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ABSTRACT  

Comprehensive genomic databases offer unprecedented opportunities towards effective tailored 
strategies for the prevention and treatment of disease. The integration of genomic and phenotypic 
data from diverse ethnic populations is also key to advancements in precision medicine and 
novel diagnostic technologies. Current reference genomic databases, however, are not 
representative of the global human population, making variant interpretation challenging and 
uncertain, especially in underrepresented populations such as the North African population. To 
address this, a study of 391 Egyptian healthy volunteers (EHVols) was initiated as a milestone 
towards establishing the 1000 Egyptian Genomes project.  
 
Keywords: Egyptian reference genome, Egyptian 1000 Genomes, precision medicine, genetic 
variation, variant interpretation, cardiovascular phenotype, Africa, inherited cardiac conditions, 
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INTRODUCTION  

Cardiovascular disease is a major cause of death and disability worldwide (Murray & Lopez, 
2017; WHO 2017) and its prevalence continues to increase in low and middle income countries 
toward epidemic proportions (Roth et al., 2017; Yusuf et al., 2014). Effective tailored strategies 
for the prevention and treatment depends on thorough understanding of the mechanisms involved 
in specific populations. The rapid evolution of genomic and personalised precision medicine 
offers unprecedented opportunities in this regard (Manolio et al., 2009; O’Donnell & Nabel, 
2011). These, however, are critically dependent on defining the genetic landscape of different 
populations, their individuals and the relation to their dynamic phenotype (Lau & Wu, 2018; 
Leopold & Loscalzo, 2018). In-depth information is lacking in populations which need it most 
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and yet continue to be grossly understudied (Need & Goldstein, 2009; Bustamante, Burchard, & 
De la Vega, 2011; Owolabi et al., 2014; Popejoy & Fullerton, 2016; Keates, Mocumbi, Ntsekhe, 
Sliwa, & Stewart, 2017). Notable initiatives and studies have recently begun in Africa and the 
Middle East and North Africa (MENA) region aiming at data collection and harmonization, 
paving the way for large scale genomic studies (Scott et al., 2016, Owolabi et al., 2018). To 
directly address these issues, we are recruiting 1000 Egyptian healthy volunteers (EHVol) from 
the general population. These individuals are fully phenotyped with respect to cardiovascular 
health. To date, 724 have been recruited. Here, we describe the protocol of the study and 
examine background genetic variation in genes previously shown to be involved in inherited 
cardiac conditions (ICCs), with a special focus on hypertrophic cardiomyopathy (HCM) and 
dilated cardiomyopathy (DCM). Here we report the data from a pilot cohort of 391 EHVols who 
were phenotyped and sequenced across a panel of 174 genes involved in ICCs. To our 
knowledge, this study represents the first of its kind in the region to integrate high coverage 
sequencing data from a clinically phenotyped cohort.  

METHODS   

Study Protocol and Data collection  

This is a population-based study that aims to recruit 1000 Egyptian healthy volunteers (EHVols) 
from across Egypt. All participants provided informed consent, which was approved by the 
research ethics committee (20160401MYFAHC_HVOL). Here, we report data from an initial 
cohort of 391 volunteers recruited from December 2015 to June 2018 via national advertisement 
(brochures, flyers, public events) and assessed at the Aswan Heart Centre (AHC). A paper-based 
questionnaire was conducted to gather information regarding demographics, health status, 
smoking and drinking habits, past medical and surgical history, family history, medication and 
for the identification of consanguineous marriage (defined as self-reported first-cousin marriage). 
Individuals were excluded if they met any of the following criteria: <18 years of age, non-
Egyptian nationality, pregnancy, presentation with known cardiovascular or collagen vascular 
disease, communication difficulties or contraindication to cardiac magnetic resonance (CMR) 
(Figure 1). Data was entered into a Research Electronic Data Capture (REDCap) database; and 
was stored, along with all appropriate documentation, on an access-controlled server (Harris et 
al., 2009).  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 23, 2019. ; https://doi.org/10.1101/680520doi: bioRxiv preprint 

https://doi.org/10.1101/680520


 

 
 

3 

 
 
 

Figure 1. Workflow of EHVol study. Study participants (1) were recruited from the general population via 
announcements (brochures, flyers, public events); (2) completed a questionnaire on demographic data, family and 
clinical history; (3) underwent detailed cardiovascular phenotyping and blood sampling. (4) All data were recorded 
and managed on a local REDCap database. Rounds of exclusion: First round of exclusion is based on the basis of 
demographic and general health questionnaire as described under ‘study protocol and data collection’. A second 
round of exclusion was based on detailed cardiovascular phenotyping as described under ‘cardiovascular 
phenotyping’ in the methods section. 
 
