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Abstract: 

Systemic hypoxia resulting from preterm birth, altered lung development, placental abnormalities, and 

cyanotic congenital heart disease is known to impede the regulatory and developmental pathways in the 

neonatal heart. While the molecular mechanisms are still unknown, stressors that result from systemic 

hypoxia drive aberrant cardiomyocyte proliferation, which may be initially adaptive, but ultimately can 

program the heart to fail in early life. Recent evidence suggests that the prostaglandin E1 analogue, 

misoprostol, is cytoprotective in the hypoxia-exposed neonatal heart by impacting alternative splicing of 

the BCL-2/adenovirus E1B 19 kd-interacting protein 3 (Bnip3) resulting in the generation of an isoform 

lacking the third exon (Bnip3ΔExon3) or small Nip (sNip). Using a rodent model of neonatal hypoxia, in 

combination with rat primary ventricular neonatal cardiomyocytes (PVNC’s) and H9c2 cells, we sought to 

determine if misoprostol can prevent cardiomyocyte proliferation and what the key molecular mechanisms 

might be in this pathway. At postnatal day (PND) 10, hypoxia-exposed rat pups demonstrated elevated 

heart weights, while histological analysis confirmed increased nuclei number and the absence of fibrosis 

(P<0.05), which was completely attenuated with the addition of 10 μg/kg/day misoprostol. Concurrently, 

molecular markers of proliferation, including Cyclin-D1 were significantly elevated in hypoxia-exposed 

myocytes, which was also prevented in the presence of misoprostol (P<0.05). We further describe a critical 

role for sNip in the regulation of cardiomyocyte proliferation at the transcriptional level, where this isoform 

reduced the expression of a proliferative MEF2C-myocardin-BMP10 pathway, while favoring expression 

of the cardiac maturation factors, such as BMP2 and MEF2A. These observations were further supported 

with knockdown studies in H9c2 cells, where we are able to restore hypoxia-induced cardiomyocyte 

proliferation in misoprostol-treated cells with the addition of an siRNA targeting sNip. Taken together this 

data demonstrates a mechanism for hypoxia-induced neonatal cardiomyocyte proliferation which can 

pharmacologically mitigated by misoprostol treatment.   

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 24, 2019. ; https://doi.org/10.1101/681692doi: bioRxiv preprint 

https://doi.org/10.1101/681692
http://creativecommons.org/licenses/by-nc-nd/4.0/


Misoprostol opposes hypoxia-induced cardiomyocyte proliferation 
 

3 

Introduction: 

Neonatal systemic hypoxia resulting from early-life cyanotic events including preterm birth, 

placental abnormalities, abnormal/impaired lung development, and certain forms of congenital heart 

disease, are known drivers of both structural and functional changes in the developing heart  (3, 5). 

Specifically, these infants demonstrate dramatic reductions in systolic and diastolic function, concurrent 

with extensive increases in left-ventricular mass (25). While such changes are thought to be initially 

protective to preserve cardiac output in the neonatal stage, they also significantly increase the risk for 

pediatric heart failure, and lifelong cardiovascular abnormalities (3, 25, 36).  

         Although traditional literature suggests that cardiomyocytes proliferate early in gestation, and that 

postnatal cardiac growth is achieved exclusively through hypertrophy, recent evidence in humans 

demonstrates that cardiomyocytes continue to proliferate in the first year of life, and a small number remain 

proliferative for as long as 20 years (40). Moreover in rodents, the cardiomyocyte is able to retain its ability 

to proliferate until the point of binucleation, which occurs on or before postnatal day 7 (35). Work focused 

specifically on this developmental window of proliferation has further revealed that cardiomyocytes 

continue to undergo mitosis longer in an environment where the oxygen tension is low, even extending into 

adulthood, where whole animal hypoxia-exposure following myocardial infarction, reduces cardiac damage 

and fibrosis, by enhancing cardiomyocyte proliferation (20, 33, 40).   

The developmental switch from proliferation to hypertrophy is the result of large-scale shifts in 

gene expression; however, changes in the expression pattern of the myocyte enhancer factor-2 (MEF2) 

family appears to be a key event (9, 10, 26, 32). Genetic studies have shown that three MEF2 genes have 

non-redundant and potentially antagonistic roles in proliferation (MEF2C), differentiation (MEF2A), and 

maturation (MEF2D)  (10, 19, 26, 32, 34). These developmentally programmed roles of the MEF2 family 

converge on Notch signaling, to drive the expansion of cardiomyocytes and simultaneously promote 

maturation (8, 10). Furthermore, MEF2C expression is governed by hypoxia signalling, where loss of the 

hypoxia-inducible factor-1ɑ (HIF1ɑ) prevents MEF2C expression, cardiac looping and embryo viability (2, 

23).  
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Myocardin, a transcriptional co-activator involved in the determination, differentiation and 

maturation of cardiomyocytes, is a direct transcriptional target of MEF2C, while simultaneously being a 

positive co-activator of MEF2C-dependent gene expression in the heart (10, 19, 23, 34). This regulatory 

cycle is further complicated by bone morphogenetic protein (BMP) 10, a growth factor associated with 

embryonic cardiomyocyte proliferation, which is positively regulated by a myocardin-serum response 

factor (SRF) complex, but is itself a driver of MEF2C expression (5, 13, 18, 31). 

