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Abstract
Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images
of the heart and surrounding structures and is the most common imaging modality in cardiovascular
medicine. Using convolutional neural networks on a large new dataset, we show that deep learning
applied to echocardiography can identify local cardiac structures, estimate cardiac function, and predict
systemic phenotypes that modify cardiovascular risk but not readily identifiable to human interpretation.
Our deep learning model, EchoNet, accurately identified the presence of pacemaker leads (AUC = 0.89),
enlarged left atrium (AUC = 0.85), normal left ventricular wall thickness (AUC = 0.75), left ventricular
end systolic and diastolic volumes(R2 = 0.73 and R2 = 0.68), and ejection fraction (R2 = 0.48) as well as
predicted systemic phenotypes of age (R2 = 0.46), sex (AUC = 0.88), weight (R2 = 0.56), and height (R2 =
0.33). Interpretation analysis validates that EchoNet shows appropriate attention to key cardiac structures
when performing human-explainable tasks and highlight hypothesis-generating regions of interest when
predicting systemic phenotypes difficult for human interpretation. Machine learning on echocardiography
images can streamline repetitive tasks in the clinical workflow, standardize interpretation in areas with
insufficient qualified cardiologists, and more consistently produce echocardiographic measurements.

Introduction
Cardiovascular disease has a substantial impact on overall health, well-being, and life-expectancy. In addi-
tion to being the leading cause of mortality for both men and women, cardiovascular disease is responsible
for 17% of the United States’ national health expenditures.1 Even as the burden of cardiovascular disease
is expected to rise with an aging population1, there continues to be significant racial, socioeconomic, and
geographic disparities in both access to care and disease outcomes.2, 3 Variation in access to and quality
of cardiovascular imaging has been linked to disparities in outcomes.3, 4 It has been hypothesized that
automated image interpretation can enable more available and accurate cardiovascular care and begin
to alleviate some of the disparities in cardiovascular care.5, 6 The application of machine learning in
cardiology is still in its infancy, however there is significant interest in bringing neural network based
approaches to cardiovascular imaging.

Machine learning has transformed many fields, ranging from image processing and voice recognition
systems to super-human performance in complex strategy games.7 Many of the biggest recent advances in
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machine learning come from computer vision algorithms and processing image data with deep learning.8–11

Recent advances in machine learning suggest deep learning can identify human-identifiable characteristics
as well as phenotypes unrecognized by human experts.12, 13 Efforts to apply machine learning to other
modalities of medical imaging have shown promise in computer-assisted diagnosis.12–16 Seemingly
unrelated imaging of individual organ systems such as fundoscopic retina images can predict systemic
phenotypes and predict cardiovascular risk factors.12 Additionally, deep learning algorithms perform
well in risk stratification and classification of disease.14, 16. Multiple recent medical examples outside of
cardiology show convolutional neural network algorithms can match or even exceed human experts in
identifying and classifying diseases.13, 14

Echocardiography is a uniquely well-suited approach for the application of deep learning in cardiology.
The most readily available and widely used imaging technique to assess cardiac function and structure,
echocardiography combines rapid image acquisition with the lack of ionizing radiation to serve as the
backbone of cardiovascular imaging.4, 17 Echocardiography is both frequently used as a screening modality
for healthy, asymptomatic patients as well as in order to diagnose and manage patients with complex
cardiovascular disease.17 For indications ranging from cardiomyopathies to valvular heart diseases,
echocardiography is both necessary and sufficient to diagnose many cardiovascular diseases. Despite
its importance in clinical phenotyping, there is variance in the human interpretation of echocardiogram
images that could impact clinical care.18–20 Formalized training guidelines for cardiologists recognize
the value of experience in interpreting echocardiogram images and basic cardiology training might be
insufficient to interpret echocardiograms at the highest level.21

Given the importance of imaging to cardiovascular care, an automated pipeline for standardizing and
interpreting cardiovascular imaging can improve peri-operative risk stratification, manage the cardio-
vascular risk of patients with oncologic disease undergoing chemotherapy, and aid in the diagnosis of
cardiovascular disease.1, 22, 23 While other works applying machine learning to medical imaging required
re-annotation of images by human experts, the clinical workflow for echocardiography inherently includes
many measurements and calculations and often is reported through structured reporting systems. The
ability to use previous annotations and interpretations from clinical reports can greatly accelerate adoption
of machine learning in medical imaging. Given the availability of previously annotated clinical reports,
the density of information in image and video datasets, and many available machine learning architectures
already applied to image datasets, echocardiography is a high impact and highly tractable application of
machine learning in medical imaging.