 
Cardiovascular Phenotyping  

All individuals underwent detailed cardiovascular phenotyping including clinical examination, 
12-lead electrocardiogram and CMR (Figure1). CMR was performed with a 1.5 T scanner 
(Siemens Magnetom Aera, Erlangen, Germany) using retrospective ECG triggering to capture 
the heart during the cardiac cycle. Steady State Free Precession (SSFP) end expiratory breath-
hold cine images were acquired in the short axis orientation covering the whole heart. Standard 
parameters were repetition, time/echo time 3.6/1.8ms; sense factor 2, flip angle, 60°; section 
thickness, 8 mm; no slice gap, matrix, 160�×�256; field of view, 300 mm; pixel size, 
1.6�×�1.6 mm; number of phases 30 and phase percentage 67%. For future comparison with 
specific disease based sub-cohorts, phase contrast images were acquired at different aortic and 
levels for flow mapping. At the same acquisition levels 4D flow was performed to assess flow 
patterns. T1 mapping was performed on base, mid and apical heart levels for fibrosis assessment. 
3D Tagging acquisition was done at base, mid and apical levels for strain assessment. Detailed 
structural and functional analysis on the CMR acquisitions was performed retrospectively using 
dedicated post processing and in-house software. Following phenotyping, a second round of 
exclusions, on the basis of specific cardiovascular diagnostic criteria, was applied (Table 1). 
Isolated apical noncompaction with normal ECG and normal CMR was not excluded.  
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Table 1. Second Round of Exclusion Criteria. 

 Second Round of Exclusion Criteria 

Electrocardiogram (ECG) findings: 
� Long QT syndrome 
� Short QT syndrome 
� High-degree atrioventricular block 
� Brugada syndrome (type 1 pattern) 
� Atrial fibrillation and  
� Non-sustained VT 

Cardiac magnetic resonance (CMR) findings*: 
� Left ventricular mass index (LVMI) > 99.5 g/m2 in males and 85.5 g/m2 in females 
� Left ventricular end-systolic volume (LVEsVI) > 44.5 ml/m2 in males and 40.1ml/m2 in females 
� Ejection fraction < 52.5% in males and 53.2% and in females  
� LV wall thickness > 15mm (measured at any segment) 
� Non-compacted-to-compacted myocardium thickness of > 2.3:1 affecting mid and/or basal segment (i.e. not 

limited to the apex/apical segments). 

*Cutoff thresholds were determined as 3 standard deviations from the mean to be more inclusive of extremes, 
especially in the absence of normal CMR reference values specific to the Egyptian population (Kawel-Boehm et al., 
2015). 
 
Sample Collection and Biobanking  

20 ml whole venous blood were withdrawn from each participant for laboratory testing 
(Hemoglobin A1c (HbA1c) and Troponin I), serum/plasma isolation and DNA extraction. For 
DNA extraction blood samples were transferred to K3EDTA tubes to avoid clotting. Blood 
samples were stored at 4oC (max. 5 days) prior to DNA extraction.  DNA was extracted using 
Wizard® Genomic DNA Purification Kit (Promega, Catalog No. A1620) according to 
manufacturer’s instructions. Concentration of 1μl DNA sample was determined using the 
NanoDrop 2000 (Thermo Scientific) spectrophotometer. 260/280 and 260/230 nm ratios were 
used to assess the DNA quality. All samples were stored centrally in the AHC Biobank. 
 