 In contrast to proliferation, cardiomyocyte hypertrophy signaling is largely dominated by the 

calcium-calmodulin-dependent phosphatase, calcineurin (PP2B) (29, 30, 42, 48). Classically, calcineurin 

is activated by low amplitude nuclear calcium transients, resulting in nuclear accumulation of nuclear factor 

of activated T-Cells (NFAT) (6, 29). In the nucleus, NFATs complex with GATA4 to drive the expression 

of many hypertrophy genes including beta-myosin heavy chain (β-MHC), brain natriuretic peptide (BNP), 

myocyte-enriched calcineurin-interacting protein 1 (MCIP1), and endothelin 1 (ET-1) [Reviewed by 

Wilkins and Molkentin, 2002 (42)]. In addition to its interactions with GATA4, NFAT also physically 

interacts with the p65 subunit of nuclear factor kappa B (NF-κB) and is able to drive differentiation, 

hypertrophy and eventually pathological remodeling of the ventricle (12). Additionally, calcineurin has 

been shown to enhance MEF2A activity (43, 44).  

 Independent from the hypoxia-inducibility of MEF2C, HIF1ɑ also drives the expression of 

BCL2/Adenovirus E1B 19 KDa Protein-Interacting Protein 3 (Bnip3), whose protein products play a 

pivotal role in hypoxia-induced cardiomyocyte apoptosis, necrosis and autophagy (1, 16, 17, 22, 24, 38, 

39). Alternative splicing of Bnip3 produces a truncated form of the protein (ie. short/small Nip or sNip) 

lacking the second exon in humans, or the third exon in rodents, that acts as an endogenous inhibitor of the 

full-length protein (13, 14). Recently, we have shown that these spliced variants also drive the accumulation 

of calcium in the nucleus triggering hypertrophic growth of cardiomyocytes. Interestingly, we also 

demonstrated that the prostaglandin analogue, misoprostol can modulate the expression of sNip in multiple 

cell and tissue types  (11, 13).    
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 Building on this previous work, in this report we provide evidence that hypoxia drives proliferation 

in the neonatal heart, primary ventricular neonatal cardiomyocytes and cultured cell lines in a 

MEF2C/BMP10-dependent manner. We further show that hypoxia in combination with misoprostol 

treatment, enhances sNip expression and nuclear calcium retention, opposing hypoxia-induced 

proliferation, while promoting maturation and hypertrophy.  

Materials and Methods: 

In vivo neonatal hypoxia model: 

All procedures in this study were approved by the Animal Care Committee of the University of 

Manitoba, which adheres to the principles for biomedical research involving animals developed by the 

Canadian Council on Animal Care. Litters of Long-Evans rat pups and their dams were placed in a hypoxia 

chamber with 10% O2 (±1%) from postnatal day (PND) 5-10. Additionally, hypoxic animals were exposed 

to 100% N2 for 90 seconds, daily from PND 5-7 (inclusive). Control litters (N=3), were left in normoxic 

conditions at 21% O2. Animals received 10 μg/kg misoprostol or saline control, administered orally in rat 

milk substitute daily from PND5-10. At PND10 animals were euthanized and perfused with saline for tissue 

collection. 

Histology: 

Male PND10 hearts were fixed in 10% buffered formalin for 24 hours at time of sacrifice and stored 

in phosphate buffered saline (PBS; Hyclone). Fixed hearts were cut longitudinally (to expose the four 

chambers of the heart), processed and embedded in paraffin blocks. Hearts were sectioned at 5μm 

thicknesses, mounted on APTES coated slides, and stained with Hematoxylin and Eosin or Masson’s 

Trichome by the University of Manitoba Histology Core. Hearts were imaged on a on a Zeiss Axio Lab.A1 

bright-field microscope fitted with an Axiocam 105 color camera (Zeiss). Imaging was done using Zen 2.3 

Pro imaging software and quantification, scale bars, and processing was done on Fiji (ImageJ) software. 

Plasmids and virus production: 

The endoplasmic reticulum (CMV-ER-LAR-GECO1), and nuclear (CMV-NLS-R-GECO) 

targeted calcium biosensors were gifts from Robert Campbell (Addgene #61244, and 32462) (45, 46). 
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CMV-dsRed was a gift from John C. McDermott and myc-NFATc3 was a gift from Tetsuaki Miyake. The 

mouse HA-Bnip3ΔExon3 (sNip) (Accession #MF156210) were described previously (Addgene #100793) 

(11). Generation of the pLenti-Bnip3ΔExon3 (sNip) virus using a pLenti-puro back bone, which was 

described previously (13). 

