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Abstract 
  
Current healthcare practices are reactive and based on limited physiological information collected 
months or years apart. By enabling patients and healthy consumers access to continuous 
measurements of health, wearable devices and digital medicine stand to realize highly 
personalized and preventative care. However, most current digital technologies provide 
information on a limited set of physiological traits, such as heart rate and step count, which alone 
offer little insight into the etiology of most diseases. Here we propose to integrate data from 
biohealth smartphone applications with continuous metabolic phenotypes derived from urine 
metabolites. This combination of molecular phenotypes with quantitative measurements of 
lifestyle reflect the biological consequences of human behavior in real time. We present data from 
an observational study involving two healthy subjects and discuss the challenges, opportunities, 
and implications of integrating this new layer of physiological information into digital medicine. 
Though our dataset is limited to two subjects, our analysis (also available through an interactive 
web-based visualization tool) provides an initial framework to monitor lifestyle factors, such as 
nutrition, drug metabolism, exercise, and sleep using urine metabolites. 
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Introduction 
  
Current medical practice is reactive. Annual checkups measure only a few basic phenotypes and 
often fail to predict serious health threats such as cancer, dementia, or exposure to pathogens. 
Instead, most disease is not detected until critical symptoms present, which is often too late for 
meaningful or cost-effective intervention. Owing to this lack of data, the current model of 
healthcare is periodic and geared to manage disease symptoms at their onset rather than 
preventing or reversing the underlying etiology. Humans would undoubtedly benefit from 
integrated technology to quantify and monitor deviations from baseline wellness using 
physiological phenotypes1. Yet access to actionable information on personal physiological health 
remains limited. 
  
There are currently two avenues for continuous monitoring of health and disease: (1) consumer-
grade wearables and (2) clinical-based precision medicine. Wearable devices such as smart 
watches are broadly accessible and increasingly popular as consumer products. Data from these 
devices has the advantage of being continuously and passively collected from large populations 
of people. Many companies have since devoted significant resources to leverage tools in big data 
and artificial intelligence (AI) to provide actionable insights from these popular products. For 
instance, Apple (CA, USA) has recently received FDA approval to provide users with alerts to 
detect atrial fibrillation2. This diagnostic capability was made possible by widespread consumer 
participation, which provided expansive datasets to train AI models. The Apple Heart Study 
involved roughly 400,000 participants and models constructed from this initial dataset were 
validated with a clinical trial involving approximately 600 participants.2  
  
Given sufficiently large datasets, heart rate information alone can suggest the onset of diverse 
disease processes3. However, this type of data offers little information on the origins, 
mechanisms, and progression of disease. For instance, while an elevated resting heart rate may 
indicate a number of adverse medical events, including an infection3, such data is not able to 
distinguish between bacterial and viral infections. This lack of mechanistic information leaves 
patients and health care providers unable to implement targeted therapeutic intervention and, in 
this case, antibiotic stewardship. 
  
On the other end of the spectrum of longitudinal monitoring are tools for clinically-based precision 
medicine. These include deep genome sequencing and integration with multidimensional clinical 
phenotypes such as transcriptomics, proteomics, metabolomics, and metagenomics datasets. 
There are a number of large-scale efforts underway to provide multi-omic phenotyping for large 
cohorts, such as the Pioneer 100 Wellness Project1,4 and the NIH All of Us program5. While these 
initiatives have proven to successfully leverage diverse physiological datasets to enable 
meaningful intervention1, they remain hampered by their relative inaccessibility and periodic 
nature. In other words, while high quality data provides clinically actionable insights, it is 
expensive, invasive, and difficult to collect, resulting in collections on the scale of months rather 
than days1. 
  
As Leroy Hood and others have long proposed, modern medicine will only be truly effective once 
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it is has transitioned from reactive disease care to a framework that is “predictive, preventive, 
personalized, and participatory”6. To combine the accessibility of wearable devices with the 
robustness and quality of clinical medicine, a third option is needed; one that provides quantitative 
measurements of health and mechanistic insights into the origins and progression of disease. We 
hypothesize that realtime metabolic phenotyping (i.e., “metabolomics”) using urine could fill this 
void by providing a quantitative fingerprint of metabolic health along with information about 
exposure to toxins, drugs, and pathogens7. In theory, continuous metabolic measurements could 
be collected at home and in the workplace, providing molecular insights into underlying disease 
processes, such as distinguishing between patients with related strains of infectious bacteria8, as 
well as quantifying the effect of lifestyle decisions on health and disease. Lifestyle factors such 
as nutrition, alcohol and tobacco usage, sleep, and physical activity are well known to contribute 
to the risk of developing chronic disease, which costs the United States alone $2.97 Trillion a 
year, or 90% of all healthcare expenditures.9 By empowering consumer participation with 
actionable information and the classification of disease using a continuum of molecular 
phenotypes rather than discrete clinical symptoms6, the cost and efficacy of healthcare could be 
dramatically improved. 
  
