
Nonlinear Interaction Decomposition (NID):

A Method for Separation of Cross-frequency Coupled

Sources in Human Brain

Mina Jamshidi Idajia,b, Klaus-Robert Müllerb,c,d, Guido Noltee, Burkhard
Maessa, Arno Villringera,f, Vadim V. Nikulina,g,h,∗

aMax Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
bMachine Learning Group, Technical University of Berlin, Berlin, Germany

cDepartment of Brain and Cognitive Engineering, Korea University, Anam-dong,
Seongbuk-gu, Seoul, Republic of Korea

dMax Planck Institute for Informatics, Stuhlsatzenhausweg, Saarbrücken, Germany
eDepartment of Neurophysiology and Pathophysiology, University Medical Center

Hamburg-Eppendorf, Hamburg, Germany
fDepartment of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
gCentre for Cognition and Decision Making, Institute for Cognitive Neuroscience,

National Research University Higher School of Economics, Moscow, Russia
hNeurophysics Group, Department of Neurology, Charité-Universitätsmedizin Berlin,
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Abstract

Cross-frequency coupling (CFC) is a phenomenon through which spatially
and spectrally distributed information can be integrated in the brain. There
is, however, a lack of methods decomposing brain electrophysiological data
into interacting components. Here, we propose a novel framework for detect-
ing such interactions in Magneto- and Electroencephalography (MEG/EEG),
which we refer to as Nonlinear Interaction Decomposition (NID). In contrast
to all previous methods for separation of cross-frequency (CF) sources in the
brain, we propose that the extraction of nonlinearly interacting oscillations
can be based on the statistical properties of their linear mixtures. The main
idea of NID is that nonlinearly coupled brain oscillations can be mixed in
such a way that the resulting linear mixture has a non-Gaussian distribution.
We evaluate this argument analytically for amplitude-modulated narrow-
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band oscillations which are either phase-phase or amplitude-amplitude CF
coupled. We validated NID extensively with simulated EEG obtained with
realistic head modeling. The method extracted nonlinearly interacting com-
ponents reliably even at SNRs as small as −15 (dB). Additionally, we applied
NID to the resting-state EEG of 81 subjects to characterize CF phase-phase
coupling between alpha and beta oscillations. The extracted sources were
located in temporal, parietal and frontal areas, demonstrating the existence
of diverse local and distant nonlinear interactions in resting-state EEG data.

Keywords: Nonlinear interaction decomposition, NID, Cross-frequency
coupling, MEG, EEG, nonlinear neuronal interactions, Independent
component analysis, ICA

1. Introduction

Oscillatory neuronal activity has been associated with almost all brain
operations including sensory, motor and cognitive processes (Buzsáki and
Draguhn, 2004). In humans, these oscillations can be measured with magneto-
and electroencephalography (MEG/EEG), where the frequency content is
classically divided into specific frequency bands, namely δ (0.5-4Hz), θ (4-
8Hz), α (8-12Hz), β (12-25Hz), γ (25-70Hz)1. Each frequency band has
been associated with specific functional roles. For example, alpha oscilla-
tions are known to be relevant for attention/sensory processing (Groppe
et al., 2013; Klimesch, 2012), while beta-band activity is primarily associ-
ated with sensorimotor processing (Bayraktaroglu et al., 2011; Kilavik et al.,
2013; Klimesch, 2012; Salmelin and Hari, 1994). While specific neuronal op-
erations can be carried out by oscillations in distinct frequency bands, there
should be neuronal mechanisms integrating such spatially and spectrally dis-
tributed processing (Palva et al., 2005). In this way neuronal communica-
tions can be considerably enriched via coupling of neuronal oscillations within
one frequency band (Engel and Fries, 2010; Fries, 2015) as well as between
different frequency bands. Various types of cross-frequency (CF) interac-
tions among neural oscillations, namely phase-phase, amplitude-amplitude,
phase-amplitude coupling have been observed in human electrophysiological
recordings (e.g. MEG/EEG) (Canolty and Knight, 2010; Jensen and Colgin,

1The range of frequencies in each frequency band slightly differs in different refer-
ences.
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2007; Nikulin and Brismar, 2006; Palva et al., 2005) and have been linked to
diverse perceptual and cognitive processes (Canolty and Knight, 2010; Fell
and Axmacher, 2011; Hyafil et al., 2015; Palva et al., 2005; Sauseng et al.,
2008; Siebenhühner et al., 2016). In this study, we focus on the extraction of
these interactions from multi-channel MEG/EEG. While the novel approach
introduced here is applicable to different types of CFC, a special emphasis is
dedicated to phase-phase coupling for the following reasons.