Cell culture, transduction and transfections: 

Rat primary ventricular neonatal cardiomyocytes (PVNC) were isolated from 1-2-day old pups 

using the Pierce Primary Cardiomyocyte Isolation Kit (#88281). H9c2 cells were maintained in Dulbecco’s 

modified Eagle’s medium (DMEM; Hyclone), containing penicillin, streptomycin, and 10% fetal bovine 

serum (Hyclone), at 37 °C and 5% CO2. All cells were transfected using JetPrime Polyplus reagent, as per 

the manufacturer’s protocol. Lentiviral expression of sNip and RNAi targeting of sNip were described 

previously (13). For misoprostol treatments, 10 mM misoprostol (Sigma) in phosphate buffered saline 

(PBS; Hyclone) was diluted to 10 μM directly in media and applied to cells for 48 hours. For hypoxia 

treatments, cells were held in a Biospherix incubator sub-chamber with 10% O2 (±1%), 5% CO2, balanced 

with pure N2 (regulated by a Biospherix ProOx C21 sub-chamber controller) at 37 °C for 48 hours. 

Fluorescent staining, live cell imaging and immunofluorescence: 

Hoechst 3334 and Calcein-AM were all purchased from Biotium and applied using manufacturer’s 

protocol. Tag-it Violet Proliferation and Cell Tracking Dye was purchased from BioLegend and applied 

using the manufacturer’s protocol. Immunofluorescence with Anti-NF-kB (CST #8242) and Myc-Tag (CST 

# 2272) were used with fluorescent secondary antibody conjugated to Alexa Fluor 466 (Jackson #711-545-

152) in fixed and permeabilized PVNC’s and H9c2’s. All imaging experiments were done on a Zeiss 

Axiovert 200 inverted microscope fitted with a Calibri 7 LED Light Source (Zeiss) and Axiocam 702 mono 

camera (Zeiss). Imaging was done using Zen 2.3 Pro imaging software and quantification, scale bars, and 

processing including background subtraction, was done on Fiji (ImageJ) software.  

Measurement of Proliferation by Flow Cytometry: 

Cell cycle was assessed by flow cytometry using the Nicoletti method and FxCycleTMPI/RNase 

Staining Solution purchased from Invitrogen (product # F10797) (41). Red fluorescence was analyzed for 
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20,000 cells/treatment using a Thermo Scientific Attune NxT flow cytometer equipped with a 488 nm laser, 

as per the manufacturer's protocol. Gating and DNA histogram analysis was described previously (28).    

Immunoblotting: 

Protein isolation and quantification was performed as described previously (3). Extracts were 

resolved via SDS-PAGE and later transferred to a PVDF membrane using an overnight transfer system. 

Immunoblotting was carried out using primary antibodies in 5% powdered milk or BSA (as per 

manufacturer’s instructions) dissolved in TBST. Horseradish peroxidase-conjugated secondary antibodies 

(Jackson ImmunoResearch Laboratories; 1:5000) were used in combination with enhanced 

chemiluminescence (ECL) to visualize bands. The following antibodies were used: Myocardin (sc-33766), 

Cyclin-D1 (sc-450), p57(KP39) (sc-56341), MEF2C (CST #5030), MEF2A (CST #9736), Myc-Tag (CST 

# 2272), NFATc3 (F-1) (sc-8405), p-NFATc3 (Ser 169) (sc-68701),  Histone-H3 (CST #4499), MEK1/2 

(CST #8727), Actin (sc-1616), and Tubulin (CST #86298). For detection of the Bnip3 splice variant, 

Bnip3ΔExon3 (sNip), we used a custom rabbit polyclonal antibody that was previously described and 

validated (3). 

Real-Time PCR: 

Total RNA was extracted from cells and pulverized tissues by the TRIzol extraction method and 

genomic DNA was removed via the RNeasy Mini Kit (Qiagen), including an On-Colum DNase Digestion 

(Qiagen). For qRT-PCR, mRNA was extracted from cells using Trizol then reverse transcribed into cDNA. 