While a number of biological matrices, including saliva and blood, could be used as a source of 
metabolic information, urine offers some key advantages as it can be easily collected passively, 
non-invasively, and longitudinally10. Urine is a rich source of cellular metabolites, most stemming 
from filtration of blood in the kidneys, which excrete about a half cup of blood every minute11. 
Urine has long been recognized as a rich fluid for medical diagnostics and presently many clinical 
assays are performed on this biological fluid12–14. Approximately 4,500 metabolites have been 
documented in urine13,15, showing connections to approximately 600 human conditions12,13 
including but not limited to: obesity16, cancer17, inflammation18, neurological disease19, and 
infectious disease8. Further, pregnancy, ovulation, urinary tract infection, diet, and exercise 
induce metabolomic signatures that can be observed in urine14. Finally, many drugs and their 
metabolites are readily detected from urine, presenting the opportunity for dosage tailored to the 
individual and monitoring compliance as well as effective stratification for clinical trials, which can 
greatly reduce the cost of pharmaceutical development6,7. 
  
Over the course of 10 days, we collected every urine sample from two healthy individuals and 
tracked hundreds of urine metabolites using gas chromatography and mass spectrometry (GC-
MS) along with other biometric data provided by nutritional and fitness smartphone applications. 
Though other studies have measured the concentrations of urine metabolites from larger 
populations over time with other physiological phenotypes14,20, we are unaware of any studies 
with the time resolution or smartphone data integration we present here. Our aim was to explore 
this combination of smartphone and metabolomics data as a means to understand the biological 
consequences of lifestyle in real time. 
  
Methods 
  
Sample Collection 
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Urine samples were collected midstream and volume was measured using sterile 500 mL plastic 
beakers from which urine was then decanted into cups provided in the BD Vacutainer® Urine 
Complete Cup Kit. Samples were then transferred into 8 mL urinalysis plus conical urine tubes. 
These vacuum sealed 8 mL tubes were either immediately deposited into -80 °C freezers or 
temporarily stored in dry ice using portable coolers overnight before being deposited into -80 °C 
freezers. Quantitative values for sample volume along with sample collection times are available 
in Supplementary Dataset 3. 
  
Ethics approval and consent to participate 
  
The University of Wisconsin - Madison Institutional Review Board was consulted prior to collecting 
data for this study. The IRB determined review was not required for this study because no human 
subjects were enrolled. 
  
Sample preparation and analysis 
  
All urine samples were prepared by sampling 100 µL into Thermo Scientific 300 µL Amber Vials 
with inserts and subsequently evaporated to dryness using a Thermo Scientific SpeedVac® 
Concentrator. Samples were then derivatized for gas chromatography analysis using 50 µL 
solution of 1:1 pyridine: N-Methyl-N-(trimethylsilyl)trifluoroacetamide with 1% 
trimethylchlorosilane (chemicals obtained from Sigma Aldrich) and incubated at 60 °C for 30 
minutes. Samples were then injected onto a Thermo Scientific Gas Chromatography-Fourier 
Transform Mass Spectrometry (GC-FTMS) Orbitrap using a temperature gradient starting at 
100 °C (hold time of one minute), and increasing at a rate of 8.5 °C per minute until reaching 
260 °C. The temperature gradient rate was then increased to 50 °C per minute until reaching a 
final temperature of 320 °C (hold time of four minutes). Split ratio was set to 10:1 with a carrier 
gas flow of 1.200 mL/min. The MS transfer line and ion source temperatures were set to 300 °C 
and 250 °C, respectively. The instrument scanned in Full MS-SIM mode at 30,000 resolution. The 
AGC target was set to 1.0e6 with a scan range of 50 to 650 m/z. Ionization mode was set to 
electron ionization (EI). 
  