Next-Generation Sequencing (NGS)  

EHVols were sequenced with the Illumina Miseq and Nextseq platforms using the Trusight 
Cardio Sequencing Kit (Illumina, Catalog No. FC-141-1010 (MiSeq) and FC-141-1011 
(NextSeq) comprising 174 genes with reported roles in ICCs (Pua et al., 2016). Sequencing was 
performed following the manufacturer’s protocol. The concentration and quality of the DNA 
libraries were evaluated using Qubit (Invitrogen) and TapeStation 4200 (Agilent Technologies) 
 
Bioinformatics Pipeline  

Raw data was subject to quality control using FastQC v0.10.1 (Simon Andrews, 2010) and low-
quality reads were trimmed via prinseq-lite v0.20.4 (Schmieder & Edwards, 2011). Trimmed 
reads were then mapped to hg19 (Kuhn et al., 2009) using the Burrows-Wheeler Aligner (BWA) 
v0.7.10-r789 (Li & Durbin, 2009). After alignment, removal of duplicate reads was performed 
using picard v1.117 (“Picard Tools,” n.d.). GATK v3.2-2-gec30cee (McKenna et al., 2010) was 
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then used for re-alignment of insertions or deletions (indels) as well as base quality score 
recalibration. Variant calling was performed using GATK’s HaplotypeCaller. Joint genotyping is 
performed with GATK v4.0.8.1 GenotypeGVCFs and hard filters were applied based on GATK 
best practises workflow for germline short variant discovery (McKenna et al., 2010). Only 
variants that are marked as “PASS”,with a quality of depth score (QD) ≥ 4 and an allelic balance 
(AB) ≥ 0.20 were retained. We attained high coverage of the target region (>99%) at ≥ 20× read 
depth (Supplementary Figure S1). The Ensembl Variant Effect Predictor (VEP) (McLaren et al., 
2016) was used for variant annotation.   
 
Data Analysis  

Analysis of background genetic variation in selected CM genes  

To examine the background genetic variation among genes involved in inherited CMs; 
specifically DCM and HCM, we selected genes that were recently validated (Supplementary 
Table S1). The following DCM genes were analysed: BAG3, DSP, LMNA, MYH7, RBM20, 
SCN5A, TCAP, TNNC1, TNNT2, TPM1, TTN and VCL (Walsh et al., 2017). Genes with 
definitive evidence of HCM association, such as MYBPC3, MYH7, TNNT2, TNNI3, TPM1, 
ACTC1, MYL2, MYL3 and PLN were studied (Ingles et al., 2019). In addition, syndromic genes 
definitively associated with isolated left ventricular hypertrophy (LVH), such as CACNA1C, 
DES, FHL1, GLA, LAMP2, PRKAG2, PTPN11, RAF1 and TTR were analysed (Ingles et al., 
2019). 
 
Comparison of genetic variation between EHVol and gnomAD controls 

The Genome Aggregation Database (gnomAD) is the largest population data set to date. It 
comprises genetic data from 125,748 and 15,708 unrelated individuals sequenced by whole 
exome sequencing (WES) and whole genome sequencing (WGS), respectively (Karczewski et 
al., 2019). We downloaded WES data from the gnomAD database 
(https://gnomad.broadinstitute.org; version v2.1.1; Karczewski et al., 2019). Only high quality 
(‘PASS’) variants were included in the analysis. Genetic variation in CM genes was compared 
between the EHVol and gnomAD controls. Characterized variant types included loss-of-function 
(LoF) (i.e. frameshift, splice acceptor, splice donor, nonsense), missense (i.e. missense, inframe 
deletion, inframe insertion), synonymous and other (3’ and 5’ UTRs, intronic, splice 
region...etc). 
 