Following DNase treatment, cDNA was combined with SYBR Green Supermix (Thermo) and mRNA was 

amplified using the ABI 7500 Real-Time PCR system (Applied Biosystems). Primers were: MEF2C Mus 

Fwd: GATGCAGACGATTCAGTAGGTC, MEF2C Mus Rev: GGATGGTAACTGGCATCTCAA, 

MEF2A Rat FWD: GGAACCGACAGGTGACTTTTA, MEF2A Rat REV: 

AGAGCTGTTGAAGATGATGAGTG, BMP10 Rat Fwd: TGCCATCTGCTAACATCATCC, BMP10 

Rat Rev: CAAACGATCTCTCTGCACCA, BMP2 Rat FWD: GCTCAGCTTCCATCACGAA, BMP2 Rat 

REV: GAAGAAGCGTCGGGAAGTT, MYOCD Rat Fwd: GTGTGGAGTCCTCAGGTCAAAC, 
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MYOCD Rat Rev: TGATGTGTTGCGGGCTCTT, L13 Rat Fwd: AGGAGGCGAAACAAATCCAC, L13 

Rat Rev: TATGAGCTTGGAGCGGTACTC. 

Statistics: 

Data are presented as mean ± standard error (S.E.M.). Differences between groups in imaging 

experiments with only 2 conditions were analyzed using an unpaired t-test, where (*) indicates P<0.05 

compared with control. Experiments with 4 or more conditions were analyzed using a 1-way ANOVA, with 

Newman-Keuls test for multiple comparisons, where (*) indicates P<0.05 compared with control, and (**) 

indicates P<0.05 compared with treatment. All statistical analysis was done using GraphPad Prism 6 

software.  

Results: 

Misoprostol opposes hypoxia-induced neonatal cardiomyocyte proliferation 

 Hypoxia exposure in the developing, and not yet terminally differentiated cardiomyocyte, has been 

previously linked with the initiation of the cell cycle and proliferation (35). In addition, we have previously 

observed that PGE1 signalling, activated by misoprostol, is cardioprotective through a mechanism 

contingent on the expression of a small alternative spliced Bnip3 isoform, called sNip (13). Therefore, we 

tested the hypothesis that misoprostol could be further cardioprotective in the neonatal heart, by attenuating 

cardiomyocyte proliferation through a sNip-dependent mechanism.  

To test this we used a rodent model of neonatal hypoxia, and observed that hypoxic animals 

demonstrated significantly elevated heart weights compared to control, an increase that was absent in 

hypoxia and misoprostol treated animals (Fig. 1, A). Histological examination of the neonatal left ventricle 

confirmed this hypoxia-induced increase in heart weight was not due to fibrosis, but rather an increase in 

the number of nuclei present, by an average of 9.5 nuclei per field. Importantly, in hypoxia and misoprostol 

treated animals, the average number of nuclei was not elevated beyond control (Fig. 1, B & C). 

Biochemically, we also assessed cyclin-D1 expression, a protein rapidly accumulates in the G1 phase of the 

cell cycle and is further required for the transition from the G1 to S phase. Interestingly, we observed no 

significant hypoxia-induced change from control, but the combination of hypoxia and misoprostol, reduced 
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cyclin-D1 expression by more than 65%, the first indicator that the combination of hypoxia and  misoprostol 

may actually be suppressing the cell cycle (Fig. 1, D).  

 In order to explore this mechanism further, we employed cultured primary ventricular neonatal 

cardiomyocytes (PVNC’s), isolated from PND 1-2 rats pups, closely mirroring our animal model. Here, we 

show that 48-hours at 10% O2 is sufficient to drive cyclin-D1 expression well over that of normoxic control 

cells, which was completely absent with the addition of misoprostol (Fig. 1, E). Using live cell imaging we 

observed that hypoxia significantly elevates the number of proliferative PVNC’s compared to control, 

which is partially rescued with the addition of misoprostol (Fig. 1, F & G). To confirm that this hypoxia-

induced proliferation was also happening at the cell population level, a nicoletti assay revealed that when 

H9c2 cells were exposed to 10% O2 for 48 hours, there is a 44% increase in the proliferative index (the 

proportion of cells in the G2 phase/G1 phase), indicating a hypoxia-induced increase in mitosis. However, 

when we added misoprostol to hypoxic cells, the proliferative index was reduced by  nearly 15%, 

representing a partial rescue of the proliferative phenotype (Fig 1, H).   

 
Hypoxia and misoprostol promote cardiomyocyte hypertrophy 

Given the central role of nuclear calcium in the regulation of cardiac transcription factors, we first 

assessed nuclear calcium content. Using H9c2’s, in combination with a nuclear targeted calcium biosensor 

(NLS-GECO) (46), we observed that 10% O2 for 48 hours does not alter nuclear calcium content, but 

misoprostol treatment in the presence of hypoxia, increased nuclear calcium by more than 66% (Fig. 2, A 

& B).  