Raw files were subsequently processed using in-house software21 for deconvolution, peak 
alignment, quantitation, and identification. Cutoffs for peak quantitation were set to a minimum 
fragment count of 10, minimum observation of a given peak across all files set to 33%, and 
analyte/background signal set to 10. Spectra were then matched against the unit resolution library 
curated by the National Institute of Standards and Technology (NIST), and a high resolution library 
developed in house in collaboration with Thermo Scientific.  
  
Preparation and analysis of ethyl glucoronide standard 
  
Ethyl glucuronide standard (100 ug/mL, Sigma Aldrich) was dried down in an Amber autosampler 
vial using a SpeedVac® Concentrator. This standard was derivatized and analyzed as described 
above. 
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Biometric data collection 
  
Nutritional data was recorded daily using the Lose It! App. For Subject 1, active calories were 
recorded with an Apple Watch Series 2 (Model A1758, software version 4.3.2 (15U70)) and hours 
of sleep were calculated using the Sleep Cycle App. Summary statistics are available in 
Supplementary Table 1. 
  
Analysis of the Human Urine Metabolome Database (HMDB) 
  
The XML version of the human urine metabolome database (urine_metabolites.xml) was 
downloaded on October 7, 2018. The various aggregated files and scripts used in this analysis 
are accessible in the associated GitHub repository (see Code Availability) and as 
Supplementary Datasets 1-2. For the purposes of visualization, broader disease categories, 
such as “Cancer” and “Inflammation” were curated manually (Supplementary Dataset 2). A 
treemap (Fig. 2c) was generated using the ggplot222 and treemapify23 modules in R. 
  
Statistical analysis 
  
Metabolite intensity values were normalized to the total ion current (TIC) for the RAW files for 
each sample using previously described software21. Principal component analysis was conducted 
on log2-transformed TIC-normalized intensity values using the decomposition.PCA() method in 
Python’s skickit learn module24. Welch’s Two Sample t-test was performed in R using the 
t.test(var.equal = F) function. Repeated measures correlation25 was used to correlate daily log2-
transformed average metabolite intensities with biometric values where biometric data were 
available for both subjects using the rm_corr() function in the Pingouin26 package in Python. 
Skipped (robust) Spearman’s rho was used to correlate log2-transformed daily average 
metabolite intensities with biometric values for data exclusively available for Subject 1 (i.e., 
physical activity and sleep) using corr(method=’skipped’) from Pingouin26. P-values from the 
repeated measures correlation, and Spearman’s rho were adjusted for multiple hypothesis testing 
(where the number of tests was considered the number of metabolite features observed [603]) 
using the Benjamini Hochberg false discovery rate (FDR) procedure via the fdr(method=’fdr_bh’) 
method in Pingouin and are presented as q-values in the manuscript. All p-values from hypothesis 
testing are based on two-sided tests and degrees of freedom and/or n values are presented as 
they appear in the Results. Further statistical details on correlation results can be found in 
Supplementary Dataset 4. 
  
Linear regression analysis was used to test for diurnal effects on metabolite concentrations. 
Samples were binned by “morning” (6 am to 12 pm), “afternoon” (12 pm to 6 pm), “evening” (6 
pm to 12 am), and “late night” (12 am to 6 am). Only two samples (both from Subject 1) were 
collected between 12 am and 6 am and were excluded from this analysis under the assumption 
that they represent outliers and would create an unbalanced group for regression analysis, which 
was performed using the linear_regression() function in Pingouin26. An effect was considered 
significant if the reported p-value associated with the coefficient for the TimeOfDay designation 
(see Supplementary Dataset 3) was less than or equal to an alpha of 0.05. 
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Data availability 
  
A companion web tool is available via the following URL: http://3.16.13.214:6004/dash, and 
provides an interactive visualization of Fig. 1d, Fig. 1e, and Fig. 3b. RAW data files were 
uploaded to the MassIVE database https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp) 
under the accession number: MSV000083880 (doi:10.25345/C5B33S). Processed and 
normalized metabolite intensity values along with other relevant metadata are provided in 
Supplementary Datasets 1-4 in this study. 
  
Code availability 
  
All source code used for analysis in this study, including for the interactive data visualization tool, 
is available on github: https://github.com/ijmiller2/RealTimeUrineMetabolomics. 
  