Comparison of rare variation between EHVol and Caucasian HVOL (CHVol) controls 

A cohort of 1,028 Caucasian healthy volunteers (CHVols) also sequenced using the Trusight 
Cardio Sequencing Kit for ICC, was analysed (Schafer et al., 2017; Pua et al., 2016). The 
CHVols were recruited prospectively via advertisement for the UK Digital Heart Project at 
Imperial College London. All volunteers underwent CMR to confirm the absence of cardiac 
disease. The frequency of rare variation in the selected CM genes was compared between the 
EHVol and CHVol cohorts. The threshold maximum credible population allele frequencies (AF) 
were defined as <=8.4x10-5 and <=4.0x10-5 for DCM and HCM, respectively. Variants were 
defined as rare if the filtering allele frequency (FAF) was less than these thresholds across all 
gnomAD populations (popmax FAF) (Whiffin et al. 2017). The frequency of rare variants per 
gene in the EHVol/CHVol cohorts was calculated by counting the number of rare variants per 
gene and dividing this by the cohort size (EHVols: n=391, CHVols: n=1,028). 
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RESULTS 

Characteristics of the EHVol Study Population  

Of the 440 recruited individuals, 40 met the first round of exclusion criteria and were therefore 
excluded. The remaining individuals underwent CMR (n=400) and ECG (n=349) screening 
(table 2). Based on the second round of exclusion described above, nine individuals were 
excluded from the cohort (Supplementary Table S2). A final cohort of 391 EHVols were 
sequenced. The baseline characteristics of the study population are summarized in table 3. The 
study population comprised of 166 females (42.5%) and 225 males (57.5%). The mean age 
(years) was 33.2 (SD 9.5). 

 
Table 2: General cardiac characteristics of the phenotyped individuals (n=400.) 

Cardiac characteristics Mean + Standard deviation 

ECG variables  

PR interval (ms) 147 + 22 

QRS duration (ms) 91 + 47 

QTc interval (ms) 400 + 45 

Abnormal ECG*, N( %) 19 (4.8) 

CMR Variables  

LVEF (%) 63 + 5.7 

LVMI (g/m2) 47  + 14 

LVESVI (ml/m2) 28 + 7.8 

LVEDVI (ml/m2) 75 + 12.2 

Abnormal CMR*, N (%) 11 (2.8) 

*Abnormality is defined according to the American Board of Internal Medicine (ABIM) coding criteria 

 
 
Table 3: Summary of descriptive characteristics of the EHVols (n=391). 

Variable EHVol n(%) Available data (n) 

Age (years) 
Mean (SD) 

33.2 (9.5) 391 

Gender  391 

Males 225 (57.5%)  

Females 166 (42.5%)  

Offspring of Consanguineous Marriage  64(16.5%) 388 

Smoking  390 

Former smoker 11 (2.8%)  
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Current smoker 83 (21.3%) 

Non-smoker 296 (75.9%) 

Alcohol  7(1.8%) 389 

Family history of CVD  64(16.4%) 391 

BMI  352 

<18.5  14(4.0%)  

18.5-25  127(36.1%) 

25-30  128(36.4%) 

>30  83(23.6%) 

Heart Rate (beat/min) Mean(SD)  75.7(13.1) 319 

 
Representation of EHVol genetic variation in gnomAD 

2,040 CM variants were identified in the EHVol cohort (Supplementary Table S3). In order to 
assess the representation of these variants in the gnomAD dataset, we plotted the observed allele 
counts (ACs) in gnomAD against ACs in EHVol for all variants identified in our cohort. These 
EHVol variants were also binned by AC to report the proportion that was captured in gnomAD 
(Figure 2A). Of the 2,040 EHVol CM variants, 1544 (75.7%) were captured in gnomAD, 
whereas 496 (24.3%) were absent from gnomAD (Table 4). The majority of non-gnomAD 
variants (n=335) were captured in AC bin 1. The remaining non-gnomAD variants constituted 
<10% of each AC bin (Figure 2A). Non-gnomAD variants were predominantly missense 
(29.8%) and “other” (56.5%) (Figure 2B). Out of the 496 non-gnomAD variants identified in the 
EHVol cohort, 11.3% were present in the Great Middle Eastern Variome (GME) (Scott et al., 
2016). The proportion of EHVol non-gnomAD variants was significantly (Fisher’s exact test 
p<1.183e-07) higher than that of the CHVol cohort (24.3% vs 18.3% respectively) (Table 4).  
  
 

 

B. A. 
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Figure 2. (A) Bar graph of the observed ACs (binned) in all CM variants identified in the EHVol cohort. The 
proportion of variants that were captured in gnomAD (all populations) is shown in dark blue and the proportion of 
variants that were only captured in our cohort is represented in light blue. (B) Pie chart showing the distribution of 
non-gnomAD variants by variant type.  
 