Next, we looked at how this calcium signal may directly impact the localization of the calcineurin 

target, NFATc3. Using H9c2 cells, we expressed myc-NFATc3 and exposed to cells to hypoxia, with and 

without misoprostol. Consistent with our nuclear calcium data, misoprostol alone had little effect on the 

accumulation of NFATc3 in the nucleus, but the combination of hypoxia and misoprostol resulted in a more 

than 5-fold increase in nuclear NFATc3 accumulation (Fig. 2, C & D). We also looked at the localization 

of the NFAT interacting partner, NF-κB (27). Consistent with what we have shown previously (13), 
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misoprostol treatment alone increased PVNC nuclear NF-κB by more than 4.6-fold, but the combination of 

hypoxia and misoprostol resulted in a 5.95-fold increase, compared to normoxic control (Fig. 2, E & F). 

We confirmed the NFATc3 observation endogenously by fractionation in H9c2 cells that were exposed to 

10% O2 with and without misoprostol for 48 hours. Here we observed that hypoxia and misoprostol shifts 

NFATc3 away from the cytosol and into the nucleus (Fig 2, G).  

We also assessed the impact of hypoxia and misoprostol treatment on neonatal cardiac gene 

expression. Using western blot analysis of PVNC’s we first observed that hypoxia increased the expression 

MEF2C, the MEF2 family member associated with fetal cardiomyocyte proliferation, while MEF2A 

expression remained unchanged from control. Furthermore, the induction of MEF2C observed following 

hypoxia was absent when combined with misoprostol treatment; however, MEF2A expression was 

sustained (Fig. 2, H). We next evaluated the MEF2C target-gene, myocardin, which in the PND10 heart 

was unchanged by hypoxia, but was significantly reduced with the combination of hypoxia and misoprostol 

(Fig. 2, I), suggesting that the combination of hypoxia and prostaglandin signaling is required for myocardin 

repression. Finally, we observed that hypoxia increased proliferative BMP10 expression by 58.5% , which 

was significantly reduced with the addition of misoprostol (Fig. 2, J).    

sNip opposes hypoxia-induced neonatal cardiomyocyte proliferation 

Previously, we demonstrated that misoprostol treatment in HCT-116 cells leads to nuclear retention 

of the p65 subunit of NF-κB (13). Moreover, when combined with HIF1ɑ activation, this combination of 

transcription factors was sufficient to drive Bnip3 splicing in favour of sNip expression (13). Thus, we 

performed western blot analysis on neonatal hearts and H9c2 cells exposed to hypoxia and/or misoprostol 

treatment to evaluate sNip expression. We observed that in both PND10 hearts and H9c2 cells, the 

combination of hypoxia and misoprostol increases the expression of the small Bnip3 isoform, sNip (Fig. 3, 

A & B).  

In order to explore the role of sNip as a mechanism for misoprostol-induced blockade of cell cycle 

reentry, we performed a series of knock-down experiments using an siRNA targeting sNip. When H9c2 

cells were exposed to hypoxia, we observed a more than 3.8-fold increase in the number of proliferative 
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nuclei, compared to normoxia-treated control cells. When these cells were treated with misoprostol to 

induce sNip expression, proliferation was reduced by 79.7%, back to control levels. However, when cells 

were transfected with an siRNA targeting sNip, misoprostol treatment was no longer able to reduce cell 

proliferation (Fig. 3, C & D). Next, we evaluated whether ectopic sNip expression was able to phenocopy 

the effects of misoprostol in PVNC’s. To do this, cells were transduced with sNip lentivirus, and then 

exposed to 10% O2 for 48 hours. We observed a nearly 6-fold increase in proliferative nuclei with hypoxia 

exposure, that was completely abrogated with sNip expression, consistent with our misoprostol findings in 

Figure 3E & F. 

To further confirm the cell cycle suppressive properties of sNip at the cell population level, we  

performed nicoletti assays using H9c2 cells that were transfected with sNip or an empty vector control. We 

observed that cells expressing sNip displayed a 14.5% reduction in their proliferative index compared to 

control, shifting the population further into the G1 classification rather than G2 (Fig. 3, G).  

sNip promotes cardiomyocyte hypertrophy in an NFATc3 dependent manner 

Next, we determined the impact of sNip expression on the calcium-dependent gene expression 

alterations we observed with misoprostol treatment in hypoxic cardiomyocytes. First, we utilized the 

nuclear calcium biosensor NLS-GECO in H9c2 cells expressing sNip or empty vector, and exposed to 

normoxia or 10% O2 for 48 hours. We observed that both sNip on its own and in combination with hypoxia 

were sufficient to induced calcium accumulation in the nucleus (Fig. 4, A & B).  

Given that the endoplasmic/sarcoplasmic reticulum (ER/SR) contains a large pool of intracellular 

calcium and is continuous with the outer membrane of the perinuclear envelope, we sought to determine if 

the ER/SR was the source of cellular calcium that was accumulating in the nuclear under the influence of 

sNip. We used the ER targeted calcium biosensor (ER-LAR-GECO), described previously, to assess ER/SR 

calcium content. Interestingly, when expressed in H9c2 cells sNip reduced ER calcium content by 58.8% 

compared to control (Fig. 4, C & D). In a parallel series of experiments, sNip also enhanced nuclear calcium 

content; however, when cells were treated with the IP3 receptor inhibitor, 2-APB (47), nuclear calcium was 

restored back to control levels (Fig. 4, E & F). Furthermore, blockade of the ryanodine receptor with 
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dantrolene was also able to block sNip-induced nuclear calcium accumulation, but the magnitude of this 

blockade was less than for 2APB (Fig.4, G).  