Related works Current literature have already shown that it is possible to identify standard echocar-
diogram views from unlabeled datasets.5, 6, 24 Previous works have used convolutional neural networks
(CNNs) trained on images and videos from echocardiography to perform segmentation to identify cardiac
structures and derive cardiac function. In this study, we extend previous analyses to show that EchoNet,
our deep learning model using echocardiography images, local cardiac structures and anatomy, estimate
volumetric measurements and metrics of cardiac function, and predict systemic human phenotypes that
modify cardiovascular risk. Additionally, we show the first application of interpretation frameworks
to understand deep learning models from echocardiogram images. Human identifiable features, such
as the presence of pacemaker and defibrillator leads, left ventricular hypertrophy, and abnormal left
atrial chamber size identified by our convolutional neural network were validated using interpretation
frameworks to highlight the most relevant regions of interest. To the best of our knowledge, we develop
the first deep learning model that can directly predict age, sex, weight and height from echocardiogram
images and use interpretation methods to understand how the model predicts these systemic phenotypes
difficult for human interpreters.
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Figure 1. A. EchoNet workflow for image selection, cleaning, and model training. B. Comparison of
model performance with different cardiac views as input. C. Examples of data augmentation. The original
frame is rotated (left to right) and its intensity is increase (top to bottom) as augmentations.

We trained a convolutional neural network model on a data set of more than 2.6 million echocardiogram
images from 2,850 patients to identify local cardiac structures, estimate cardiac function, and predict
systemic risk factors (Fig. ??). Echocardiogram images, reports, and measurements were obtained from an
accredited echocardiography lab of a large academic medical center (Table 1). Echocardiography visualizes
cardiac structures from various different orientations and geometries, so images were classified by cardiac
view to homogenize the input data set. Echocardiogram images were sampled from echocardiogram
videos, pre-processed by de-identifying the images, and cropped to eliminate information outside of the
scanning sector. These processed images were used to train EchoNet on the relevant medical classification
or prediction task.

Predicting anatomic structures and local features A standard part of the clinical workflow of echocar-
diography interpretation is the identification of local cardiac structures and characterization of its location,
size, and shape. Local cardiac structures can have significant variation in image characteristics, ranging
from bright echos of metallic intracardiac structures to dark regions denoting blood pools in cardiac
chambers. As our first task, we trained EchoNet on three classification tasks frequently evaluated by
cardiologists that rely on recognition of local features (Fig. 2). Labels of the presence of intracardiac
devices (such as catheters, pacemaker, and defibrillator leads), severe left atrial dilation, and normal left
ventricular wall thickness were extracted from the physician-interpreted report and used to train EchoNet
on unlabeled apical-4-chamber input images. The presence of a pacemaker lead was predicted with high
accuracy (AUC of 0.89, F1 score of 0.73), followed by the identification of a severely dilated left atrium
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Characteristics
Complete Data A4C View Data

Train Data Test Data Train Data Test Data
Number of Patients 2850 373 2546 337
Number of Images 1,624,780 169,880 172,080 21,540

Sex (% Male) 52.4% 52.8% 52.2% 53.7%
Age: mean, years (std) 61.3 (17.2) 62.8 (16.8) 61.1 (17.1) 63.2 (16.9)
Weight: mean, Kg (std) 78.8 (22.7) 78.9 (20.8) 78.0 (21.7) 78.5 (20.2)
Height: mean, m (std) 1.69 (0.11) 1.69 (0.11) 1.69 (0.12) 1.69 (0.11)

BMI: mean (std) 27.3 (6.7) 27.5 (6.5) 27.1 (6.5) 27.3 (6.1)
Pacemaker or Defibrillator Lead (% Present) 13.2 14.7 13.1 15.1
Severe Left Atrial Enlargement (% Present) 17.2 20.3 18.0 21.9

