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Abstract 21 

Antibiotic tolerance is a widespread phenomenon that renders antibiotic treatments less 22 

effective and facilitates antibiotic resistance. Here we explore the role of proteases in antibiotic 23 

tolerance, short-term population survival of antibiotics, using queueing theory (i.e. the study of 24 

waiting lines), computational models, and a synthetic biology approach. Proteases are key cellular 25 

components that degrade proteins and play an important role in a multi-drug tolerant subpopulation 26 

of cells, called persisters. We found that queueing at the protease ClpXP increases antibiotic 27 

tolerance ~80 and ~60 fold in an E. coli population treated with ampicillin and ciprofloxacin, 28 

respectively. There does not appear to be an effect on antibiotic persistence, which we distinguish 29 

from tolerance based on population decay. These results demonstrate that proteolytic queueing is 30 

a practical method to probe bacterial tolerance and related genes, while limiting the unintended 31 

consequences frequently caused by gene knockout and overexpression.  32 

Article 33 

The discovery of penicillin in the 1920s led to a new age of human and animal medicine as 34 

many antibiotics were quickly identified and developed, but the subsequent explosion of antibiotic 35 

treatments and applications has simultaneously driven microbial evolution and the development 36 

of widespread resistance1,2. A significant contributing factor to the abundance of antibiotic-37 

resistant microorganisms is survival of antibiotic treatment due to antibiotic tolerance and 38 

persistence3,4. Persistence is a physiological state that enables cells to survive antibiotic treatment 39 

via temporary changes in phenotype, such as slowed growth and biosynthesis, rather than genotype 40 

(e.g. antibiotic resistance)5. Although persistence has been studied for over 70 years, there has 41 

been a lack of specificity in the literature between antibiotic tolerance and persistence5,6. Recently, 42 

a consensus statement that was released after a discussion panel with 121 researchers defined 43 
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antibiotic persistence as a tolerant subpopulation of cells that result in a distinct phase of population 44 

decay 5. We use population decay rates to differentiate between antibiotic tolerance and persistence 45 

in this work (Fig. 1A).  46 

The widespread nature of persistence suggests that similar mechanisms exist to trigger the 47 

persistent state in prokaryotes. These mechanisms include many common systems, including 48 

toxin-antitoxin (TA) systems and proteases. Although the precise role of TA systems in persistence 49 

is unclear, toxins in TA systems can trigger persistence when at a higher level than their cognate 50 

antitoxin7-9. Within the cell, the ratio of toxin to antitoxin is regulated during protein production10-51 

12 and through degradation by proteases13,14. Proteases, such as Lon and ClpP, are largely 52 

responsible for protein degradation and cell maintenance15,16. They provide an essential level of 53 

protein regulation throughout the cell, including degradation of RpoS (a transcription factor that 54 

responds to stress)17 and polypeptides (incomplete proteins) synthesized by stalled ribosomes that 55 

have been rescued by the trans-translation system18. In E. coli, ssrA (tmRNA) and smpB are the 56 

genes responsible for trans-translation, the cellular mechanism for recovering stalled ribosomes. 57 

A tmRNA molecule acts as a tRNA by binding to the A-site of a stalled ribosome and a protein-58 

coding region that adds an amino acid tag (LAA) to target the polypeptide for degradation by 59 

ClpXP18. While ssrA is not essential in E. coli, ssrA knockouts cause growth defects, increase 60 

susceptibility to certain antibiotics19, and affect persistence20,21. Proteases and related chaperones 61 

are also consistently identified as persister related genes in gene knockout experiments22,23 and 62 

transcriptome analysis24. Indeed, a drug that targets persisters, acyldepsipeptide (ADEP4), 63 

activates the protease ClpP and lowers persister levels25. Most published articles focus on methods 64 

that reduce persister levels, but conditions that increase their levels are integral to understanding 65 

the causative mechanisms of action and developing new drugs. As many persister studies 66 
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incidentally examine antibiotic tolerance5,6, it follows that some of these mechanisms may also 67 

play a role in antibiotic tolerance. 68 

Synthetic biology takes advantage of these components to develop new cellular circuits. For 69 

example, synthetic oscillators require rapid degradation of proteins, which is accomplished using 70 

the LAA degradation tag derived from ssrA26-28. Previous work establishes that multiple circuits 71 

can be coordinated by overproduction of a degradation tag used by those circuits to target proteins 72 

to a protease29,30. When a protease is overloaded, protein species compete for degradation; the 73 

enzyme is unable to keep up with the influx of new proteins31. This phenomenon can be explained 74 

by queueing theory, the study of waiting lines (in which one type of customer competes for 75 

processing by servers), which has traditionally been applied to systems such as computer networks 76 

and call centers. Limited processing resources (e.g. proteases) in a cell cause biological queues 77 

