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Abstract

EGFR-mutated non-small cells lung carcinoma are treated with Tyrosine Kinase
Inhibitors (TKI). Very often, the disease is only responding for a while before relapsing.
TKI efficacy in the long run is therefore challenging to evaluate. Our objective is to
derive a new imaging biomarker that could offer better insights on the disease response
to treatment. This study includes 17 patients diagnosed as EGFR-mutated non-small
cell lung cancer and exposed to an EGFR-targeting TKI. The early response to
treatment is evaluated with 3 computed tomography (CT) scans of the primitive tumor
(one before the TKI introduction and two after). Using our knowledge of the disease, an
imaging biomarker based on the tumor heterogeneity evolution between the first and
the third exams is defined and computed using a novel mathematical model calibrated
on patient data. Defining the overall survival as the time between the introduction of
the TKI treatment and the patient death, we obtain a statistically significant
correlation between the overall survival and our imaging marker (p = 0.009). Using the
ROC curve, the patients are separated into two populations hence the comparison of the
survival curves is statistically significant (p = 0.025). Initial state of the tumor seems to
have a role for the prognosis of the response to TKI treatment. More precisely, the
imaging marker - defined using only the CT scan before the TKI introduction - allows
us to determine a first classification of the population which is refined over time using
the imaging marker as more CT scans become available. This exploratory study leads
us to think that it is possible to obtain a survival assessment using only few CT scans of
the primary tumor.

Introduction 1

Tyrosine Kinase Inhibitors (TKI) were shown to be effective in the treatment of 2

EGFR-mutated non-small cell lung carcinoma (NSCLC) [1]. They are currently used as 3

first-line treatment for patients of stage IV. The EGFR gene corresponds to the 4

Epidermal Growth Factor receptor, which belongs to the family of receptors with 5

tyrosine kinase activity. The alteration of the EGFR gene in lung cancer occurs in 5 to 6

30% of cases, depending on the patient origin ( 10% of Caucasian patients, 40% of 7

non-smoking Caucasian patients and up to 60% of non-smoking Asian patients), see [2]. 8

TKI treatment may be successful for a time but their efficacy in the long run is 9
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challenging to evaluate. For example, in [3], the authors estimate the relapse median 10

time at 10 months. 11

Latest advances in oncology and the discovery of many different sub-types of cancer, 12

partly because of genomic alterations, open the way to a personalized medicine [4]. 13

There is a need of new tools combining different types of available data to help to 14

choose the best treatment for each patient. Medical imaging has an important role to 15

play in this context as these patients are routinely monitored using CT scans. The most 16

current used CT scan evaluation - in particular for lung cancers - is the RECIST 17

(Response Evaluation Criteria In Solid Tumors) which consists in measuring the largest 18

diameters of target lesions [5, 6]. Most recent studies have shown the interest of the 19

tumor volume evaluation which is more precise and has a better reproducibility in 20

particular concerning the evaluation of non-small cell lung cancers [7–9]. Concerning 21

EGFR-mutated non-small cells lung carcinoma, previous works have studied the 22

correlations between the initial reduction of the primary tumor and the overall survival. 23

One can find contradictory results in the literature: in [10, 11], a significant correlation 24

has been established but more recently in [12] this correlation has not be validated 25

using another database. Many recent studies propose to use radiomic approaches which 26

consist in extracting a large number of quantitative features from medical images using 27

data-characterization algorithms. In non-small cell lung cancers, various tumor 28

heterogeneity markers may be computed, see [13] for a proposal for harmonization of 29

methodology. Then, they can be related for example to the distant metastasis 30

probability [14] ; to predict pathological response after neoadjuvant chemoradiation [15] 31

