since it is 86

usually very difficult to have exact correspondences between real and virtual images. 87

Besides methods for unpaired mapping fail to preserve the anatomical content of the 88

original domain. 89

Our strategy for intra-operative virtual endoscopy is a two-step method. In a first 90

stage, we generate pairs of virtual and intraoperative images sharing anatomical content 91

using GANs. In a second step, the content and appearance of such pairs are blended 92

using a siamese u-net architecture trained to modulate the amount of content and 93

texture that is taken from each pair. 94

Multi-Objective Generative Adversarial Networks 95

Given two domains V irtual, V , and Real, R, a GAN learns two (bijective) maps (Gr,
Gv) from one domain onto the other one:

Gr : V irtual→ Real Gv : Real→ V irtual (1)

with the map composition Gr(Gv) and Gv(Gr) being the identity on each domain. 96

Following [4], maps are given by auto-encoders trained to optimize: 97

`(Gr, Gv, Dr, Dv) = (2)

`GAN(Gv, Gr, Dr, Dv, V,R) + λ`cyc(Gv, Gr)

The term `GAN measures how good are Gv, Gr transferring images from one domain to 98

the other one, while `cyc is a ”cycle consistency loss” introduced to force bijective 99

mappings. 100
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The minimization problem is given by adversarial training as:

G∗r , G
∗
v = min

Gr,Gv

(
max
Dr,Dv

`(Gr, Gv, Dr, Dv)

)
(3)

This way, G∗r and G∗v are optimized so that Gr, Gv minimize (2) while the adversarial 101

Dr, Dv maximize it. These conditions (minimize while maximizing at the same time) 102

might be in conflict when they are considered as a single optimization process. Such a 103

conflict is prone to introduce an oscillating behavior in back propagation iterations, 104

which might hinder the convergence of cycleGAN training and the selection of the 105

stopping epoch. 106

We propose to consider separately the optimization of each of the terms in the 107

objective function ` and pose adversarial training as the following multi-objective 108

optimization [8] problem: 109

G∗r , G
∗
v = min

Gr,Gv

(`1, `2) = min
Gr,Gv

(`cyc, `GAN) = (4)

min
Gr,Gv

(`cyc(Gr, Gv), max
Dr,Dv

`GAN(Gv, Gr, Dr, Dv))

Since a multi-objective optimization problem involves the optimization of multiple 110

objective functions, there does not exist, in general, a solution simultaneously 111

minimizing all of them. The expected situation is to have a set of solutions that 112

outperform in any of the objectives without degrading the other ones. These dominating 113

solutions is called Pareto front and is defined as the set of solutions, xP , such that: 114

∀x such that `i(x) 6 `i(xP ) ∀i ∈ {1, 2, ..., k}
∃j ∈ {1, 2, ..., k} `j(xP ) < `j(x)

being `1, . . . , `k the set of functions to be optimized. 115

The condition of the Pareto front can be used to select cycleGAN epoch as follows.
Let Gk := (Gk

r , G
k
v) be the transformation maps at the k-th epoch and GP = (GP i)NP

i=1

be the set of epochs belonging to the Pareto front. Such Pareto maps can be iteratively
computed from the values of the objective functions as:

GP i := min
Gi∈Di

(`cyc(Gi)) (5)

for D1 the set of maps for all epochs and Di, i > 2, the set of maps dominating GP i−1. 116

In our case, Gi ∈Di if it satisfies the following conditions: 117

1. `cyc(Gi) > `cyc(GP i−1)

2. `GAN(Gi) < `GAN(GP i−1)

Fig 2 shows the Pareto front associated to the two-objective problem given by (4) with 118

the dashed lines enclosing the region that includes the set of epochs that dominate a 119

given GP i−1. The pairs of function values (`cyc(GP i), `GAN(GP i)), GP i ∈ GP , 120

given by the two objectives evaluated at the Pareto front are shown in solid squares 121

joined with a solid line. 122

Fig 2. Pareto front of cycle-GAN 2-objective optimization.