 

 

 

Table 4: Proportion of non-gnomAD variants in EHVol and CHVol cohorts. 

Cohort Cohort Size Total no. of variants 
in CM & syndromic  

genes  

Total no. of non-
gnomAD variants† 

Prop. of non-gnomAD 
variants  

EHVol 391 2,040 496 24.3%* 

CHVol 1,028 3,592 658 18.3%* 

† Only ‘PASS’ variants in gnomAD were included in the analysis 

*=Fisher’s exact test p-value < 1.183e-07 
 
 
High frequency of rare variation in the EHVol cohort  

The proportion of EHVol and CHVol controls with rare variants in DCM (popmax FAF 
<=8.4x10-5) and HCM (popmax FAF <=4.0x10-5) genes was calculated (Figure 3). In both 
cohorts, TTN, DSP, RBM20, MYH7 and SCN5A accounted for the majority of rare variation in 
DCM genes (Figure 3A). MYBPC3, MYH7 and CACNA1C accounted for the majority of rare 
variation in HCM genes in both cohorts (Figure 3B). Overall, the frequency of rare variants was 
higher among EHVols compared to CHVols. The proportion of controls with LoF variants in 
CM genes was almost the same in the EHVol (2.3%) and CHVol (2.33%) cohorts. 
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Figure 3. Rare variation in CM genes in EHVol and CHVol controls. Bar charts represent the proportion of 
individuals with rare variants in (A) DCM and (B) HCM and LVH syndromic genes. The first and second bars 
represent the CHVol and EHVol cohorts, respectively. Variants are collated by variant type (LoF, Missense and 
Synonymous). 

Comparison of the distribution of rare TTN and MYH7 variants between the different 
control cohorts  

We investigated the distribution of variants in TTN and MYH7, as they accounted for relatively 
high frequencies of rare variation among DCM and HCM genes, respectively. We restricted the 

 

A. 

 

B. 
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analysis to rare LoF variants in TTN and missense and LoF variants in MYH7 (Figure 4), as they 
may be putative pathogenic. TTN consists of four regions, Z-disk, I-, A- and M-bands, each of 
which has a distinct function (Roberts et al., 2015). Of the four TTN regions, the I-band has the 
lowest expression level in the myocardium (i.e. percentage spliced in (PSI) <0.9), as I-band 
exons are variably spliced in different isoforms (Roberts et al., 2015). Across all cohorts, the 
majority of variants were located in exons that are not constitutively expressed in the 
myocardium (Figure 4A). One LoF variant (p.Ser34842ProfsTer9) and 6 variants 
(p.Glu35478Ter, p.Gln16235Ter, p.Gln15575Ter, c.44015-1G>T, p.Pro4353GlnfsTer14 and 
p.Gln3243Ter) identified in the EHVol and CHVol cohorts, respectively, resided in cardiac 
constitutive exons, which would have been interpreted as “likely pathogenic” (LP) were they 
identified in individuals presenting with DCM (Roberts et al., 2015).  The LoF variant 
p.Ser34842ProfsTer9 identified in the EHVol cohort, is absent among gnomAD as well as 
CHVol controls. The EHVol carrying the LoF variant did not show a clinical DCM phenotype 
but ECG analysis revealed sinus tachycardia.  

Across all populations, the majority of rare variants in MYH7 (popmax FAF <=4.0x10-5) were 
located in the rod domain (EHVol 4 (66.7%); CHVol 9 (75%); gnomAD 163 (71.5%)) (Figure 
4B).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

 

 

A. 

 

B. 