; to indicate tumor response to radiation therapy [16] ; to advance clinical 32

decision-making by analyzing standard-of-care medical images [17] and to establish 33

independent marker of survival time [18]. In [19], the authors even show that radiomics 34

may help identify a general prognostic phenotype existing in both lung and 35

head-and-neck cancer. These approaches have also been used for EGFR-mutated 36

non-small cell lung cancer. For example, radiomic approaches may predict EGFR 37

mutation status without requiring repeated biopsy acquisitions [20,21] but also identify 38

tumor heterogeneity markers which can be related to early EGFR TKI failure [22]. 39

In this study, instead of testing classical heterogeneity markers, we introduce a novel 40

imaging biomarker that quantifies the evolution of the heterogeneity of the primitive 41

tumor of patients with EGFR-mutated non-small cells lung cancers over time. This 42

criterion is defined using our knowledge of the disease and can be biologically 43

interpreted. The objective of this work is to study the value of this novel marker to 44

predict overall survival in order to help clinicians to detect EGFR TKI treatment failure 45

earlier. 46

Materials and methods 47

Patients 48

A monocentric retrospective cohort study has been conducted on patients with a 49

biopsy-proven non-small-cell lung carcinoma - presenting an identified or suspected 50

EGFR (epidermal growth factor receptor) mutation, (established by a TKI clinical 51

benefit of more than 6 months) - which are non-accessible to local treatment (stage IIIB 52

or IV). Patients were included in the study if 3 CT-scans were available: one before the 53

first introduction of TKI treatment and two after. The study was approved by Institut 54

Bergonié and IRB approval was obtained for use of the CT images. Informed consents 55

of data collection were waived for research from each patient, in accordance with the 56

related policy of Institut Bergonié. 57
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Treatment 58

All patients were exposed to an EGFR-targeting TKI. Two molecules were used: 59

gefitinib (IRESSA®, Astra-Zeneca) and erlotinib (TARCEVA®, Roche). These two 60

therapies were given until progression, unacceptable toxicity, patient refusal to continue 61

treatment or death. 62

Imaging and biomarkers 63

Evaluation scans were done every 2 to 6 months. The acquisition was performed after 64

an injection of iodized contrast agent at portal phase on the thorax, the abdomen and 65

the pelvis and then at late-arterial phase on the encephalon. We consider 3 CT-scans 66

(given at times t0, t1 and t2). The first one is acquired immediately before TKI 67

treatment and the second and the third ones are the 2 first ones after the first 68

introduction of TKI treatment. Time t0 is the baseline. Tumors were delineated using a 69

semi-automatic segmentation library that relies on a deformable model [23]. All the 70

delineations were validated by a junior and a senior radiologists. 71

Using these images, we derive various biomarkers. Defining by V (t) the volume of 72

the tumor at time t, we define the following set of biomarkers (computed from the 73

volume): 74

cv =
(
V (t1)−V (t0)

t1−t0
V (t2)−V (t0)

t2−t0
V (t1)
V (t0)

V (t2)
V (t0)

)

corresponding respectively to the initial slope of volume decreasing (between t0 and t1), 75

to the slope of volume decreasing (between t0 and t2), to the initial percentage of 76

volume decreasing (between t0 and t1) and to the percentage of volume decreasing 77

(between t0 and t2). 78

On CT, high intensities (lighter colors on the image) correspond to high tissue 79

densities and therefore to high cellularity and proliferation while intensities around 0 80

correspond to water and necrosis. We therefore split the set of voxels of the images into 81

two classes. The first class contains the voxels whose values are non-negative while the 82

second class is formed by non-positive intensities voxels. We will refer to the first class 83

(with positive intensities) as being the proliferative one while the second one will be 84

referred as the necrotic one. We denote by P (t) the volume of the set of voxels whose 85

intensities are positive within the tumor on the exam at time t. We then compute the 86

ratio of this proliferative-like compartment with respect to the total volume 87

%P (t) = P (t)
V (t) . We define the following set of biomarkers (based on the heterogeneity): 88

ch =
(∫ t2

t0
%P (t)dt

∫ t2
t1

%P (t)dt %P (t0)
)

corresponding respectively to the area under the curve (AUC) of the quantity %P (t) 89