Results 
  
Urine metabolites provide distinct and continuous metabolic phenotypes 
  
We collected 109 urine samples (50 for Subject 1 and 59 for Subject 2) over 10 days along with 
biometric measurements provided by smartphone and smartwatch applications, including those 
for nutrition, exercise, and sleep (Fig. 1a and Supplementary Table 1). Urine samples were 
lyopholized, resuspended, and derivatized with solution containing N-Methyl-N-
(trimethylsilyl)trifluoroacetamide, and subsequently analyzed with high resolution Gas 
Chromatography-Fourier Transform Mass Spectrometry (GC-FTMS). The resulting data were 
deconvoluted with previously described software21, which detected and quantified 603 metabolite 
features across the 109 individual urine samples. Of these 603 metabolite features, 101 
metabolites were annotated/identified based on spectral matching (see Methods). An additional 
24 features were able to identified as carbohydrates, but were not assigned a specific molecular 
structure due to the highly similar fragmentation patterns for certain sugars, consistent with a 
Level 3 assignment according to the standards proposed by the Metabolomics Standards 
Initiative15,27,28. 
  
Each one of these 603 metabolite features provided a continuous metabolic phenotype for both 
subjects. Compounds, such as dihydroferulic acid–a metabolite of phenolic compounds 
previously detected in urine29–showed different baseline levels for Subject 1 and Subject 2 (Fig. 
1b and Fig. 1c). Though this study was not designed for absolute quantification, the ability to 
detect different relative baseline metabolite levels for two health subjects (as well as deviations 
therefrom) offers a proof of principle for continuous urine analysis enabling personalized 
medicine. For instance, given the higher and tighter distribution of dihydroferulic acid 
concentrations for Subject 1 compared to Subject 2, deviations from either of these individual 
baselines would likely be more clinically meaningful than deviations from a hypothetical normal 
range established for the general population (Fig. 1c). 
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Principal component analysis of the log2-normalized metabolite intensity values showed clear 
separation between subject samples across PC2 (Fig. 1d). An analysis of the corresponding 
loadings plot of PC2 (Fig. 1e) shows dihydroferulic acid, histidine, and phenoxyacetic acid among 
the top identified metabolite features by rank. While the average volume of samples from Subject 
1 was significantly higher than that of Subject 2 (Welch’s Two Sample t-test, t = 7.8739, dof = 
81.614, p = 1.275e-11), neither PC1 nor PC2 reflect systematic differences in sample volume, 
run order, or batch number (Supplementary Fig. 1), suggesting that the separation in these two 
planes is driven by biological rather than technical variance. The clear distinction between 
samples derived from two healthy subjects are not necessarily surprising given that other urine 
metabolomics studies have shown the ability of unsupervised techniques to resolve a wide range 
of biological traits and clinical phenotypes12. 
  
Analysis of Literature Disease Associations 
  
Each identified metabolite was searched against the synonyms in the Human Urine Metabolome 
Database (HMDB) (http://www.urinemetabolome.ca/)13. For each metabolite with a matching 
synonym (75/101), features of interest such as chemical taxonomy and associated diseases 
(based on previous literature mining efforts13) were tabulated (Supplementary Dataset 1). These 
compounds covered a range of chemical classes (Fig. 2a), as defined in HMDB as chemical 
“Super Class,” but had a higher fraction of organic acids compared to metabolite classes 
represented by the entire HMDB database (Fig. 2b). This difference in chemical compositions is 
likely a result of minimal sample processing and the use of GC-MS12,13, which favors volatile and 
typically lower molecular weight compounds (see Methods for more details). In total, 65 
metabolites with corresponding HMDB data entries had some type of literature association with 
diseases, 48 of which had connections to various forms of cancer and 19 with Alzheimer’s 
Disease (Supplementary Dataset 1). 
  
A broader analysis of the 4240 metabolites available in the downloadable database shows that 
1424 of these compounds have disease associations in a least one piece of literature. Diseases 
and conditions ranged from having one (e.g., “Cervical Cancer”) to 586 associated metabolites 
(“Obesity”) (Fig. 2c and Supplementary Dataset 2). Although these connections are not clinically 
validated biomarkers of disease, they may suggest potential for applications of continuous urine 
analysis in digital health and personalized medicine. In fact, many of the diseases that the Center 
for Disease Control (CDC) lists as leading causes of death in the United States, such as cancer, 
diabetes, and kidney disease30, have associations to metabolites that can be detected in urine. 
Collectively the conditions associated with chronic disease create trillions of dollars in cost to the 
health care system in the United States alone. Many of these diseases are associated with 
lifestyle factors, such as tobacco, and alcohol usage, and lack of physical activity30. 
  