Left ventricular hypertrophy (% Present) 33.3 38.0 32.7 37.9
End Diastolic Volume, mL: mean (std) 94.3 (47.2) 94.6 (13.0) 95.1 (48.2) 96.9 (48.0)
End Systolic Volume, mL: mean (std) 45.6 (38.3) 46.2 (36.1) 46.0 (39.3) 47.0 (36.6)

Ejection Fraction: mean (std) 55.2 (12.3) 54.7 (13.0) 55.1 (12.2) 54.8 (13.1)

Table 1. Baseline characteristics of patients in the development and validation datasets

(AUC of 0.85, F1 score of 0.68), and normal left ventricular wall thickness (AUC of 0.75, F1 score of 0.56).
To understand the model’s predictions, we used gradient-based sensitivity map methods25 to identify the
regions of interest for the interpretation and show that EchoNet highlights relevant areas that correspond to
intracardiac devices, the left atrium, and the left ventricle respectively. Models’ prediction robustness was
additionally examined with direct input image manipulations, including occlusion of human recognizable
features, to validate that EchoNet arrives at its predictions by focusing on biologically plausible regions of
interest.26 For example, in the frames in Figure 2 with pacemaker lead, when we manually mask the lead
in the frame, EchoNet changs its prediction to no pacemaker.

Predicting cardiac function Quantification of cardiac function is a crucial assessment addressed by
echocardiography. However it has significant variation in human interpretation18, 19. The ejection fraction,
a measure of the volume change in the left ventricle with each heart beat, is a key metric of cardiac
function, but its measurement relies on the time-consuming manual tracing of left ventricular areas and
volumes at different times during the cardiac cycle. We trained EchoNet to predict left ventricular end
systolic volume (ESV), end diastolic volume (EDV), and ejection fraction from sampled apical-4-chamber
view images (Fig. 3). Left ventricular ESV and EDV were accurately predicted. For the prediction of ESV,
an R2 score of 0.74 and mean absolute error (MAE) of 13.3 mL was achieved versus MAE of 25.4 mL if
we use mean prediction which is to predict every patient’s ESV as the average ESCV value of patients. The
result for the EDV prediction was an R2 score of 0.70 and MAE of 20.5 mL (mean prediction MAE = 35.4
mL). Conventionally, ejection fraction is calculated from a ratio of these two volumetric measurements,
however calculated ejection fraction from the predicted volumes were less accurate (Fig. 3C) than EchoNet
trained directly on the ejection fraction (Fig. 3D). Using the trained EchoNet, an R2 score of 0.50 and
MAE of 7.0% is achieved (MAE of mean prediction = 9.9%). For each model, interpretation methods
show appropriate attention over left ventricle as the region of interest to generate the predictions.

Predicting systemic cardiovascular risk factors With good performance in identifying local structures
and estimating volumetric measurements of the heart, we sought to determine if EchoNet can also identify
systemic phenotypes that modify cardiovascular risk. Previous work has shown that deep convolutional
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There is a 
pacemaker lead.

AUC = 0.89 AUC = 0.85

Left atrium is severely 
dilated.

There is normal left 
ventricular wall thickness
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Figure 2. EchoNet performance and interpretation for three clinical interpretations of local structures
and features. For each task, representative positive examples are shown side-by-side with regions of
interest from the respective model.

neural networks have powerful capacity to aggregate the information on visual correlations between
medical imaging data and systemic phenotypes.12 EchoNet predicted systemic phenotypes of age (R2 =
0.46, MAE = 9.8 y, mean prediction MAE = 13.4 y), sex (AUC = 0.88), weight (R2 = 0.56, MAE = 10.7
Kg, mean prediction MAE = 15.4 Kg), and height (R2 = 0.33, MAE = 0.07 m, mean prediction MAE
= 0.09 m) with similar performance to previous predictions of cardiac specific features (Fig. 4A). It is
recognized that characteristics such as heart chamber size and geometry vary by age, sex, weight, and
height27, 28, however human interpreters cannot predict these systemic phenotypes from echocardiogram
images alone.