between t0 and t2, to the AUC of the quantity %P (t) between t1 and t2, and to the 90

initial value of the quantity %P (t). 91

Using the first 3 CT-scans, we extract V (t0), V (t1), V (t2), P (t0), P (t1) and P (t2) 92

and approximate the imaging marker
∫ t2
t0

%P (t)dt with the trapezoidal rule. However, 93

this strategy has limitations. Indeed, the acquisition times t0, t1 and t2 and the CT 94

image noise may introduce some instability in the computation, for example if t1 is too 95

close to t0 or t2. 96

We therefore choose another strategy that consists in using a mechanistic model in 97

order to fit the values P (t0), P (t1) and P (t2) continuously on the time interval [t0, t2]. 98

This model relies on the evolutions of two populations of cells (proliferative cells and 99

quiescent or necrotic compartment). This model is parametrized using the values 100

V (t0), V (t1), V (t2), P (t0), P (t1) and P (t2) defined above. It then provides an evaluation 101

of P (t) and V (t) at any time between t0 and t2, see Fig. 1. The model and its 102
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personalization are presented in the Supplementary Materials. On Fig. 1, the patient 103

had a CT-scan at 109 days and at 206 days. The x-axis represents the time in days, 104

while the volume is reported on the y-axis. The blue points denote the measured 105

volumes on exams while the red and green points show respectively the volume of 106

proliferative and necrotic compartments. The blue (resp. red, green) curve describes the 107

evolution of the volume (resp. density of proliferative cells, density of necrotic cells) 108

given by the mechanistic model that fits with the data. The purple curve gives the 109

evolution of the ratio of the proliferative compartment with respect to the volume. 110

Figure 8 (see Supplementary materials) gives the curves for all the patients. 111

Fig 1. Left - Evolution of the densities of proliferative (red) and necrotic
(green) cells for 1 patient with the evolution of the volume (in blue). Right
– Evolution of the ratio of the proliferative compartment.
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Statistics 112

Whenever appropriate, standard statistics are presented as mean±standard-deviation 113

and number (percentage). We define the overall survival (OS) as the time between the 114

introduction of the TKI treatment and the patient death. Survival curves were 115

computed using the Kaplan-Meier estimator and compared using Log-Rank tests. The 116

association of survival failure with each investigated biomarker was tested using Cox 117

regression. Prediction performances of the biomarkers were assessed using ROC curves. 118

The appropriate statistical tests were performed when required with a significance 119

threshold set to p = 0.05. The mechanistic model was fitted using the Monte Carlo 120

method. All computations were performed using Matlab-R2015a. 121

Results 122

A population of 25 patients has been collected at Institut Bergonié (Bordeaux, France) 123

between 2006 and 2013. We have kept 17 patients among these 25 patients. We have 124

excluded 2 cases for which the CT-scan before the TKI introduction was not available 125

and 6 cases for which it was not possible to delineate the tumor (miliary disease, 126

patients without any discernable lesion e.g. with pleural effusion or atelectasis). Table 1 127

presents the patient cohort: age, sex, smoking information, mutation, stage and if the 128

patient had a treatment before the TKI introduction. 129

First of all, there is no significant correlation between each volume-based biomarker 130
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Table 1. Presentation of the patient cohort: sex, age, smoking, mutation,
stage, previous treatment before the TKI introduction.

Characteristics

Sex
Women 14 (82 %)

Men 3 (18 %)
Age 65 ± 11

Smoking
Yes 1 (6 %)
No 10 (59 %)

Unknown 6 (35 %)

Mutation

Exon 19 1 7 (41 %)
Exon 21 7 (41 %)
Exon 18 1 (6 %)
Unknown 2 (12 %)

Stage
IV 16 (94 %)

IIIB 1 (6 %)

Previous treat.
No 11 (65 %)
Yes 6 (35 %)

gathered in the vector 131

cv =
(
V (t1)−V (t0)

t1−t0
V (t2)−V (t0)

t2−t0
V (t1)
V (t0)