(enzymatic bottlenecks)28,32 (Fig. 1B). The coupling of otherwise independent synthetic systems 78 

demonstrates that queueing affects protein degradation and thus provides a tunable method of 79 

studying proteolytic degradation with little effect on cell growth28-30,32 compared to gene 80 

knockouts and overexpression of proteases15,33,34.  81 

To explore proteolytic degradation under antibiotic stress, we have applied queueing theory to 82 

affect protein degradation. Previous studies have used knockout mutants to affect protease activity, 83 

but these studies yielded mixed and conflicting results6,21,23,35-37. The variability between results of 84 

knockout mutations could be due to differences in growth rates, which would modulate antibiotic 85 

efficacy. Proteolytic queueing is preferred over protease knockouts when probing antibiotic 86 

efficacy because protease knockouts often result in growth defects15,33, but proteolytic queueing 87 

does not noticeably affect cell growth or death28-30,32, even in stationary phase (Fig. S1). Our results 88 

show that during antibiotic treatment, degradation plays a role in cell survival and the effect is 89 
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tunable using queue formation. Proteolytic queueing at ClpXP increases antibiotic survival and 90 

analysis of population decay with and without a queue demonstrates that queueing specifically 91 

increases antibiotic tolerance. Indeed, the results we describe here would not have been identified 92 

in a clpP knockout; clpP knockouts have growth defects34 and any increase in tolerance would 93 

have been difficult to differentiate from this effect. We hypothesize that the queue is affecting the 94 

degradation of one or many regulatory molecules within the cell that cause downstream effects 95 

and enhance antibiotic tolerance. These results demonstrate that proteolytic queueing provides a 96 

new method to probe antibiotic tolerance and persistence.  97 

Proteolytic queueing affects tolerance 98 

We used E. coli strains derived from DH5αZ132 (a common strain used in synthetic biology) to 99 

test antibiotic tolerance and persistence. Cultures were grown to stationary phase and incubated 100 

for 24 hours prior to dilution into fresh media containing ampicillin to quantify persistence (see 101 

Methods). A proteolytic queue was induced via the production of a tagged fluorescent protein, 102 

CFP-LAA, which we expressed under an IPTG inducible promoter, Plac/ara-1. This synthetic strain 103 

has previously been used to study proteolytic queueing32, and other queueing studies have used 104 

similar constructs28-30,38. No apparent change in growth was observed by induction (Fig. S1) as 105 

reported previously29,30. The effects of queue formation on antibiotic survival are shown as the 106 

percentage of the population that survived ampicillin treatment (Fig 2). When CFP alone (the no 107 

degradation tag control) was overexpressed during ampicillin treatment, there was no significant 108 

effect on persister levels (p > 0.2, Fig. 2A). Queue formation (overexpression of CFP-LAA) during 109 

ampicillin treatment led to a 25-fold increase in survival after three hours in a concentration-110 

dependent manner (Fig. 2B; p<0.0001, n ≥12).  111 
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When a queue was induced for 24 hours prior to ampicillin treatment the surviving population 112 

was over 80-fold higher than the uninduced population, only if induction was maintained during 113 

ampicillin treatment. However, if the inducer was removed during ampicillin treatment, the initial 114 

24 hours of queueing had a minimal effect on survival after three hours (p>0.01, Fig. 2C). These 115 

results indicate that survival was affected by queue formation rather than CFP itself, and that the 116 

size of the queue (level and length of induction) determines the level of the effect. To confirm that 117 

these results are due to induction during antibiotic treatment, we waited one hour into ampicillin 118 

treatment before inducing expression of the fluorescent protein. As we previously observed, 119 

induction of untagged CFP had no apparent effect on persister levels (Fig. 2D). Quantification of 120 

fluorescence after ampicillin treatment confirmed that CFP was produced (Fig. 2E), and 121 

overexpression of CFP-LAA for two hours of ampicillin treatment still increased cell survival 122 

compared to the uninduced and untagged CFP populations (Fig. 2D). 123 

We did further testing to confirm this effect is not specific to glycerol as a carbon source or 124 

ampicillin as the antibiotic. When glucose was the carbon source rather than glycerol, survival still 125 

increased due to CFP-LAA induction (Fig. 2F), which demonstrates that the effect is not directly 126 

related to the carbon source. We then tested the effects of queueing against the antibiotic 127 

ciprofloxacin, because ciprofloxacin targets DNA gyrase39 while ampicillin targets the cell wall40. 128 