Metabolite levels reflect nutrition, lifestyle, physical activity, and sleep 
  
To explore connections between urine metabolite concentrations and others measures of health 
and lifestyle, various biometric data were collected contemporaneously using smartphone 
applications (see Methods). Both subjects collected nutritional data and Subject 1 collected 
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further data on exercise and sleep (Supplementary Table 1 and Supplementary Dataset 3). 
Due to the disparate time scale for which this data was collected (urine samples were collected 
four to eight times per day as they were generated, while data such as sleep only provides one 
time point per day), and to control for diurnal variability (explored further below), daily average 
metabolite intensities were correlated with biometric values using repeated measures 
correlation25 (where data is available for both subjects) and Robust Spearman’s Correlation31 
(where data is available only for Subject 1) (see Methods, Supplementary Dataset 3-4). 
Interestingly, there are two predominant groups of metabolites that are (1) positively (see upper 
half of heatmap) and (2) negatively (see lower half of heatmap) correlated with caloric and nutrient 
intake (Fig. 3a). Perhaps the former represent compounds that are either food-derived or linked 
to energy metabolism, whereas the latter represent endogenous compounds that belong to 
metabolic pathways separate from energy metabolism. While an interactive web-based tool to 
further explore and visualize these correlations is available, (see Methods for info on data and 
source code availability), here, we highlight a few putative connections between metabolite 
concentrations and over the counter (OTC) medication usage, coffee and alcohol consumption, 
exercise, and sleep (Fig. 3). 
  
Subject 1 drank coffee twice a day (at approximately 7 am and 9 am), and Subject 2 drank coffee 
every morning around 8 am except for on August 25 and August 27, 2018. These consumption 
patterns are consistent with our measurements of compounds with known associations to coffee 
consumption (Supplementary Fig. 2). Furoylglycine, a biomarker of coffee consumption32,33, and 
its corresponding intensity was consistent with notes of when coffee was consumed each day (r 
= 0.617, p = 0.011, q = 0.201, dof = 14; Supplementary Fig. 2). Quinic acid, another known 
metabolite from coffee33, also tracked well with coffee consumption (Supplementary Fig. 3; r = 
0.787, p = 2.93e-4, q = 0.0884, dof = 14). 
  
A metabolite that was putatively identified by spectral database searching software (see Methods 
for details on metabolite identification) as a carbohydrate compound (termed “carbohydrate 6” in 
Supplementary Datasets 1,3,4) was well correlated with alcohol consumption (as measured in 
kcal) (r = 0.812, p = 1.32e-4, q = 0.0121, dof = 14, Fig 3b). These calories from alcohol include a 
variety of alcohol types (beer, wine, whiskey, gin, tequila, cognac, and vermouth) and thus are 
more likely to reflect ethanol consumption rather than a compound specific to a certain type of 
beverage. Further manual inspection of the spectral matches to this unannotated metabolite 
feature suggested that it is most likely a sugar alcohol, with the highest dot product score to xylitol. 
Follow up analysis using a standard of ethyl-glucuronide, an established metabolite and 
biomarker of ethanol consumption34, was then analyzed and added to our in-house spectral 
database (see Methods). A separate (initially unidentified) metabolite feature at a retention time 
(RT) of 14.842677 and m/z 217.1075485 was subsequently identified as ethyl-gluconoride 
Supplementary Fig. 4). While the repeated measures correlation coefficient for ethyl-glucuronide 
and alcohol consumption was lower (r = 0.657, p = 5.70e-3, q = 0.0508, dof = 14) than for the 
putative sugar alcohol (“carbohydrate 6”), this discrepancy is likely a result of the nature of the 
metabolite’s pharmacokinetics; ethyl glucuronide has a longer half-life than ethanol34. 
  
Subject 2 reported taking acetaminophen at 8:45 pm on August 25, 2018. A spike in an ion 
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intensity consistent with acetaminophen shows a corresponding increase observed in next 
sample in sequence, which was collected at 7:15 am on August 26, 2018 (Supplementary Fig. 
5). No such spike was observed for Subject 1, who did not record taking any acetaminophen 
throughout the collection of these samples. 
  