V (t2)
V (t0)

)

and the overall survival (p = 0.48, p = 0.36, p = 0.23 and p = 0.17). 132

We will now focus on the heterogeneity-based biomarkers gathered in the vector 133

ch =
(∫ t2

t0
%P (t)dt

∫ t2
t1

%P (t)dt %P (t0)
)

The values of the first heterogeneity-based biomarkers 134

∫ t2

t0

%P (t)dt =

∫ t2

t0

P (t)

V (t)
dt

for all the patients are plotted in Fig. 2. 135

Fig 2. Imaging marker
∫ t2
t0

%P (t)dt after normalization (y-axis) versus

overall survival in months (x-axis) for each patient. Linear regression in
blue.
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The values of the criteria based on the evolution of the tumor heterogeneity have 136

been normalized using its maximum value and is reported on the y-axis. The x-axis 137
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corresponds to the value of the overall survival. The blue curve corresponds to the 138

linear regression. The correlation between the overall survival and the imaging marker 139

is statistically significant (p = 0.009, r =-0.6). The population may clearly be divided 140

into two populations. In particular, patients with a short survival time have a large 141

value of the biomarker. In order to find the best threshold to classify the patients, we 142

need to set a survival threshold. Based on the survival histogram of the 17 patients 143

given in Fig. 3 and for clinical relevance, we set the survival threshold at 30 months. 144

Fig 3. Survival histogram (17 patients).
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The ROC curve (AUC = 0.81) is given in Fig. 4 (see blue curve). Using Fig. 4 , we 145

see that a good compromise consists in taking a normalized threshold for the biomarker 146

of 0.4 that is optimal with a sensibility of 0.9 and a specificity of 0.7.. 147

Fig 4. ROC curve of the imaging marker
∫ t2
t0

%P (t)dt (after normalization).
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Finally, survival curves are given in Fig. 5: in red the survival curve of the full 148

population and in blue (resp. in green) the survival curve of the population with a short 149

(resp. with a large) imaging marker. The normalized threshold value 0.4 obtained with 150

the ROC curve is used to discriminate the patients. The comparison of the survival 151

curves of these two populations is statistically significant (p = 0.025, hazard ratio = 152

0.25 with a 95% confidence interval equals to 0.09 - 0.7). 153

However, the strategy is not efficient if we only use the time average between t1 and 154

t2 to define the imaging biomarker. Indeed there is no correlation between the second 155

heterogeneity-based biomarker
∫ t2
t1

%P (t)dt and the overall survival (p = 0.34). This 156

means that the initial status of the tumor plays a major role in the evaluation of 157
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Fig 5. : Survival curves (full population in red ; patients with a small (resp.

large) value of the imaging marker
∫ t2
t0

%P (t)dt in blue (resp. in green).
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response to the TKI treatment. More precisely, there is a significant correlation between 158

the third heterogeneity-based biomarker %P (t0) and the overall survival (p= 0.034) 159

even if the biomarker based on the 3 CT-exams is six times more significant (p = 0.009), 160

see Fig. 6. Concerning the survival curves, we obtain equivalent results (p = 0.036 161

instead of p = 0.025). 162

Fig 6. : Left-imaging biomarker %P (t0) versus overall survival. Middle -
ROC curve. Right – Survival curves (the threshold value has been fixed
using the ROC curve).
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Discussion 163

In this work we have studied the ability of volume-based and heterogeneity-based 164

imaging biomarkers to predict the survival in EGFR-mutated NSCLC patients treated 165

with TKI. 166

Our first result is that there is no correlation between volume-based imaging 167

biomarkers and survival. This finding is consistent with the work [12] who noticed a 168

lack of association between tumor shrinkage and long-term survival. This illustrates 169

why the response to TKI treatment is difficult to estimate using only the evolution of 170

tumor volume (or RECIST). 171

Our second result is that heterogeneity-based imaging biomarkers may help predict 172

short-term survival. More precisely, we propose an imaging biomarker
∫ t2
t0

%P (t)dt that 173

is able to discriminate patients with short-time survival using only 3 successive 174