Finally, we expressed sNip in H9c2 cells to evaluate its direct effect on transcription factor 

localization and gene expression. Using subcellular fractionation to separate components of the cytosolic 

compartment from components of the nuclear compartment, we observed that sNip increased the nuclear 

localization of NFATc3, compared to cells expressing an empty vector control (Fig. 4, H). We confirmed 

this observation using  immunofluorescence, where sNip expression in H9c2 cells resulted in a 2.96-fold 

increase in the nuclear localization of NFATc3 (Fig. 4, I & J). In addition, sNip transduction in PVNC’s 

reduced the expression of myocardin (43%), BMP10 (66%) and MEF2C (55%), and increased the 

expression of the NF-κB targeting gene BMP2 by 794% (Fig. 4, K), determined by real-time PCR.  

Discussion: 

Hypoxia exposure in the neonatal heart is considered detrimental to cardiac development, 

increasing the risk of pediatric heart failure, and lifelong cardiovascular abnormalities. However, recently 

it has been observed that the underlying cause may involve aberrant cardiomyocyte proliferation. In this 

report, we show that hypoxia drives cardiomyocyte proliferation, concurrent with activation of a MEF2C 

and BMP10 pathway. We also provide evidence that PGE1 signalling through misoprostol treatment is able 

to activate a secondary and opposing pathway, enhancing Bnip3 splicing to produce sNip. This alternative 

splicing of the Bnip3 protein results in nuclear calcium accumulation and calcium-induced gene expression, 

promoting cardiomyocyte maturation and attenuating hypoxia-induced proliferation. 

The results in the present study expand on previous reports that early life hypoxia exposure is 

sufficient to drive neonatal cardiomyocyte proliferation. These previous studies have mainly focused on the 

conditions required for, and the regenerative capacity of, hypoxia-induced cardiomyocyte proliferation (20, 

32, 34). Interestingly, maintaining a capacity for proliferation after birth appears to depend on the metabolic 

status of the cardiomyocyte, where the switch from glycolysis to oxidative phosphorylation and the resultant 

accumulation of cytotoxic free radicals is thought to result in cardiomyocyte senescence (37). Moreover, 
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recent evidence further suggests that preventing this metabolic shift is key to maintaining c-kit+ cardiac 

progenitor cells in culture (21).  

While the literature to date has primarily focused on the role of cellular metabolism, our data 

provides insight into the underlying hypoxia-driven mechanisms promoting neonatal cardiomyocyte 

proliferation. In this report, we confirm that expression of MEF2C is hypoxia inducible, and that this may 

be a key cardiac-enriched initiator of a hypoxia-induced cardiomyocyte proliferation (2, 23). Furthermore, 

evidence supports the existence of a feed-forward loop promoting proliferation that hinges on MEF2C-

dependent activation of myocardin and downstream BMP10 expression. This proposed mechanism builds 

on the observation that myocardin and MEF2C closely regulate each other, and that loss of myocardin 

prevents MEF2C expression (7, 18). Importantly, myocardin also directly regulates BMP10 expression, 

and loss of the myocardin/BMP10 signalling pathway negatively impacts cardiomyocyte proliferation (18). 

Furthermore, BMP10 also appears to be required for maintaining MEF2C expression and preventing 

myocyte maturation, which may function to propagate proliferation and alter the structure of the developing 

heart heart (4).   

Many previous studies have assessed methods to extend the period of post-natal cardiomyocyte 

proliferation (20, 33, 35, 37). However, in the context of early life hypoxic/cyanotic events there may be 

direct benefits to pharmacologically targeting cardiomyocyte proliferation. Our data demonstrates that 

activation of PGE1 signalling through misoprostol can inhibit the MEF2C-Myocardin-BMP10 pathway. 