CFP alone caused an increase in survival (Fig. 3A), but the CFP-LAA tag led to a vastly higher 129 

number of persisters. We suspect that high production of CFP with no apparent method of removal 130 

(besides cell division; minimal degradation) could cause cell stress and affect survival, especially 131 

since high levels of fluorescent proteins can cause oxidative stress41,42, which is known to increase 132 

persistence43-45. However, CFP-LAA is removed via degradation (indicated by lower fluorescence 133 

than CFP-untagged), and thus the effects seen via overexpression of CFP should be less prominent 134 
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during CFP-LAA overexpression. In fact, queue induction increased survival during ciprofloxacin 135 

treatment approximately 60-fold (Fig. 3B). These results indicate that the effects of CFP-LAA can 136 

be largely attributed to queueing rather than overexpression of CFP itself and demonstrate that 137 

queueing effects on antibiotic survival are observed for two carbon sources and two different types 138 

of antibiotics. 139 

Chloramphenicol inhibits the synthetic queue 140 

Neither ampicillin nor ciprofloxacin directly affect production of the fluorescent protein (i.e. 141 

target transcription or translation) and thus should not prevent queue formation. On the other hand, 142 

an antibiotic that affects protein production should prevent queue formation, and therefore CFP-143 

LAA induction would not affect survival in the presence of such an antibiotic. We found this to be 144 

the case when testing the effects of queueing on the survival of cells treated with chloramphenicol. 145 

Chloramphenicol is an antibiotic that inhibits protein translation by binding to bacterial ribosomes 146 

and inhibiting protein synthesis, thereby inhibiting bacterial growth46. Induction of CFP-LAA does 147 

not increase survival of antibiotic treatment when treated with chloramphenicol alone (Fig. S2), 148 

but chloramphenicol is not bactericidal, so we also co-treated cultures with ampicillin and 149 

chloramphenicol. The overall percent survival with chloramphenicol is much higher than with 150 

ampicillin alone, which is consistent with the literature47. As expected, co-treatment with 151 

ampicillin and chloramphenicol had no apparent effect on cell survival, supporting that even when 152 

CFP-LAA was induced the queue could not form if translation was blocked (Fig. 3C).  153 

Proteolytic queueing affects population decay 154 

To gain further insight into the relationship between proteolytic queueing, tolerance and 155 

persistence, we measured how a proteolytic queue affects population decay by measuring survival 156 

for up to 8 hours of ampicillin treatment. Our results show a typical biphasic curve indicative of 157 
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persister cells in the uninduced population. When the population is induced 24 hours prior to and 158 

during antibiotic treatment this curve shifts as the rate of population decay slows compared to 159 

uninduced cultures. The addition of the inducer solely during antibiotic treatment has a similar 160 

effect between two and three hours into treatment. If the queue is induced 24 hours prior to 161 

antibiotic treatment, but the queue is not maintained (i.e. the inducer is removed during antibiotic 162 

treatment) the effect of the queue dissipates between one to two hours. There is no apparent 163 

difference between induced and uninduced cultures after 8 hours, which suggests there is little to 164 

no effect on persistence (Fig. 4A). In some cases, the change in survival at three hours might be 165 

interpreted as a change in persistence; however, the shift in decay rates (as described in Fig. 1A) 166 

clearly demonstrates that queueing increases antibiotic tolerance rather than persistence. 167 