CT-scans (an imaging monitoring performed as standard of care for such patients). To 175

the best of our knowledge, this is the first study in which a mechanistic model based on 176
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disease knowledge has been used to predict the outcome in EGFR-mutated NSCLC 177

patients treated with TKI. This shows that characterizing the content of the tumor and 178

its dynamics using mathematical models might provide valuable information to guide 179

clinical decisions. 180

The main strength of this work lies in the fact that the imaging marker is based on a 181

mathematical description of the alleged underlying pathophysiological processes rather 182

than purely empirical observations. As a consequence, the value of the biomarker may 183

be given a phenomenological meaning, an interpretation that would be lacking 184

otherwise. A large value of the biomarker means that the proportion of proliferative 185

cells does not decrease over time (even if the volume of the lesion is decreasing). In the 186

opposite case, a small value of the marker implies a decrease of the proportion of the 187

proliferative compartment, even if the response is modest in terms of whole tumor size. 188

We show that the use of the first image (CT-scan acquired before TKI introduction) 189

is of paramount importance for biomarker to predict the survival. More precisely, the 190

imaging biomarker computed using only this first image provides a first classification of 191

the patient that can be incrementally improved using the imaging marker as more 192

follow-up CT-scans become available. 193

In addition to biomarkers, the mathematical model (see Supplementary Materials) 194

offers more information on the mechanism of the response to treatment. The evolutions 195

of the proliferative and necrotic compartments given for each patient might also be 196

useful to personalize therapy, see Figure 8. In particular, it would be interesting to 197

study the ability of this mathematical model to detect acquired resistances to TKI 198

earlier, especially T790M mutation, a feature associated with bad prognostic [24]. 199

An important limitation of this work is the small sample size and its retrospective 200

nature. A second limitation concerns the assumptions of the mechanistic model: tumor 201

heterogeneity as measured using CT-scan is assumed to be related to the proportion of 202

proliferative and necrotic cells. Confirming this hypothesis would require a histological 203

assessment of the whole tumor, which is possible only in patients who undergo surgery. 204

Conclusion 205

We have shown that the initial volume (or RECIST) evolution under TKI is not 206

sufficient to predict the survival while the tumor heterogeneity before the TKI 207

introduction is a major prognosis factor and provides a first classification of patients. 208

Furthermore, this first classification can be incrementally improved using the imaging 209

marker that summarizes the early evolution of the tumor heterogeneity as soon as more 210

CT scans are available. Short term perspectives of this work are about increasing the 211

size of the cohort and improving the segmentation process in order to be able to include 212

patients with non-delineated tumors. 213

Acknowledgments 214

This study was supported by the French Laboratory of Excellence TRAIL 215

ANR-10-LABX-57. 216

References 217

1. Greenhalgh J, Dwan K, Boland A, Bates V, Vecchio F, Dundar Y, et al. First-line 218

treatment of advanced epidermal growth factor receptor (EGFR) mutation 219

positive non-squamous non-small cell lung cancer. The Cochrane Library. 2016;. 220

June 11, 2019 8/13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 24, 2019. ; https://doi.org/10.1101/681577doi: bioRxiv preprint 

https://doi.org/10.1101/681577
http://creativecommons.org/licenses/by/4.0/


2. Cadranel J, Ruppert AM, Beau-Faller M, Wislez M. Therapeutic strategy for 221

advanced EGFR mutant non-small-cell lung carcinoma. Critical reviews in 222

oncology/hematology. 2013;88(3):477–493. 223

3. Helena AY, Sima CS, Huang J, Solomon SB, Rimner A, Paik P, et al. Local 224

therapy with continued EGFR tyrosine kinase inhibitor therapy as a treatment 225

strategy in EGFR-mutant advanced lung cancers that have developed acquired 226

resistance to EGFR tyrosine kinase inhibitors. Journal of Thoracic Oncology. 227

2013;8(3):346–351. 228

4. Nishino M, Jagannathan JP, Krajewski KM, O’Regan K, Hatabu H, Shapiro G, 229

et al. Personalized tumor response assessment in the era of molecular medicine: 230

cancer-specific and therapy-specific response criteria to complement pitfalls of 231