Lastly, we used the same gradient-based sensitivity map methods to identify regions of interest for
models predicting systemic phenotypes difficult for human experts to predict. These regions of interest
for these models tend to be more diffuse, highlighting the models for systemic phenotypes do not rely as
much on individual features or local regions (Fig. 4B). The interpretations for models predicting weight
and height had particular attention on the apex of the scanning sector, suggesting information related to the
thickness and characteristics of the chest wall and extra-cardiac tissue was predictive of weight and height.
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A B C D

E

Figure 3. EchoNet performance for A) predicted left ventricular end systolic volume, B) predicted end
diastolic volume, C) calculated ejection fraction from predicted ESV and EDV, and D) predicted ejection
fraction. E) Input image, interpretation, and overlap for ejection fraction model.

Discussion
In this study, we show that deep convolutional neural networks trained on standard echocardiograms images
can identify local features, human interpretable metrics of cardiac function, and systemic phenotypes
such as patient age, sex, weight, and height. Our models achieved high prediction accuracy for tasks
readily performed by human interpreters, such as estimating ejection fraction and chamber volumes and
identifying of pacemaker leads, as well as for tasks that would be challenging for human interpreters,
such as predicting systemic phenotypes from images of the heart alone. In addition to showing the
predictive performance of our methods, we validate the model’s predictions by highlighting important
biologically-plausible regions of interest that correspond to each interpretation. These results represent
a step towards automated image evaluation of echocardiograms through deep learning. We believe this
research could supplement future approaches to screen for subclinical cardiovascular disease and develop
systems for personalized risk stratification. In addition, we believe the approach employed in our work,
using interpretability frameworks to identify regions of interest for challenging, human-unexplainable
phenotypes, may lay additional groundwork toward understanding human physiology and deep learning
medical applications in medical imaging.

Previous studies have shown that medical imaging can predict cardiovascular risk factors including
age, gender and blood pressure as even non-cardiac imaging displays organ-system specific manifestations
of systemic phenotypes.12 Our results identify another avenue of detecting systemic phenotypes through
organ-system specific imaging. These results are supported by previous studies that showed population
level normative values for the chamber sizes of cardiac structures as participants vary by age, sex, height,
and weight.27, 28 Age related changes in the heart, in particular changing chamber sizes and diastolic filling
parameters, have been well characterized29, 30, and our study builds upon this body of work to demonstrate
that these signals are present to allow for prediction of these phenotypes to a degree of precision not
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A

B

Figure 4. A. EchoNet performance for prediction of four systemic phenotypes (sex, weight, height and
age) using apical-4-chamber view images. B. Interpretation of systemic phenotype models with
representative positive examples shown side-by-side with regions of interest.

previously reported.
In addition to chamber size, extracardiac characteristics as well as additional unlabeled features, are

incorporated in our models to predict patient systemic phenotypes. The area closest to the transducer,
representing subcutaneous tissue, chest wall, lung parenchyma and other extracardiac structures are
highlighted in the weight and height prediction models. These interpretation maps are consistent with
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prior knowledge that obese patients often have challenging image acquisition31, 32, however it is surprising
the degree of precision it brings to predicting height and weight. Prediction of these systemic phenotypes
suggest that imaging based predictions of mortality and life expectancy could have high predictive value as
systemic phenotypes of age, sex, and body mass index are highly correlated with cardiovascular outcomes
and overall life expectancy33–35.

Retrospective review of predictions by our model suggest human-interpretable features that show
biologic plausibility. Clinical review of images predicted to be of younger patients show preference
for small atria and is consistent with prior studies showing age-related changes to the left atrium30, 36.
The feedback loop between physician and machine learning model with clinician review of appropriate
and inappropriately predicted images can assist in greater understanding of normal variation in human
echocardiograms as well as identify features previously neglected by human interpreters. Understanding
misclassifications, such as patients with young biological age but high predicted age, and further investi-
gation of extreme individuals can potentially help identify subclinical cardiovascular disease and better
understand the aging process.

Previous studies of deep learning on medical imaging focused on resource-intensive imaging modal-
ities common in resource-rich settings37, 38 or sub-speciality imaging with focused indication.12, 13, 16

These modalities often need retrospective annotation by experts as the clinical workflow often does not
require detailed measurements or localizations. Echocardiography is one of the most frequently using
imaging studies in the United States39 and often uses structured reporting, making advances in deep
learning in echocardiography particularly applicable and generalizable. Standardization and automation
of echocardiography through deep learning can make cardiovascular care more readily available. With
point-of-care ultrasound is being more frequently used by an increasing number of physicians, ranging
from emergency room physicians, internists, to anaesthesiologists, and deep learning on cardiac ultrasound
images can provide accurate predictions and diagnoses to an even wider range of patients.