Furthermore, the effects caused by adding or removing the inducer during antibiotic treatment 168 

suggest that the change in antibiotic tolerance is due to an active response to the queue, which 169 

must be maintained to affect survival. 170 

Computational modeling of tolerance/persistence 171 

 Based on the in vivo results, we considered a computational model of population decay during 172 

antibiotic treatment modified from Kussel et al.48. While it is difficult to differentiate between 173 

persisters and tolerant cells experimentally, the model allows us to explore how the distribution of 174 

persistence and tolerance within a population affects population decay. In our model, the persister 175 

population (P) has a lower death rate than the susceptible population (N), where the death rates are 176 

represented by µp and µn respectively. We estimated µp and µn based on the decay rate of the 177 

uninduced population before and after two hours, and set the initial persister population to 0.2% 178 

of the total population (Fig. 4B). Normal (susceptible) cells enter persistence at rate α, and persister 179 

cells return to the normal state at rate β. The rates α and β were set relative to µn based on the 180 
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relationship between these values in Kussel et al48. Our base model closely resembles population 181 

decay as measured in experimental tests. We use the model to determine whether the increase in 182 

overall population survival due to queue formation can be attributed to an increased rate of entering 183 

persistence (α) or increased tolerance (i.e. decreased µn). Exploration of these parameters using 184 

stochastic simulations shows that increasing the rate at which normal cells become persisters (α) 185 

does not affect the length of the first phase of population decay (Fig. 4C), while decreasing the 186 

rate of normal cell death (µn) lengthens the first phase of population decay (Fig. 4D). Thus, our 187 

model supports that the effect of queueing on population decay is due to an increase in antibiotic 188 

tolerance.  189 

Discussion 190 

Proteolytic queueing is an integral component of native systems that has great potential for 191 

applications outside of synthetic biology. Here we show that queueing provides a tunable method 192 

to interfere with protease degradation and affect antibiotic tolerance. Although persistence does 193 

not appear to be affected by the proteolytic queue at ClpXP, the effect may simply need to be 194 

stronger than what we tested here, or perhaps slowed translation and transcription of persister cells 195 

may be preventing induction of the queue during the persister state. An increase in antibiotic 196 

tolerance due to queue formation may be specific to overexpression of the LAA-tag, especially 197 

when considering that the number of LAA tagged proteins in a native system increases during 198 

stress. For example, the number of proteins with LAA tags increase during heat shock49, and queue 199 

formation at the proteases is likely a consequence of the increasing cellular traffic. Furthermore, 200 

removing the LAA tag from SsrA while maintaining the ribosome rescue function results in a 201 

decreased survival of ampicillin treatment in E. coli21. As the LAA tag could be a measurement of 202 

environmental stress, cells may have evolved to increase tolerance in response to increased 203 
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queueing via LAA. As such, the effects of proteolytic queueing could be common to prokaryotes 204 

when considering the role of the ribosome rescue system during stress.  205 

Proteolytic queueing is likely also affecting the proteome of the cell, either directly or indirectly. 206 

Pleiotropic effects on protein content and gene regulation could be limiting antibiotic efficacy. 207 

Queue formation likely increases the intracellular concentration of multiple protein species causing 208 

a regulatory cascade. When considering proteins both degraded by ClpXP and related to 209 

persistence, TA systems are unlikely to be the causative factor, because decreasing degradation 210 

should increase antitoxin levels and decrease survival rather than increase survival as we observe. 211 

Regulatory proteins are possible candidates for the causative factor in queueing effects on 212 

tolerance. Such proteins include RpoS and DksA (both degraded by ClpXP), which have been 213 

implicated in persistence21,45,50 and may be involved in tolerance. Increased concentrations of these 214 

regulatory proteins due to slowed degradation could be causing downstream effects that lead to 215 

increased tolerance. In a similar vein, computational modeling has shown that altering degradation 216 

of MarA (a regulatory protein related to antibiotic tolerance) leads to increased coordination of 217 

downstream genes51. While these results are specific to queueing at ClpXP,  tags are available to 218 

test the effects of queueing at other proteases (e.g. Lon and ClpAP)32. Because proteolytic 219 

regulation of gene regulatory proteins is common throughout prokaryotes, identifying which 220 

proteins are affected by queueing could provide key details concerning the cellular mechanisms of 221 

antibiotic tolerance.   222 

Conclusion 223 

We have found that the level of antibiotic tolerance increases upon induction of a proteolytic 224 

queue at ClpXP via overexpression of LAA tagged proteins. The effect of queueing on cell survival 225 

of ampicillin and ciprofloxacin relies on queue induction during antibiotic treatment, and therefore 226 
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transcription and translation must be occurring during antibiotic treatment to maintain the queue. 227 