RECIST. American Journal of Roentgenology. 2012;198(4):737–745. 232

5. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. 233

New response evaluation criteria in solid tumours: revised RECIST guideline 234

(version 1.1). European journal of cancer. 2009;45(2):228–247. 235

6. van Meerten ELvP, Gelderblom H, Bloem JL. RECIST revised: implications for 236

the radiologist. A review article on the modified RECIST guideline. European 237

radiology. 2010;20(6):1456–1467. 238

7. Hwang KE, Kim HR. Response Evaluation of Chemotherapy for Lung Cancer. 239

Tuberculosis and respiratory diseases. 2017;80(2):136–142. 240

8. Jiang B, Zhou D, Sun Y, Wang J. Systematic analysis of measurement variability 241

in lung cancer with multidetector computed tomography. Annals of thoracic 242

medicine. 2017;12(2):95. 243

9. Nishino M, Guo M, Jackman DM, DiPiro PJ, Yap JT, Ho TK, et al. CT tumor 244

volume measurement in advanced non-small-cell lung cancer: performance 245

characteristics of an emerging clinical tool. Academic radiology. 2011;18(1):54–62. 246

10. Lee JH, Lee HY, Ahn MJ, Park K, Ahn JS, Sun JM, et al. Volume-based growth 247

tumor kinetics as a prognostic biomarker for patients with EGFR mutant lung 248

adenocarcinoma undergoing EGFR tyrosine kinase inhibitor therapy: a case 249

control study. Cancer Imaging. 2016;16(1):5. 250

11. Nishino M, Dahlberg SE, Fulton LE, Digumarthy SR, Hatabu H, Johnson BE, 251

et al. Volumetric tumor response and progression in EGFR-mutant NSCLC 252

patients treated with erlotinib or gefitinib. Academic radiology. 253

2016;23(3):329–336. 254

12. Lee CK, Lord S, Marschner I, Wu YL, Sequist L, Rosell R, et al. The value of 255

early depth of response in predicting long-term outcome in EGFR-mutant lung 256

cancer. Journal of Thoracic Oncology. 2018;13(6):792–800. 257

13. Sollini M, Cozzi L, Antunovic L, Chiti A, Kirienko M. PET Radiomics in 258

NSCLC: state of the art and a proposal for harmonization of methodology. 259

Scientific Reports. 2017;7(1):358. doi:10.1038/s41598-017-00426-y. 260

14. Zhou H, Dong D, Chen B, Fang M, Cheng Y, Gan Y, et al. Diagnosis of Distant 261

Metastasis of Lung Cancer: Based on Clinical and Radiomic Features. 262

Translational Oncology. 2018;11(1):31–36. doi:10.1016/j.tranon.2017.10.010. 263

June 11, 2019 9/13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 24, 2019. ; https://doi.org/10.1101/681577doi: bioRxiv preprint 

https://doi.org/10.1101/681577
http://creativecommons.org/licenses/by/4.0/


15. Coroller TP, Agrawal V, Narayan V, Hou Y, Grossmann P, Lee SW, et al. 264

Radiomic phenotype features predict pathological response in non-small cell lung 265

cancer. Radiotherapy and Oncology. 2016;119(3):480–486. 266

doi:10.1016/j.radonc.2016.04.004. 267

16. Fave X, Zhang L, Yang J, Mackin D, Balter P, Gomez D, et al. Delta-radiomics 268

features for the prediction of patient outcomes in non–small cell lung cancer. 269

Scientific reports. 2017;7(1):588. 270

17. Grossmann P, Stringfield O, El-Hachem N, Bui MM, Velazquez ER, Parmar C, 271

et al. Defining the biological basis of radiomic phenotypes in lung cancer. Elife. 272