In summary, we provide evidence that deep learning can reproduce common human interpretation
tasks and leverage additional information to predict systemic phenotypes that could allow for better
cardiovascular risk stratification. We used interpretation methods that could feedback relevant regions of
interest for further investigation by cardiologists to better understand aging and prevent cardiovascular
disease. Our work could enable assessment of cardiac physiology, anatomy, and risk stratification at the
population level by automating common workflows in clinical echocardiography and democratize expert
interpretation to general patient populations.

Methods
Dataset The Stanford Echocardiography Database contains images, physician reports, and clinical data
from patients at Stanford Hospital who underwent echocardiography in the course of routine care. The
accredited echocardiography laboratory provides cardiac imaging to a range of patients with a variety of
cardiac conditions including atrial fibrillation, coronary artery disease, cardiomyopathy, aortic stenosis, and
amyloidosis. For this study, we used 3312 comprehensive non-stress echocardiography studies obtained
between January 2017 and December 2018, and split the patients into training and validation cohorts.
Videos of standard cardiac views, color Doppler videos, and still images comprise each study and is stored
in Digital Imaging and Communications in Medicine (DICOM) format. The videos were sampled at a rate
of 10 frames per second to obtain 1,624,780 unscaled 299x299 pixel images. For each image, information
pertained to image acquisition, identifying information, and other information outside the imaging sector
was removed through masking. Human interpretations from the physician-interpreted report and clinical
features from the electronic medical record were matched to each echocardiography study for model
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training. This study was approved by the Stanford University IRB.

Model We chose a convolutional neural network (CNN) architecture that balances network width and
depth in order to manage the computational cost of training. We used the architecture based on Inception-
Resnet-v110 to predict all of our phenotypes. This architecture has strong performance on benchmark
datasets like ILSVR2012 image recognition challenge (Imagenet)40 and is computationally efficient
compared to other networks41. Using architectures pretrained on ImageNet data set did not result in any
performance improvement.

For each prediction task, one CNN architecture was trained on individual frames from each echocar-
diogram video with output labels that were extracted either from the electronic medical record or from
the physician report. From each video, we sampled 20 frames (one frame per 100 milliseconds) starting
from the first frame of the video. The final prediction was performed by averaging all the predictions
from individual frames. Several alternative methods were explored in order to aggregate frame-level
predictions into one patient-level prediction and did not yield better results compared to simple averaging.
We also investigated multi-task learning—sharing some of the model parameters while predicting across
the different phenotypes—and this did not improve the model performance.

Model training was performed using the TensorFlow library42 which is capable of utilizing parallel-
processing capabilites of Graphical Processing Units (GPUs) for fast training of deep learning models. We
chose Adam optimizer as our optimization algorithm which is computationally efficient, has little memory
usage, and has shown superior performance in many deep learning tasks43. As our prediction loss, we used
cross-entropy loss for classification tasks and squared error loss for regressions tasks along with using
weight-decay regularization loss to prevent over-fitting44. We investigated other variants of prediction loss
(absolute loss, Huber loss45 for regression and Focal loss46 for classification), and they did not improve
performance. For each prediction task, we chose the best performing hyper-parameters using grid search
(24 models trained for each task) to optimize learning rate and weight decay regularization factor. In
order to perform model selection, for each tasks, we split the training data into training and validation
set by using 10% of train data as a held-out validation set in; the model with the best performance on the
validation set is then examined on the test set to report the final performance results. After the models
were trained, they were evaluated on a separate set of test frames gathered from echocardiogram studies of
337 other patients (separate from training data patients) with similar demographics.