Furthermore, we show that the protective effects of misoprostol are dependent on the expression of the 

small Bnip3 isoform, sNip. Previous work from our group, and others, have demonstrated that while sNip 

is hypoxia-inducible, NF-κB activity is crucial for its expression in cardiomyocytes (13, 14). Interestingly, 

much of sNip’s opposition to cardiomyocyte proliferation appears to based on its ability to promote the 

transfer of calcium from the SR/ER to the nucleus. This builds on our recent findings that sNip possesses a 

C-terminal ER retention signal, and that unlike full-length Bnip3, sNip expression in cardiomyocytes 

functions to sustained nuclear calcium accumulation (13). Nuclear calcium signaling is known to activate 

calcium-calmodulin dependent transcriptional regulators, such as the calcineurin and NFAT pathway (6, 
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29, 30, 42). Our findings demonstrate that misoprostol treatment leads to the nuclear accumulation of both 

NF-κB and NFATc3, through distinct pathways, to promote cardiomyocyte growth and maturation over 

proliferation. This observation is consistent with previous work demonstrating that NFAT and NF-κB are 

considerably less efficient at producing a hypertrophic response alone than when the two are expressed 

together (27). Additionally, our data suggests that this combination of transcription factors may be 

responsible for BMP2 expression in the neonatal heart, which likely promotes maturation and may oppose 

proliferative BMP10 signaling. Supporting this notion, the BMP2 promoter region has been shown to 

possess an NF-κB binding site, suggesting that sNip may activate the cooperation between NFAT and NF-

κB to induced BMP2 expression in the neonatal heart (12, 15).  

 Collectively, our data demonstrates that the activation of PGE1 signalling through misoprostol 

treatment is sufficient to mitigate hypoxia-induced proliferation in neonatal cardiomyocytes through a 

mechanism involving alternative splicing of Bnip3 and activation of NFAT and NF-κB. Moreover, our 

findings suggest that pharmacological fine-tuning of the underlying molecular mechanisms that control 

hypoxia-induced cardiomyocyte proliferation may represent a novel strategy to prevent pediatric cardiac 

dysfunction and reduce the risk of early-life heart failure. 
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Figure Legends: 

Figure 1. Misoprostol opposes hypoxia-induced neonatal cardiomyocyte proliferation. (A) Neonatal 

heart weights (in grams) for PND10 rat pups exposed to hypoxia (10% O2) ± 10 µg/kg misoprostol for 5 

days (n ≥ 3 animals/condition).  (B) Masson's Trichrome and Hematoxylin and Eosin staining in the left 

ventricle of the PND10 heart treated as in (A). (C) Quantification of left ventricular nuclei number in the 

PND10 rat heart as treated in (A) (n=3 animals/condition, with 10 fields/animal). (D) Densitometry for 

Cyclin-D1 expression (relative to β-Tubulin) in protein extracts from the whole PND10 heart treated as in 

(A) (n=2). (E) Immunoblot for Cyclin-D1 and p57(KP39) in protein extracts from primary ventricular 

neonatal cardiomyocytes (PVNC’s) treated with 10 μM misoprostol (Miso)  ± 10% O2 (HPX) for 48 hours. 

(F) PVNC’s treated as in (E), and stained with Tag-it Violet (blue) and calcein-AM (green) and imaged by 

standard fluorescence microscopy. (G) Quantification of Tag-it Violet positive cells in (F), where the 

number of blue cells is represented as a percentage (%) of the total number of (green) cells in 10 random 

fields. (H) DNA Histograms of H9c2 cells treated as in (E), where G1 indicates cells that are 2N and G2 

indicates cells that are 4N and G2/G1 ratio indicates the proliferative index.  Data are represented as mean 

± S.E.M. *P<0.05 compared with control, while **P<0.05 compared with hypoxia treatment, determined 

by 1-way ANOVA.     

Figure 2. Hypoxia and misoprostol work together to promote cardiomyocyte hypertrophy. (A) H9c2 

cells treated with 10 μM misoprostol (Miso)  ± 10% O2 (HPX) for 48 hours. NLS-R-GECO (red) was used 

to indicate nuclear calcium content in all conditions. Cells were stained with hoechst (blue) and imaged by 

standard fluorescence microscopy. (B) Quantification of cells in (A), where red fluorescent signal was 

normalized to cell area and quantified in 10 random fields. (C) H9c2 cells treated as in (A) and Myc-

NFATc3 was transfected into each condition. Cells were fixed, stained with hoechst (blue), and probed for 

Myc (green) expression.  Cells were then imaged by standard fluorescence microscopy. (D) Quantification 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 24, 2019. ; https://doi.org/10.1101/681692doi: bioRxiv preprint 

https://doi.org/10.1101/681692
http://creativecommons.org/licenses/by-nc-nd/4.0/


Misoprostol opposes hypoxia-induced cardiomyocyte proliferation 
 

19 

of cells in (C), where the number of cells with nuclear  Myc-NFATc3, is presented as a percentage of the 

number of cells/field in 5 random fields. (E) PVNC’s treated as in (A), Cells were fixed, stained with 

hoechst (blue), and probed for nuclear factor kappa-B (Anti-NF-κB, green) expression.  Cells were then 

imaged by standard fluorescence microscopy. (F) Quantification of cells in (E), where the number of cells 

with nuclear  NF-κB, is presented as a percentage of the number of cells/field in 10 random fields. (G) 

H9c2 cells were treated as in (A), Protein extracts were subjected to nuclear/cytosolic fractionation and 

were immunoblotted, as indicated. (H) Immunoblot for MEF2C and MEF2A in protein extracts from PVCs 

treated as in (A). (I) Densitometry for myocardin expression in in protein extracts from whole PND10 hearts 

exposed to hypoxia (10% O2) ± 10 µg/kg misoprostol for 5 days (n ≥ 3 animals/condition). (J) PVNC’s 

treated as in (A). RNA was isolated and qRT-PCR was performed for BMP-10 expression. Data are 

represented as mean ± S.E.M. *P<0.05 compared with control, while **P<0.05 compared with hypoxia 

treatment, determined by 1-way ANOVA.  