The phase of neuronal oscillations is known to represent the timing of
the firing of a neuronal population generating the oscillation (Fries, 2009,
2015; Palva et al., 2005; Siegel et al., 2012), while its amplitude reflects the
strength of local spatial synchronization (Siegel et al., 2012). The interaction
of the activities of distinct neuronal populations is manifested in the lock-
ing of phase/amplitude of the observed oscillations. Phase-phase coupling
is a type of CFC that operates with millisecond precision for both oscilla-
tions (Fell and Axmacher, 2011; Palva et al., 2005; Siegel et al., 2012) and
investigating it with MEG/EEG recordings can provide a unique possibil-
ity to study synchronization of the spiking of distinct neuronal populations
non-invasively (Palva and Palva, 2018).

A number of previous studies have investigated CF phase synchroniza-
tion in sensor-space (Darvas et al., 2009; Nikulin and Brismar, 2006; Palva
et al., 2005; Tass et al., 1998). However, volume conduction does not allow
the disentanglement of individual components. In order to resolve this issue,
some previous studies have investigated the phase synchrony in the source-
space using inverse modelling (Siebenhühner et al., 2016; Tass et al., 2003).
Yet, source-space analysis is computationally exhausting and source recon-
struction methods are ill-posed, which may lead to inconsistent outcomes
(Mahjoory et al., 2017). On the other hand, due to a linear mapping of the
neuronal source signals to the sensors, multivariate methods can increase the
signal-to-noise ratio (SNR) and accuracy of localizing the neuronal activity
(Parra et al., 2005). At the same time, these methods alleviate the problem
of multiple testing in sensor- or source-space analysis. While most of the
multivariate source-separation methods focus on the extraction of indepen-
dent sources (e.g. independent component analysis - ICA), there are only a
few studies utilizing multivariate methods to extract dependent sources from
the electrophysiological recordings of the human brain (Chella et al.; Cohen,
2017; Dähne et al., 2014; Nikulin et al., 2012; Volk et al., 2018). These meth-
ods optimize a contrast function of the desired type of coupling. However, we
show that the coupling can be reflected in the statistical properties of the sig-
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nal constructed through the linear mixing of nonlinearly coupled processes.
We refer to our method as Nonlinear Interaction Decomposition (NID).

The rest of the manuscript is organized as follows. In section 2 we discuss
the distribution of a linear mixture of cross-frequency coupled oscillations,
which represents the main idea of this work. Section 3 is dedicated to ex-
plaining the proposed method (NID) and its algorithmic steps. In section
4 the experimental data and the analysis/testing approaches are described.
The results of applying NID to simulated as well as resting-state EEG data
are presented in section 5. Finally, a discussion and conclusion are provided
in the last section.

2. Linear mixture of non-linearly coupled oscillations

The oscillations observed in the brain are amplitude-modulated narrow-
band signals. The envelope of these oscillations fluctuate much slower than
the carrier frequency and shows long-range temporal correlation (Linkenkaer-
Hansen et al., 2001). This property leads to the phenomenon that the dis-
tribution of the signal does not deviate strongly from Gaussian distribution
(Hyvärinen et al., 2010). Therefore, each oscillation (with T time-samples)
can be assumed as T realization of a Gaussian random variable.

Any linear combination of independent or linearly dependent Gaussian
random variables is Gaussian. However, the distribution of a linear mix-
ture of nonlinearly dependent Gaussian random variables is not necessarily
Gaussian. While linear dependency of two oscillations means that there is
a within-frequency coupling between them, nonlinear dependency relates to
CFC. The core idea of the current work comes from our observation that
it is possible to find weights for two CF coupled oscillations such that the
resulting mixed signal has a distribution being more non-Gaussian than the
distribution corresponding to each individual oscillations. We have analyti-
cally proved this observation for phase-phase and amplitude-amplitude cou-
pled amplitude-modulated narrow-band signals (supplementary text, section
1). Figure 1 illustrates the working principle of NID. Note that we assess the
non-Gaussianity of a random variable by means of kurtosis, skewness, or 5th
order moments, all of which are zero for Gaussian random variables.
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Figure 1: The core idea of the proposed method (NID). The signals in the bottom of the
figure are linear mixtures signals of S1 and Si, i = 2, 3. The shaded histograms are the
amplitude distributions of the signals. S1 and S3 are CF phase-phase coupled, while S1

and S2 are independent signals with different central frequencies. The distribution of the
linear mixture is non-Gaussian only in the case of the existence of nonlinear dependency
between the two amplitude-modulated narrow-band oscillations.