Data augmentation Model performance improved with increasing input data sample size. Our experi-
ments suggested additional relative improvement with increase in the number of patients represented in
the training cohort compared to oversampling of frames per patient. Data augmentation using previously
validated methods47, 48, also greatly improving generalization of model predictions by reducing over-
fitting on the training set. Through the training process, at each optimization step each training image is
transformed through geometric transformations (such as flipping, reflection, and translation) and changes
in contrast and saturation. As a result, the training data set is augmented into a larger effective data set.
In this work, mimicking variation in echocardiography image acquisition, we used random rotation and
random saturation augmentation for data augmentation (Fig. ??C). During each step of stochastic gradient
descent in the training process, we randomly sample 24 training frames, and we perturb each training
frame with a random rotation between -20 to 20 degrees and with adding a number sampled uniformly
between -0.1 to 0.1 to image pixels (pixels values are normalized) to increase or decrease brightness of the
image. Data augmentation results in improvement for all of the tasks; between 1−4% improvement in
AUC metric for classification tasks and 2−10% improvement in R2 score for regression tasks.
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Cardiac view selection We first tried using all echocardiogram images for prediction tasks but given the
size of echocardiogram studies, initial efforts struggled with long training times, poor model convergence,
and difficulty with model saturation. With the knowledge that, in a single comprehensive echocardiography
study, the same cardiac structures are often visualized from multiple views to confirm and corroborate
assessments from other views, we experimented with model training using subsets of images by cardiac
view. As described in Fig. ??B, a selection of the most common standard echocardiogram views were
evaluated for model performance. Images from each study were classified using a previously described
supervised training method5. We sought to identify the most information-rich views by training separate
models on the subsets of dataset images of only one cardiac view. Training a model using only one
cardiac view results in one order of magnitude reduction of training time and computational cost with
the benefit of maintaining similar predictive performance when information-rich views were used. Given
the favorable balance of performance to computational cost as well as prior knowledge on which views
most cardiologists frequently prioritize, we chose the apical-4-chamber view as the input training set for
subsequent experiments on training local features, volumetric estimates and systemic phenotypes.

Interpretability Interpretability methods for deep learning models have been developed to explain the
predictions of the black-box deep neural network. One family of interpretations methods are the sensitivity
map methods that seek to explain a trained model’s prediction on a given input by assigning a scalar
importance score to each of the input features or pixels. If the model’s input is an image, the resulting
sensitivity map could be depicted as a two-dimensional heat-map with the same size as the image where
more important pixels of the image are brighter than other pixels. The sensitivity map methods compute
the importance of each input feature as the effect of its perturbation on model’s prediction. If the pixel is
not important, the change should be small and vice versa.

Introduced by Baehrens et al.49 and applied to deep neural networks by Simonyan et al. 50, the simplest
way to compute such score is to have a first-order linear approximation of the model by taking the gradient
of the output with respect to the input; the weights of the resulting linear model are the sensitivity of the
output to perturbation of their corresponding features (pixels). More formally, given the d-dimensional
input xt ∈ Rd and the model’s prediction function f (.), the importance score of the j’th feature is
|∇x f (xt) j|. Further extensions to this gradient method were introduced to achieve better interpretations of
the model and to output sensitivity maps that are perceptually easier to understand by human users: LRP51,
DeepLIFT52,Integrated Gradients53, and so forth. These sensitivity map methods, however, suffer from
visual noise25 and sensitivity to input perturbations.54. SmoothGrad25 method alleviates both problems55

by adding white noise to the image and then take the average of the resulting sensitivity maps. In this
work, we use SmoothGrad with the simple gradient method due to its computational efficiency. Other
interpretation methods including Integrated Gradients were tested but did not result in better visualizations.

Lessons from model training and experiments EchoNet performance greatly improved with efforts to
augment data size, homogenize input data, and with optimize model training with hyperparameter search.
Our experience shows that increasing number of unique patients in the training set can significantly improve
the model, more so than increasing the sampling rate of frames from the same patients. Homogenizing
the input images by selection of cardiac view prior to model training greatly improved training speed
and decreased computational time without significant loss in model performance. Finally, we found that
results can be significantly improved with careful hyperparameter choice; between 7−9% in AUC metric
for classification tasks and 3−10% in R2 score for regression tasks.

10/14

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 24, 2019. ; https://doi.org/10.1101/681676doi: bioRxiv preprint 

https://doi.org/10.1101/681676
http://creativecommons.org/licenses/by-nd/4.0/


Data Availablity
The data comes from medical records and imaging from Stanford Healthcare and is not publicly available.
The de-identified data is available from the authors upon reasonable request and with permission of the
institutional review board.
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