Figure 4: Distribution of rare (A) TTN LoF and (B) MYH7 missense and LoF variants in the EHVol, CHVol 
and gnomAD cohorts. Variant distribution is shown relative to a schematic representation of the TTN protein, 
with sarcomere regions delimited and the MYH7 protein with myosin domains delimited. The number of circles 
represent the number of individuals carrying the rare variant. 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 23, 2019. ; https://doi.org/10.1101/680520doi: bioRxiv preprint 

https://doi.org/10.1101/680520


 

 
 

11 

 
 
 

 

DISCUSSION  

The availability of large-scale population genetic databases, such as gnomAD, has opened up 
new possibilities in identifying putative disease-causing variants. Current data sets, however, do 
not adequately represent genetic variation in the MENA region, which hinders accurate variant 
interpretation in the respective populations. Several recent studies address this shortcoming.  
Scott et al., for instance, studied rare genetic variation of the Great Middle Eastern region, 
including North East- and North West Africa (Scott et al., 2016). However, individuals recruited 
in this study were from the general population (self-reported healthy volunteers) and thus may 
not necessarily be free of disease. To our knowledge, our study represents the first of its kind in 
the region to include high coverage sequencing data from a clinically phenotyped healthy cohort.  
We evaluated 440 self-declared healthy individuals of whom 49 (11%) were excluded for not 
meeting the first round inclusion criteria (9%) or showed cardiac abnormalities (2%). The 
remaining healthy individuals, the EHVols (n=391), were genetically characterised using the 
ICC gene panel. Our analyses revealed that 24.3% of EHVol variants were not captured in 
gnomAD, the most widely used reference dataset at present. Of these non-gnomAD variants 
11.3% were captured in the GME database, confirming the current underrepresentation of 
genetic variation in current large-scale datasets. 
In addition, we sought to compare genetic variation between our EHVols and an ethnically-
distinct population that is generally represented in gnomAD, the CHVol cohort. Our analysis 
showed that the proportion of non-gnomad variants identified in the EHVol cohort was 
significantly higher compared to the CHVol cohort. Furthermore, we examined the frequency of 
putative disease-causing variants in the EHVol and CHVol cohorts across the CM genes. The 
analysis showed that the proportion of controls with rare variation in the majority of DCM genes 
was higher in the EHVol cohort compared to CHVols. Rare variation in MYH7 and MYBPC3, 
the key genetic contributors to HCM, was also higher in the EHVol cohort.  
These findings highlight the importance of studying the prevalence of putative disease-causing 
variants in a large-scale ethnic-specific cohorts in order to confirm their pathogenicity in their 
respective populations. For example, a novel, non-gnomAD LoF TTN variant 
(p.Ser34842ProfsTer9) was identified in a 33-year old EHVol. This variant lies in the M-band, a 
constitutively expressed exon with a PSI score of >0.9, which affects cardiac remodeling in 
DCM (Roberts et al., 2015; LeWinter & Granzier, 2013).  Had this LoF variant been identified in 
a well-defined DCM cohort, it would have been interpreted as a “likely pathogenic” (LP). Thus, 
it would be valuable to follow-up on EHVols carrying putative disease-causing variants to 
confirm their corresponding phenotypic manifestations. Integrating information from our EHVol 
cohort into genomic datasets and variant classification support tools, such as CardioClassifier, 
may affect the classification of detected variants. 
 
Our analysis has provided preliminary insights into genetic variation of the underrepresented 
Egyptian population. This study constitutes an initial milestone towards developing a large-scale 
dataset comprising healthy EHVols from across the country. The development of an ancestry-
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specific genetic and phenotypic database will circumvent current issues with variant 
interpretation, deepen our understanding of African diversity and provide an opportunity for 
variant discovery. The expanded dataset will also directly aid in distinguishing between 
incidental and medically actionable variants and thus enhance diagnostic and treatment 
strategies. Beyond the ethnicity-specific aspects, this study provides valuable molecular and 
phenotypic data and a regional biobank.  
A limitation of this study is that allele frequency thresholds used in our analysis may not 
accurately define rare variants in CM genes in our population. That is because these thresholds 
were pre-computed by Whiffin et al., 2017 based on genetic findings from a Caucasian CM 
cohort. Also, future cohort studies might show that there are pathogenic variants above this 
threshold e.g. due to a founder. However, using different frequency thresholds in different 
populations would introduce an artifactual difference in rare variant burdens, as it would vary 
each population’s definition of rare.  A suitable future approach is to adjust filtering allele 
frequencies (FAF) whenever data from new populations are integrated into a large data set.  
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