The set of Pareto epochs achieve the best trade-off between the two objective 123

functions and, thus, are equivalent from the point of view of the GAN. The epoch from 124

the Pareto front best suited for augmentation of virtual endoscopic images is selected as 125

the one that minimizes the L2-difference: 126
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`Cont = mean
v∈V

(||v −Gr(v)||2) + (6)

mean
r∈R

(||r −Gv(r)||2)

for || · ||2 the L2-norm and mean
v∈V

, mean
r∈R

the average values for the training set of

virtual, V , and real images, R. The epoch selected, G∗P is the one in the Pareto front
achieving the minimum value of `cont:

G∗P = (G∗r , G
∗
v) = min

Gi
P

(
`Cont(G

i
P )
)

(7)

We will note the images transformed by these maps by v∗ := G∗r(v) and r∗ := G∗v(r). 127

ContentNet 128

The proposed content-net (labelled C) is an auto-encoder with siamese encoders (one 129

for each image domain) that have skip connections to the decoder in order to blend 130

content and style of image pairs. Siamese encoders follow a VGG-19 architecture. Each 131

of them is build using VGG-19 first three convolutional blocks without the last max 132

pooling. We decided to use only three convolutional blocks and two max poolings 133

because all the texture that we want to transfer is practically removed after two max 134

pooling. Content-net architecture is sketched in Fig 3. 135

Fig 3. Content-net Architecture used for blending image pairs.

In order to selectively blend the content of one image with the appearance of the 136

other one, skip-connections are weighted by a function, namely ρ, that quantifies the 137

amount of content that filters respond to. Feature maps of the first siamese encoder are 138

weighted with ρ, while its sister encoder are weighted with 1− ρ. This way each siamese 139

encoder contributes with either image content (first siamese encoder) or appearance 140

(second siamese encoder). 141

The contrastive loss function that content-net minimizes is given by a content loss, 142

`Cont, defined as: 143

`Cont = ||v − C(v, v∗)||2 + ||v∗ − C(v∗, v)||2 (8)

for v and v∗ an image pair produced by our multi-objective cycleGAN and C(v, v∗), 144

denoting the output of content net with v, v∗ being inputs of, respectively, the first and 145

second siamese encoders. 146

The function ρ weighting skip-connections is learned from a training set of
intra-operative images by comparing the input image to the activation of each neuron in
an encoder trained to yield the identity map. The similarity measure chosen to compare
input images to its neuron activations is their mutual information [9]. Mutual
information compares the correlation between random variables and is used in
multimodal registration to compare images with equal content but different appearance.
If v denotes the random variable given by input images and a the random variable
given by each neuron activation, then their mutual information, I(v,a) is given by:

I(v,a) =
∑
v∈X

∑
a∈Y

p(v, a) log

(
p(v, a)

p(v)p(a)

)
(9)

where p(v, a) is the joint probability function of v and a, and p(v) and p(a) are the 147

marginal probability distribution functions of v and a, respectively. Mutual information 148
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measures the independence between the two random variables v, a. In particular, a 149

value close to 0 indicates that input image and activations do not share information. 150

Meanwhile, in case of sharing content, v and a would be dependent and I would be 151

equal to the input image entropy. 152

Given an input image v, the mutual information evaluated for all neurons’
activations, aji , of a given layer, `j , defines a strictly positive random variable:

Ijv := I(v, ·) : `j −→ [0,∞) (10)

The distribution of Ijv is bimodal and allows to categorize neurons’ activations into two 153

groups sharing high and low content with the input image v. 154

The function ρ weighting each neuron activation is defined as the probability of a
neuron sharing high content with input images and is computed as the percentage of
times each activation belongs to the high content class for a set of training images:

ρ(aji ) :=
|Ijv(aji ) > Thjv|

|V |
(11)

for V a training set, | · | indicating the length of a set and Thjv the threshold value 155

splitting Ijv populations. 156

Experiments 157

Our method has been used to simulate realistic bronchoscopic interventions. Virtual 158

bronchoscopies defining the V irtual domain were generated using [10] from CT scans 159

acquired with an Aquilion ONE (Toshiba Medical Systems, Otawara, Japan). Scans 160

were selected from 10 patients in the CPAP study [11] conducted at Hospital Bellvitge 161

(Barcelona, Spain). For each scan, we simulated 4 paths, one for each main lung lobule 162

(left and right upper lobes; left and right lower lobes). Intra-operative videos defining 163

the Real domain were acquired also at Hospital Bellvitge (Barcelona, Spain) during 164

biopsy interventions using an Olympus Exera III HD Ultrathin videobronchoscope (6 165

videos) and CAO diagnostic procedures using a Olympus Exera III HD Therapeutic 166

videobronchoscope (4 videos). 167

Methods were trained on 4 CT anatomies (16 virtual bronchoscopies) and video 168

recordings from 3 ultrathin explorations and 2 diagnostic procedures. The remaining 169

data were left for validation and testing. The multi-objective cycleGAN was trained 170

from scratch using the whole training set. After 200 epochs, our multi-objective 171

approach selected epoch 50 as the one achieving the best compromise between 172

intr-operative appearance and preservation of virtual anatomical content. Content-net 173

was fine-tuned on the set of intra-operative recordings from an auto-encoder trained to 174

yield the identity map on the Real domain. The weighting function ρ was also learned 175

from the latter auto-encoder. 176

Results and Discussion 177

We evaluated the quality of the enhanced virtual images in terms of intra-operative 178

appearance and preservation of each patient’s anatomy acquired by CT scans. For 179

comparison purposes, simulations were also enhanced using the 200th epoch network, 180

labelled GAN200, and the network achieving the least value of the cost (2), labelled 181