2017;6. 273

18. Ganeshan B, Panayiotou E, Burnand K, Dizdarevic S, Miles K. Tumour 274

heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a 275

potential marker of survival. European radiology. 2012;22(4):796–802. 276

19. Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Carvalho 277

S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative 278

radiomics approach. Nature Communications. 2014;5:4006. 279

doi:10.1038/ncomms5006. 280

20. Kim H, Chae KJ, Yoon SH, Kim M, Keam B, Kim TM, et al. Repeat biopsy of 281

patients with acquired resistance to EGFR TKIs: implications of biopsy-related 282

factors on T790M mutation detection. European Radiology. 2018;28(2):861–868. 283

doi:10.1007/s00330-017-5006-6. 284

21. Zhang L, Chen B, Liu X, Song J, Fang M, Hu C, et al. Quantitative Biomarkers 285

for Prediction of Epidermal Growth Factor Receptor Mutation in Non-Small Cell 286

Lung Cancer. Translational Oncology. 2018;11(1):94–101. 287

doi:10.1016/j.tranon.2017.10.012. 288

22. Park S, Ha S, Lee SH, Paeng JC, Keam B, Kim TM, et al. Intratumoral 289

heterogeneity characterized by pretreatment PET in non-small cell lung cancer 290

patients predicts progression-free survival on EGFR tyrosine kinase inhibitor. 291

PloS One. 2018;13(1):e0189766. doi:10.1371/journal.pone.0189766. 292

23. Lachaud JO, Taton B. Deformable model with a complexity independent from 293

image resolution. Computer Vision and Image Understanding. 294

2005;99(3):453–475. 295

24. Dong Y, Zhou Z, Wang J, Ma L, Liu Z, Wang Y, et al. Origin of the T790M 296

mutation and its impact on the clinical outcomes of patients with lung 297

adenocarcinoma receiving EGFR-TKIs. Pathology-Research and Practice. 2019;. 298

25. Billy F, Ribba B, Saut O, Morre-Trouilhet H, Colin T, Bresch D, et al. A 299

pharmacologically based multiscale mathematical model of angiogenesis and its 300

use in investigating the efficacy of a new cancer treatment strategy. Journal of 301

theoretical biology. 2009;260(4):545–562. 302

26. Colin T, Ribba B, Schnell S. A multiscale mathematical model of cancer growth 303

and radiotherapy efficacy: The role of cell cycle regulation in response to 304

irradiation. Theoretical Biology and Medical Modelling. 2006; p. 3. 305

27. Ribba B, Saut O, Colin T, Bresch D, Grenier E, Boissel JP. A multiscale 306

mathematical model of avascular tumor growth to investigate the therapeutic 307

benefit of anti-invasive agents. Journal of theoretical biology. 308

2006;243(4):532–541. 309

June 11, 2019 10/13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 24, 2019. ; https://doi.org/10.1101/681577doi: bioRxiv preprint 

https://doi.org/10.1101/681577
http://creativecommons.org/licenses/by/4.0/


Supplementary materials 310

Presentation of the mathematical model 311

Fig 7. Modeling of temporal evolution of proliferative and necrotic cells.
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P , density of proliferative cells

N , density of necrotic cells

J0, growth rate

K, decreasing rate due to TKI treatment

L, evacuation rate due to TKI treatment

We denote by P (resp. by N) the volume of proliferative (resp. quiescent or 312

necrotic) cells. We have P +N = V where V corresponds to the volume of the lesion. 313

The evolution of the volume of proliferative cells is supposed to satisfy the following 314

equation: 315

P ′ = (J0 −K)P,

where the quantity J0 is the growth rate and we assume it constant in order to keep a 316

model with identifiable parameters. The quantity K corresponds to the decreasing rate 317

due to the TKI treatment. We assume that it follows a Gompertz-like law: 318

K = K0e
−δt,

where δ is an unknown parameter and K0 the initial decreasing rate of P . We assume 319

that when exposed to the treatment, the proliferative cells die and form the necrotic 320

compartment. The evolution of the density N of this necrotic compartment is supposed 321

to satisfy the following equation: 322

N ′ = KP − LN.