While it is unlikely that TA systems are responsible for the increase in survival due to queue 228 

formation, there could be one or many regulatory proteins perturbed by the queue that affect 229 

tolerance. It is probable that cells have evolved to increase antibiotic tolerance in response to 230 

environmental stress, which may be signaled by proteolytic queues. Alternatively, the 231 

phenomenon could be a specific response to an overabundance of LAA tagged proteins, which 232 

would naturally occur during nutrient starvation because of increased ribosome stalling. 233 

Identifying regulatory proteins of bacterial tolerance and persistence and understanding how these 234 

proteins interact with the whole cell are of great interest because they provide potential targets for 235 

killing bacterial pathogens, and proteolytic queues are a new method to explore these regulatory 236 

elements. 237 

Materials and Methods 238 

Strains and Plasmids 239 

All strains are derived from E. coli DH5αZ1, and contain plasmids with the synthetic circuits, 240 

p24KmNB82 (CFP-LAA) and p24KmNB83 (untagged CFP) as described in REF32. The cultures 241 

were grown in modified MMA media52, which we will refer to as MMB. MMB media consists of 242 

the following: K2HPO4 (10.5 mg/ml), KH2PO4 (4.5 mg/ml), (NH4)2SO4 (2.0 mg/ml), C6H5Na3O7 243 

(0.5 mg/ml) and NaCl (1.0 mg/ml). Additionally, MMB+ consists of MMB and the following: 2 244 

mM MgSO4 x 7H2O, 100 µM CaCl2, thiamine (10 µg/ml), 0.5% glycerol and amino acids (40 245 

µg/ml). Cultures grown on glucose as the carbon source included 0.5% glucose instead of glycerol. 246 

Strains containing the plasmid p24Km and derivatives were grown in MMB+ kanamycin (Km, 25 247 

µg/ml) or on Miller’s Lysogeny broth (LB) agar plates + Km (25 µg/ml). All cultures were 248 

incubated at 37ºC and broth cultures were shaken at 250 rpm.  249 
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Quantification of persistence 250 

Persisters were quantified by comparing colony-forming units per milliliter (CFU/ml) before 251 

antibiotic treatment to CFU/ml after antibiotic treatment. The procedure for quantifying persister 252 

levels is based on previous research53-55 (Fig. S3). Briefly, overnight cultures were diluted 1/100 253 

into fresh media and grown until they reach approximately OD600 0.3. A reduced volume of culture 254 

(20 ml) was aliquoted into a 125 ml flask, and grown for 16 hours to enter stationary phase. Once 255 

in stationary phase, cultures were divided into two flasks with 0.2% arabinose, one flask of each 256 

replicate was also treated with 100 nM IPTG to induce expression under Plac/ara-1. Arabinose was 257 

added to both induced and uninduced cultures to maintain consistency (Fig. S4). All flasks were 258 

incubated for 24 hours before taking samples for plating and antibiotic treatment; cells were diluted 259 

1/10053,54 into glass tubes, treated with 10X the MIC of ampicillin (100 µg/ml; Fig. S5) or 100X 260 

MIC of ciprofloxacin (1 µg/ml) at 37°C and shaken at 250 rpm for select time periods, 3 hours 261 

unless otherwise stated. Ampicillin solutions were stored at -80°C and only thawed once to reduce 262 

variability19,56. When indicated, samples were treated with chloramphenicol (5 µg/ml); cultures 263 

treated with chloramphenicol alone were diluted 1/10. Samples for quantification of CFU/ml were 264 

kept on ice and diluted using cold MMB before plating on LB/Km (25 µg/ml) agar plates. Cultures 265 

treated with ciprofloxacin were centrifuged at 16,000 x g for 3 minutes then washed with cold 266 

MMB to dilute ciprofloxacin before taking samples for quantification. LB agar plates were 267 

incubated at 37ºC for 40-48 hours, then scanned using a flatbed scanner57,58. Custom scripts were 268 

used to identify and count bacterial colonies59 then calculate CFU/ml and persister frequency. 269 

Colonies were tested periodically for resistance, and we found no resistance in >350 colonies 270 

tested.  271 
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Quantification of CFP  272 

 Cells were grown and treated with ampicillin as described for quantification of persistence 273 

above. After antibiotic treatment, 300 µl of cell culture was added to individual wells in a 96-Well 274 

Optical-Bottom Plate with Polymer Base (ThermoFisher) for fluorescence measurement using 275 