GANLeast. This last network corresponded to the 21st epoch of cycleGAN training. 182
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Intra-operative Appearance 183

For the first experiment, we trained a network, Dr, to discriminate between real and 184

virtual images. This network was evaluated on the test sets of real images and virtual 185

images enhanced using the proposed method, GAN200, and GANLeast. 186

For each enhancing method, Dr values were compared to the ones obtained by the 187

test real images to assess their similarity in appearance. Main analysis was performed 188

using a Student T-test for unpaired data. We computed p-values and 95% confidence 189

interval (CI) for the difference. A p-value < 0.05 was considered statistically significant. 190

Table 1 summarizes statistics for the comparison of appearances. For each enhancing 191

method, we report p-values, 95% CIs of the difference with real image and descriptive 192

statistics (mean and standard deviation (SD)) of Dr values. According to T-tests, none 193

of the methods has an appearance significantly different from intra-operative videos 194

(p-value> 0.05) with all discrimination values Dr in similar ranges comparable to the 195

values achieved by the test set of real images (mean=0.90 and SD=0.11). 196

Table 1. Dr Statistics for Assessment of Intra-operative Appearance.

Method Descriptive T-test

mean SD p-val 95% CI
ContentNet 0.88 0.11 0.305 (-0.023,0.073)

GAN200 0.91 0.08 0.576 (-0.057,0.032)
GANLeast 0.91 0.09 0.438 (-0.065,0.028)

Fig 4 shows representative images of virtual bronchoscopies enhanced using our 197

method (Fig 4 (a)), the 200th epoch network (Fig 4(b)) and the least cost one (Fig 198

4(c)). For each case, we show two consecutive frames of the enhanced virtual sequence 199

which should be very similar in appearance and content. GANLeast images have sudden 200

dark artifacts, while GAN200 yields highly unstable images that do not always match 201

the original anatomy. ContentNet provides a stable appearance in images which are the 202

most consistent with the original anatomical content of virtual images. 203

Fig 4. Virtual bronchoscopy enhanced using ContentNet, (a), 200th epoch network, (b)
and the least cost one, (c).

Anatomical Content 204

For the second experiment, we applied the lumen center detector [12] to ContentNet, 205

GAN200, GANLeast and the non-enhanced original virtual images to verify that original 206

lumen position and structure is preserved. The center detector was applied using two 207

different sets of parameters, one learned on interventional videos and the other one 208

learned on simulated bronchoscopies. Interventional parameters were used on enhanced 209

images, while simulation parameters were applied to original virtual images. Like [12], 210

detections were plot on original virtual images and shown to 2 independent observers for 211

the identification of false detections and missed centres. Ground truth was produced by 212

intersecting the experts’ annotations and used to compute precision and recall. 213

Scores obtained for ContentNet, GAN200, GANLeast were compared to the ones 214

obtained for virtual non-enhanced images using a Student T-test for paired data. As in 215

the first experiment, we computed p-values and 95% confidence intervals and a p-value 216

< 0.05 was considered statistically significant. 217

Table 2 and 3 summarize statistics for Prec and Rec reported as in Table 1. 218

ContentNet outperforms the two cycleGAN, both, in terms of precision and recall. 219
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Table 2. Precision Statistics for Assessment of Anatomical Content.

Method Descriptive T-test

mean SD p-val 95% CI
ContentNet 0.94 0.09 0.025 (-0.1150, -0.0082)

GAN200 0.89 0.15 0.695 (-0.0719, 0.0487)
GANLeast 0.84 0.19 0.265 (-0.0332, 0.1148)

Table 3. Recall Statistics for Assessment of Anatomical Content.