The quantity L is the evacuation rate of the necrotic compartment. We assume that it 323

follows a Gompertz-like law: 324

L = L0e
−ηt,

where η is an unknown parameter and L0 the initial evacuation rate of N . 325

This leads to the following ordinary differential system 326





P ′ = (J0 −K)P,
N ′ = KP − LN,
K = K0e

−δt,
L = L0e

−ηt,

(1)

in which the quantity P can be explicitly determined: 327

P = P0e
K0
δ (e−δt−1)−N0t

and the quantity N can be numerically approximated. Figure 7 illustrates this model in 328

the formalism of compartment models. 329

Remark 1 Please note that this model may be derived from a spatial PDE model as
follows. Let P̂ (resp. N̂) be the spatial density of proliferative (resp. necrotic or
quiescent) cells and ~v, the velocity field that describes the evolution of the tumor over

June 11, 2019 11/13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 24, 2019. ; https://doi.org/10.1101/681577doi: bioRxiv preprint 

https://doi.org/10.1101/681577
http://creativecommons.org/licenses/by/4.0/


time. Following [25–27], the tumor can be described by the evolution in space and time
of population of P̂ and N̂ ,





∂tP̂ +∇ · (~vP̂ ) = J0P̂ −KP̂ ,
∂tN̂ +∇ · (~vN̂) = KP̂ − LN̂,
M = K0e

−δt,
L = L0e

−ηt,

∇ · ~v = J0P̂ − LN̂,
~v = −∇π,

where the last equation closes the system using a Darcy law with π the pressure. Using 330

Reynolds theorem, this system of partial differential equation is related to System (1) by 331

P (t) =

∫

Ω(t)

P̂ (t, x)dx and Q(t) =

∫

Ω(t)

Q̂(t, x)dx,

where Ω is the tumor domain. 332

Model parametrization 333

The model has 5 parameters: K0, δ, J0, L0 and η that we want to estimate using (the 334

subscript d is used to design the data): 335

• the volumes Vd(t1) and Vd(t2) (Vd(t0) is used for the initial condition), 336

• the proliferative parts Pd(t1) and Pd(t2) (Pd(t0) is used for the initial condition). 337

The parametrization is done into two steps. We start by estimating K0, J0 and δ by 338

minimizing 339√∑

i=1,2

|Pd(ti)− P (ti)|2.

Two cases are possible: 340

• Case Pd(t0) > Pd(t1) > Pd(t2): we assume that the density of proliferative cells is 341

decreasing and we search the parameters as 342

K0 ∈]0, 0.1], N0 ∈]0,K0[ and δ ∈]− t2 ln(N0/K0), t2 ln(N0/K0)[.

• Case Pd(t0) > Pd(t1) and Pd(t1) < Pd(t2): we search the parameters as: 343

K0 ∈]0, 0.1], N0 ∈]0,K0[ and δ ∈]− 0.1, 0.1[.

The set of parameters is not unique. However, if we consider two sets of parameters 344

which give small errors (∼ 10−3), the variations of P are very close. The second step 345

consists in estimating L0 and η by minimizing 346

√∑

i=1,2

|Vd(ti)− V (ti)|2.

As we consider that the TKI treatment is still acting (for all the patients, we have 347

Vd(t0) > Vd(t1) > Vd(t2)), the sets of parameters for which V is not strictly decreasing 348

are rejected. 349

Results 350

The evolutions of the densities of proliferative (red) and necrotic (green) cells for the 17 351

patients with the evolution of the volume (in blue) are presented in Fig. 8. 352
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Fig 8. : Evolutions of the densities of proliferative (red) and necrotic
(green) cells for 17 patients with the evolution of the volume (in blue).
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