In addition to nutritional information collected for Subject 1 and Subject 2, data on physical activity 
and sleep was collected for Subject 1. Hypoxanthine, a degradative purine product resulting from 
ATP breakdown in muscle tissue during exercise35,36, correlated with physical activity (r = 0.833, 
p = 0.0102, q = 0.472, n = 8; Supplementary Fig. 6 and Supplementary Dataset 4). Sleep was 
anticorrelated with hydrocaffeic acid (r = -0.857, p = 0.0137, q = 0.551, n = 8; Supplementary 
Fig. 7 and Supplementary Dataset 4), a metabolite of caffeic acid33,37, which in turn has been 
shown to affect sleep latency in rats37. However, neither of these metabolite correlations passed 
the significance threshold after multiple hypothesis correction (i.e., q >> 0.05). 
  
Analysis and modelling considerations for high time resolution metabolomic data 
  
Although the correlation analysis presented above is based on daily average metabolite 
intensities (given the disparate, non-paired time scales for the corresponding biometric/nutritional 
data points), a linear regression model using time of the day as a predictor of metabolite intensity 
(see Methods) established diurnal effects for 268 metabolite features (Fig. 4a). Eighty three 
metabolites had a time of day effect for both subjects, whereas 87 and 98 metabolites only 
exhibited a time of day effect for Subject 1 or Subject 2, respectively (Fig. 4a). Metabolites 
exhibiting an effect were then separated into three groups based on which time of day showed 
the greatest effect (calculated here by median z-scores for each time group) (Fig. 4b and Fig. 
4c). For instance, the upper left panel of Fig. 4c shows the subset of metabolites varying the most 
in the morning for Subject 1. For this group of metabolites (amounting to 104/170 metabolites for 
Subject 1), most are higher in the morning and then decrease over the afternoon and into the 
evening. For Subject 2, metabolite deviations were more evenly distributed across the day (Fig. 
4b). Though it is not currently clear what behaviors or underlying biology drive these distinct and 
time-dependent patterns, it is possible that they originate from differences in dietary habits, age, 
or physical activity. While Subject 2 did not collect any data on physical activity using a 
smartphone application, they noted a lack of organized physical activity (e.g., running, weight 
lifting, bicycling, etc.) during the period of this study. 
  
Because metabolite concentrations in urine are less directly subjected to the strong homeostatic 
forces of other biological matrices (such as blood), variance in metabolite concentrations due to 
diet, lifestyle, and time of the day may be more pronounced14. Thus, in light of our analysis, as 
well as that of other groups20,38, there may be better times of the day to measure the effects of 
factors such as sleep, exercise, or nutrition. Furthermore, optimal sampling time and frequency 
will likely vary by individual. Thus, at a minimum, it is worth considering diurnal effect (or temporal-
behavioral effects) as a confounding variable in more sophisticated modelling approaches with 
larger, future datasets. 
  
To systematically account for the effect of time dependency and to avoid averaging (and the 
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resulting loss of information, biological variance, and statistical power), we recommend future 
studies use smartphone applications that record high resolution timestamps for exercise, heart 
rate, nutritional data, etc. that will allow for more powerful mixed effect linear models39. Using a 
moving average with a smaller interval (i.e., rather than daily average) of metabolite intensity may 
be another viable approach. However, setting the optimal interval for such a moving average will 
likely depend on the type of metabolite and the various biological or environmental factors 
affecting its turnover. 
  
Discussion 
  
Over the course of 10 days, we measured continuous physiological phenotypes via urine 
metabolites. Multivariate analysis showed a clear distinction between samples derived from two 
healthy subjects, suggesting a distinct baseline metabolic fingerprint for each. We observed urine 
metabolites with known associations to human disease, daily metabolite fluctuations that were 
subject specific, and saw connections between lifestyle factors such as exercise, nutrition, sleep, 
and OTC drug usage. Taken together, our data suggest that urine analysis offers metabolic 
phenotypes that are both quantitative and highly personalized. While healthcare consumer access 
to such metabolic phenotypes offers tremendous potential for personalized and preventive 
medicine, both subjects noted practical challenges in participating in this study. For instance, the 
burden of storing and transporting urine samples using a cooler full of dry ice may explain why 
few if any other studies have comparable time resolution (i.e., collecting every sample). Future 
studies and, certainly, user-friendly consumer products would benefit from a collection system 
that is integrated directly into a toilet. 
  