Method Descriptive T-test

mean SD p-val 95% CI
ContentNet 0.90 0.14 0.939 ( -0.0384, 0.0413)

GAN200 0.70 0.24 <0.01 (0.1400, 0.3559)
GANLeast 0.73 0.24 <0.01 (0.1081, 0.3058)

The recall of GAN200 and GANLeast is under 0.75 and is significantly lower 220

(p-value < 0.01) than the recall obtained for the non-enhanced virtual images. This 221

drop in the recovery of the original anatomical structure indicates that enhanced images 222

systematically distort the anatomical content. ContentNet recall is almost equal to the 223

one obtained in virtual images with a difference less than 0.04, which shows that it 224

consistently preserves the anatomical content along the sequence. 225

Concerning precision, ContentNet averages are a bit higher (p-value=0.025 and 226

CI=(-0.1150, -0.0082)) than the average precision of original virtual images. This might 227

be attributed to artifacts in the segmentation of distal airways that are prone to 228

introduce shadows in virtual sequences resembling the appearance of luminal distal 229

areas. Such shadowing artifacts do not appear in intra-operative videos and, thus, they 230

are significantly reduced in ContentNet enhanced images. In fact, ContentNet precision 231

ranges (0.94± 0.09) are closer to the full precision of intra-operative videos [12] than 232

ranges for virtual images ( 0.8843± 0.1364). Finally, precision average ranges for 233

GAN200 and GANLeast compares to virtual images precision which indicates that they 234

present some kind of artifact (like the shadows of the images shown in Fig 4) that 235

intra-operative videos do not have. 236

Fig 5 shows two representative examples of lumens detected on images enhanced 237

with each method. Lumen centers are shown in blue points on, both, original virtual 238

images and the enhanced ones. In the top case, GAN200 and GANLeast enhanced 239

images miss the bottom branch. In the bottom case, in spite of a slight deviation in the 240

location of its center, GANLeast succeeds in keeping the upper branch, while GAN200 241

enhancement has such a distorted anatomy that none of the original virtual branches 242

can be identified. The proposed ContentNet preserves the virtual anatomy in both cases 243

and, thus, all branches are properly detected. 244

Fig 5. Detected lumens on virtual bronchoscopy enhanced using our method
(ContentNet), 200th epoch network (GAN200) and the least cost one (GANLeast).

Conclusion 245

We have presented a method for style transfer that preserves the structure of original 246

input images and, thus, it is suitable for endowing virtual endoscopy with 247

intra-operative appearance. 248
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Content-net has been compared to state-of-art style transfer methods based on 249

GANs. In particular, we chose cycleGAN after 200 epochs and the cycleGAN achieving 250

the minimum cost. Two experiments were conducted. The first one assessed whether 251

the appearance of enhanced images compares to intra-operative videos for their use in 252

classification problems. The 2nd experiment assessed whether the anatomical content of 253

the virtual images extracted from patient’s CT is preserved after their enhancement for 254

their use in image processing problems. 255

Results obtained for the first experiment show that, like cycleGAN, Content-net has 256

an appearance close enough to intra-operative videos as to be classified real by a 257

discriminative network. This validates our method for data augmentation in 258

classification problems. The 2nd experiment shows that images enhanced using both 259

cycleGANs have a significant distortion in anatomical content (see Fig 5) and have 260

larger temporal artifacts (see Fig 4) in comparison to Content-net. In fact, according to 261

T-tests Content-net anatomical structure is not no significantly different from original 262

virtual images extracted from patient’s CT anatomy. This validates our method for 263

data augmentation in image processing problems. 264

The artifacts of cycleGANs images might be partially attributed to the adversarial 265

training. On one hand, the combination of two loss functions with different (opposite, 266

indeed) goals (minimization and maximization) introduces an oscillating behavior across 267

training epochs and, thus, consecutive epochs might produce very different results. On 268

the other hand, it is not guaranteed that both losses will have equal influence during 269

training since the magnitude of one of the two might be predominant in the 270

back-propagation of their gradients. 271

The proposed multi-objective approach allows the join optimization of both losses 272

ensuring equal influence on the cycleGAN, regardless of their magnitude or gradient. 273

This way, our multi-objective cycleGAN produces stylized images that share enough 274

anatomical structure with virtual images as to be the input for a network blending both 275

image pairs. The weighted skip connections of ContentNet provide selective blending of 276

the structure and texture of these image pairs. This allows enhancing the patient 277

specific anatomical content acquired by CT scans, while keeping an intra-operative 278

appearance. In this context, it is worth noticing that ContentNet precision and recall 279

ranges achieved in the detection of airways structure (centers) is very close to the ranges 280

obtained in intra-operative videos [12]. 281

In summary, two interesting conclusions can be inferred from our experiments. First, 282

the use of multi-objective optimization strategies can be an effective alternative to 283

back-propagation for the optimization of adversarial networks and other networks 284

relying on multiple loss functions. In this context, the Pareto front condition could also 285

be adapted for the selection of the most appropriate task in sequential multi-task 286

learning. Second, the structure of neuron activations can be measured by the amount of 287

information shared with input images. This measure of their content provides a 288

description easy to interpret in terms of classical computer vision. We envision that this 289

could be useful to define more specific and interpretable representation spaces based on 290

CNNs. 291
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