FLUOstar Omega microplate reader. The excitation and emission (Ex/Em) used for CFP 276 

measurement was 440/480. Readings were measured after four minutes of shaking to decrease 277 

variability between wells. Background fluorescence (mean fluorescence of MMB media) was 278 

subtracted from the raw reads. Fluorescence values were normalized by CFUs as determined by 279 

quantification of persistence, which was carried out simultaneously. Mean and SEM for 280 

fluorescence was determined across four biological replicates and three technical replicates. 281 

Computational modeling 282 

Our model is modified from Kussel et al.48 where P is the persister population and N is the total 283 

population (Fig 4B). Initial species counts P and N were set to 9998 and 2 respectively for all 284 

simulations, which we based on the percent survival of uninduced cultures. The death rate of N 285 

(µn) and P (µp) and the rate of entering (α) and exiting (β) persistence were set as shown in Fig. 4B 286 

unless otherwise stated. The rate of normal cell division (ω) was set to zero, as normal cells cannot 287 

divide without lysis during ampicillin treatment60. All simulations were performed using a custom 288 

implementation of the Gillespie algorithm61 in Python leveraging optimizations made possible by 289 

the Cython library62. Libraries from the SciPy stack63 were used for analysis.  290 

Statistics 291 

All data is presented as mean ± SD or SEM of at least 3 biological replicates as appropriate64. 292 

Statistical significance for populations with the same number of replicates (n) was determined 293 

using one-way f-test to determine variance (p<0.001 was considered to have significant variance) 294 
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followed by a Student’s t-test (no variance) or a Welch’s t-test (significant variance). Populations 295 

with different n values were compared using a Welch’s t-test. All statistical tests were run in 296 

Python using libraries from SciPy on groups with at least three biological replicates.  297 

Data availability 298 

The data that supports the findings of this study are available from the corresponding author upon 299 

reasonable request. 300 

Code availability 301 

Code used for model simulations is available on GitHub at 302 

https://github.com/ctogle/mini_gillespiem. Code used for colony counting is available on GitHub 303 

at https://github.com/hdeter/CountColonies.  304 

Acknowledgments 305 

This work is supported by the Hatch project grant no. SD00H653-18/project accession no. 306 

1015687 from the USDA National Institute of Food and Agriculture. 307 

Author contributions 308 

H.S.D wrote the manuscript, developed custom code for colony counting, and ran statistical 309 

analyses. A.A. performed ampicillin and ciprofloxacin persister assays. P.J. performed plate reader 310 

assays. E.S. performed chloramphenicol persister assay. C.T.O. and H.S.D. adapted the persister 311 

model and ran stochastic simulations. N.C.B. initiated and directed the project. All authors 312 

contributed to discussing and editing the manuscript. 313 

Competing interests 314 

The authors declare no competing interests. 315 

Correspondence and request for materials should be addressed to N.C.B.  316 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 23, 2019. ; https://doi.org/10.1101/680504doi: bioRxiv preprint 

https://github.com/ctogle/mini_gillespiem
https://github.com/hdeter/CountColonies
https://doi.org/10.1101/680504


Figures 317 

 318 

Fig 1. a, Examples of population decay in typical (black), high persistence (blue) and high 319 

tolerance (red) populations. A shift in tolerance can be distinguished from a change in the number 320 

of persisters. For example, a high persistence population can initially have the same decay rate as 321 

a typical population, but have higher survival because of more persisters (dotted blue line). A high 322 

tolerance population can have the same persister level as a typical population, but have a shift in 323 

the initial decay rate (dotted red line). b, A simple model of proteolytic queueing. When native 324 

proteins have low competition for the protease, there is no queue. Induction of synthetic tagged 325 

proteins competes with the native proteins for the protease and overloads the protease, which 326 

results in a proteolytic queue (bottleneck). 327 
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  328 

Fig. 2. Proteolytic queueing affects survival of cells treated with the antibiotic ampicillin. a, 329 

Induction of untagged CFP during antibiotic treatment has no significant effect on survival (p>0.2). 330 

b, Induction of CFP-LAA during antibiotic treatment causes an increase in persistence. c, CFP-331 

LAA was induced (+) with 100 µM of IPTG or not induced (-). Induction before ampicillin lasted 332 

24 h in stationary phase prior to antibiotic treatment. Queueing only affects survival if the queue 333 

is maintained during ampicillin treatment. d-e, Expression of CFP or CFP-LAA was induced with 334 