Of course, designing and manufacturing a consumer-grade device that could effectively and 
affordably measure metabolites in urine presents many challenges. Such a device should be 
robust enough to withstand repeated urine analysis from multiple users, sensitive enough to 
simultaneously quantify tens, hundreds, or even thousands of metabolites, and affordable enough 
to reduce instead of adding cost to the already overburdened healthcare system. In addition to 
the technological and economic challenges of building such a device, there are a wide range of 
ethical challenges in collecting, storing, sharing, and interpreting personalized metabolic 
information. Though these challenges will hinder development of such a biosensor, we present 
this dataset and an accompanying interactive web-based visualization tool to share our optimism. 
We believe that continuous urine metabolite analysis offers a promising opportunity to integrate 
with current digital technologies as an orthogonal layer of biomedical data to make modern 
medicine more predictive, preventive, personalized, and participatory. 
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Fig. 1. GC-MS metabolomics provides continuous and distinct metabolic phenotypes for two 
healthy individuals. (a) Every urine sample (109 total; Subject 1 [red], n = 50; Subject 2 [blue], n 
= 59), along with biohealth data from smartphone applications, was collected for 10 days. 
Samples were dried down, derivatized with n-methyl-n-(trimethylsilyl)trifluoroacetamide, and 
analyzed with high resolution GC-Fourier Transform Mass Spectrometry (FTMS). (b) 
Deconvolution and quantification with in-house software21 provide time series profiles for 603 
metabolite features. (c) The log2-intensity of a metabolite feature identified as dihydroferulic acid, 
a known urine metabolite, revealed different baseline concentrations for Subject 1 and Subject 2, 
compared to a hypothetical range for the general population. (d) Scores plot from principal 
component analysis (PCA) based on log2-normalized intensity values shows clear separation 
between Subject 1 and Subject 2. Each point represents a sample and is colored by Subject. (e) 
PCA loadings plot where each point represents a metabolite feature. An interactive version of (d) 
and (e) are provided in the companion webtool. 
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Fig. 2. There 4240 known urine metabolites in the human metabolome database (HMDB), 1424 
of which have literature associations to a diverse set of human conditions. (a) Pie chart based on 
counts of HMDB chemical taxonomy (“Super Class”) for metabolites in this study. (b) Pie chart 
based on counts of each HMDB chemical taxonomy for all urine metabolites in HMDB. (c) 
Treemap of diseases, scaled by number of metabolites with HMDB literature associations. 
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Fig. 3. Urine metabolites reflect patterns of health and lifestyle. (a) Heatmap whereby each row 
represents an identified metabolite and each cell represents the strength of correlation between 
daily average metabolite intensity and a given biometric dataset collected from smartphone apps. 
Repeated measures correlation25 was used where data was available for both subjects whereas 
Robust Spearman’s Correlation31 was used for data only available for Subject 1 (i.e., exercise 
and sleep). (b) An example correlation (r = 0.812, p = 1.32e-4, q = 0.0121, dof = 14) between 
alcohol consumption (in kcals) and a carbohydrate compound (“carbohydrate 6”), most likely 
representing xylitol. An interactive version of (b) is provided in the companion webtool. 
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Fig. 4. Daily metabolite fluctuations can be shared, distinct, or subject specific. (a) A subset of 
metabolite features for Subject 1 (n = 170) and Subject 2 (n = 181) were significantly (p < 0.05) 
affected by time of the day based on linear regression analysis (see Methods). (b) While 83 
metabolites were affected by time of the day for both Subjects, 87 and 98 were uniquely affected 
for Subject 1 and Subject 2, respectively. The majority of metabolites for Subject 1 had the 
greatest deviation from baseline in the morning, whereas metabolite deviations were more evenly 
distributed across the day for Subject 2. (c) Median Z-scores of metabolite concentrations 
throughout the course of the day. Most metabolites with the greatest deviations in the morning 
appear to stabilize by evening (top row), while metabolites with an evening effect (bottom row) 
are close to baseline concentrations before spiking up or down in the evening. Metabolites with 
greatest deviations in the afternoon (middle row) peak in the afternoon and tend to reverse course 
by evening. 
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