Figure 3. sNip opposes hypoxia-induced neonatal cardiomyocyte proliferation. (A) Immunoblot for 

sNip expression in protein extracts from whole PND10 hearts exposed to hypoxia (10% O2) ± 10 μg/kg 

misoprostol for 5 days. (B) Immunoblot for sNip expression in H9c2 protein extracts treated with 10 μM 

misoprostol (Miso)  ± 10% O2 (HPX) for 48 hours. (C) H9c2 cells treated as in (B), transfected with 

scrambled control si-RNA or si-sNip, and stained with Tag-it Violet (blue) and calcein-AM (green) and 

imaged by standard fluorescence microscopy. (D) Quantification of Tag-it Violet positive cells in (C), 

where the number of blue cells is represented as a percentage (%) of the total number of (green) cells in 10 

random fields. (E) PVNC’s treated with pLenti-HA-sNip ± 10% O2 (HPX) for 48 hours and stained with 

Tag-it Violet (blue) and calcein-AM (green) and imaged by standard fluorescence microscopy. (F) 

Quantification of Tag-it Violet positive cells in (E), where the number of blue cells is represented as a 

percentage (%) of the total number of (green) cells in 10 random fields. (G) DNA Histograms of H9c2 cells 

transfected with empty vector control or HA-sNip, where G1 indicates cells that are 2N and G2 indicates 

cells that are 4N and G2/G1 ratio indicates the proliferative index. Data are represented as mean ± S.E.M. 
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*P<0.05 compared with control, while **P<0.05 compared with hypoxia treatment, determined by 1-way 

ANOVA.  

Figure 4. sNip promotes cardiomyocyte hypertrophy in an NFATc3-dependent manner. (A) H9c2 

cells transfected with sNip or empty vector control ± 10% O2 (HPX) for 48 hours. NLS-R-GECO (red) was 

used to indicate nuclear calcium content in all conditions. Cells were stained with hoechst (blue) and imaged 

by standard fluorescence microscopy. (B) Quantification of cells in (A), where red fluorescent signal was 

normalized to cell area and quantified in 10 random fields. (C) H9c2 cells transfected with sNip or empty 

vector control. ER-LAR-GECO (red) was used to indicate endoplasmic reticulum calcium content in all 

conditions. Cells were stained with hoechst (blue) and imaged by standard fluorescence microscopy. (D) 

Quantification of cells in (C), Red fluorescent signal was normalized to cell area and quantified in 10 

random fields. (E) H9c2 cells transfected with sNip or empty vector control ± 2 μM 2-APB for 16 hours. 

NLS-R-GECO (red) was used to indicate nuclear calcium content in all conditions. Cells were stained with 

hoechst (blue) and imaged by standard fluorescence microscopy. (F) Quantification of cells in (E), where 

red fluorescent signal was normalized to cell area and quantified in 10 random fields. (G) Quantification of 

H9c2 cells transfected with sNip or empty vector control ± 10 μM Dantrolene (DAN) for 16 hours, NLS-

R-GECO (red) was used to indicate nuclear calcium content in all conditions. Red fluorescent signal was 

normalized to cell area and quantified in 10 random fields. (H) H9c2 cells treated as in (C), Protein extracts 

were subjected to nuclear/cytosolic fractionation and were immunoblotted, as indicated. (I) H9c2 cells 

treated as in (C). CMV-dsRed and Myc-NFATc3 were included in all conditions to indicate transfected 

cells. Cells were fixed, stained with hoechst (blue), and probed for Myc (green) expression.  Cells were 

then imaged by standard fluorescence microscopy. (J) Quantification of cells in (I), where the number of 

cells with nuclear  Myc-NFATc3, is presented as a percentage of the number of cells/field in 5 random 

fields. (K) mRNA expression in PVNC’s transduced with scrambled control virus or pLenti-sNip. RNA 

was isolated and qRT-PCR was performed for Myocardin (MYOCD), BMP-10, BMP-2, MEF2C and 

MEF2A expression. Data are represented as mean ± S.E.M. *P<0.05 compared with control, while 

**P<0.05 compared with hypoxia treatment, determined by 1-way ANOVA.  
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