IPTG one hour into the three-hour antibiotic treatment. Induction of CFP alone (no queue) had no 335 

significant effects on survival. Induction of CFP-LAA increased survival (d). Population 336 

fluorescence was measured for untagged CFP after antibiotic treatment, demonstrating that CFP 337 

is being produced via induction (e). f, Induction of CFP-LAA during antibiotic treatment causes 338 

an increase in persistence with glucose as a carbon source rather than glycerol, demonstrating that 339 

it is not a solely a carbon-specific phenomenon. Error bars represent SEM. n ≥ 3. *p<0.05. 340 

**p<0.01. ***p<0.001. ****p<0.0001.  341 
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 342 

Fig. 3. Proteolytic queueing effects in the presence of ciprofloxacin and chloramphenicol. a, 343 

Induction of untagged CFP during ciprofloxacin treatment increases survival less than 4-fold. b, 344 

Induction of CFP-LAA during ciprofloxacin treatment increases survival over 50-fold. c, Induction 345 

of CFP-LAA during ampicillin and chloramphenicol treatment has no apparent effect on 346 

persistence (p>0.7). X-axis labels correspond to Fig. 2. Error bars represent SEM. n≥3. *p<0.05. 347 

**p<0.01.  348 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 23, 2019. ; https://doi.org/10.1101/680504doi: bioRxiv preprint 

https://doi.org/10.1101/680504


Fig. 4. Time of queue formation influences 349 

survival. a, Stationary phase cells were 350 

diluted 1/100 into fresh media containing 351 

ampicillin (100 µg/ml) and sampled every 352 

hour for 8 h (n ≥ 3). Symbols (-/+) correspond 353 

to Fig. 2C.  Error bars represent SEM. 354 

Asterisks indicate p-value (compared to no 355 

induction (black)) *p<0.05, **p<0.01, 356 

***p<0.001, ****p<0.0001. There is 100% 357 

survival at time zero, because percent 358 

survival is determined based on the surviving 359 

CFU/ml compared to the CFU/ml at time 360 

zero. b-d, Stochastic model of population 361 

decay with antibiotic treatment. b, Reactions 362 

for the model (left) and baseline reaction rates 363 

used for the simulations (right) unless stated 364 

otherwise (red lines below). Normal cell 365 

division (ω) was set to zero as dividing cells 366 

die during ampicillin treatment. c, Increasing 367 

the rate of entering persistence (α) increases 368 

cell number during the second phase of 369 

population decay. Inset is indicated by the 370 

dotted black line. d, Decreasing the rate of 371 

normal cell death (µn) causes the first phase 372 

of population decay to lengthen.  373 
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Supplementary Figures and Data 374 

 375 

Fig S1. Induction of untagged CFP and CFP-LAA tag has no apparent effect on growth in 376 

MMB+ media. The Y-axis is in log CFU/ml of induced and uninduced cultures over 48 hours. 377 

n≥3. Error bars represent the standard deviation.   378 
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 379 

Fig. S2. Induction of CFP-LAA does not increase survival of cells treated with 380 

chloramphenicol. Cultures were treated with chloramphenicol, an antibiotic that inhibits 381 

translation, after a 1/10 dilution into fresh media from stationary phase. Induction of CFP-LAA 382 

via IPTG had no significant change in persistence compared to the uninduced cultures (p>0.7; 383 

n≥3). Error bars represent SEM.  384 
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 385 

Fig. S3. Persister assay flow chart. See Methods for details.  386 
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 387 

Fig. S4. The addition of arabinose had no apparent effect on the tolerance/persister level 388 

during ampicillin treatment. Both IPTG and arabinose are inducers for CFP untagged and CFP-389 

LAA tagged proteins. IPTG induces expression, arabinose alone does not induce expression, but 390 

arabinose can enhance expression when used in combination with IPTG. The effect of adding 391 

arabinose (0.2%) on tolerance/persistence to ampicillin was tested with CFP-LAA. Adding 392 

arabinose does not have a significant effect on survival of cells after 3 hours of ampicillin treatment 393 

(p>0.3). Error bars represent SEM. n ≥ 3.   394 
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 395 

Fig S5. Determination of Minimal Inhibitory Concentration (MIC) for ampicillin. 396 

Exponential phase cultures were treated with different concentrations of ampicillin. The MIC was 397 

determined to be 10 µg/ml (p <0.03 compared to zero). Error bars represent the standard deviation.  398 
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