3. Method

3.1. Notation

We use boldface lower-case letters (e.g. x) to denote vectors, while bold-
face capital letters (e.g. X) are used for matrices. Regular letters, (e.g.
x), indicate scalars. Vectors are used to denote the time series of a signal
or spatial filters/activation patterns. Matrices are used to denote the con-
catenation of vectors. The operators [., .] and [.; .] stand for horizontal and
vertical concatenation of two matrices respectively.
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3.2. Measuring Cross-Frequency Coupling

Depending on the type of the coupling, there are different measures to
quantify CFC. In this paper, we worked with phase-phase and amplitude-
amplitude coupled oscillations. As described below, the phase locking value
(PLV) was used for measuring phase-phase coupling, while amplitude-amplitude
coupling was quantified with the envelope correlation. Both of these measures
are calculated from the instantaneous phase and amplitude of oscillations,
which are computed as the phase and magnitude of the complex analytic
signal based on the Hilbert transform.

Phase-phase coupling. Oscillations with frequencies fn and fm = m
n
fn, n,m ∈

N are called phase-locked |mΦn(t)−nΦm(t)| < const, where Φn(t) and Φm(t)
define the instantaneous phases of the two oscillations at fn and fm respec-
tively. To quantify n : m phase-phase coupling, phase-locking value (PLV)
is widely used (Palva et al., 2005; Sauseng et al., 2008; Scheffer-Teixeira and
Tort, 2016; Siebenhühner et al., 2016) and it is defined as | < ejΨn,m(t) > |,
where Ψn,m(t) = (mΦn(t)− nΦm(t)), < . > stands for computation of the
mean over time samples, j is the imaginary number, and |.| is the absolute
value operator.

Amplitude-amplitude coupling. In the case of amplitude-amplitude coupling,
the instantaneous amplitudes of oscillations are correlated. Therefore, the
correlation coefficient of the oscillations’ envelopes indicates the strength of
amplitude-amplitude coupling.

3.3. Detection of cross-frequency coupling: problem formulation

We assume that there are N non-linearly coupled pairs of source signals
{(s(n)

i , s
(m)
i )}Ni=1 at frequencies fn and fm, where fn = nfb and fm = mfb. fb

is a base-frequency relating fn and fm to each other. In the rest of the paper,
all the criteria and equations mentioned for frequency fn holds for frequency
fm as well. s

(n)
i ∈ R1×T is a narrow-band source signal at fn, where T is

the number of time samples. The electrical (or magnetic) activity measured
at the sensors can be modeled as a linear mixture of the sources as in the
following (Baillet et al., 2001; Haufe et al., 2014):

x = P(n)S(n) + P(m)S(m) + ξ (1)

where X ∈ RC×T is the matrix of multi-channel measured signal with C as

the number of channels. P(n) =
[
p

(n)
1 , · · · ,p(n)

N

]
. We call p

(n)
i ∈ RC×1 the
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mixing pattern of source s
(n)
i . Additionally, S(n) =

[
s

(n)
1 ; · · · ; s

(n)
N

]
∈ RN×T is

the matrix of source signals at fn, which are CF coupled to sources in matrix

S(m) =
[
s

(m)
1 ; · · · ; s

(m)
N

]
. In the equation 1, ξ denotes the noise signal, which

cannot be explained by the linear model. Note that the superscript of the
sources is an indication of their frequency, e.g the superscript (n) in s

(n)
i is

related to the subscript n of fn. As mentioned in section 3.2, the coupling
is called n : m coupling if (s

(n)
i , s

(m)
i ) are phase-phase coupled. However, we

use this notation for amplitude-amplitude coupling as well so that we can
denote the frequency ratios easier.

We provide an example here. Assume that we have 2 coupled source
signals in α and β frequency band, i.e. N = 2, n = 1,m = 2, and fb =

10Hz, f1 = 10Hz, f2 = 20Hz. Then S(1) =
[
s

(1)
1 ; s

(1)
2

]
and S(2) =

[
s

(2)
1 ; s

(2)
2

]
are the CF coupled source signal matrices at frequencies f1 and f2 respec-
tively.

The main problem here is the retrieval of the sets of interacting sources
and their corresponding mixing patterns from the multi-channel signal X.
In other words, there is an additional question compared to typical source
separation problems, i.e. detection of the coupling between the sources.

The above mentioned problem can be generalized to more coupled sources:
for instance, triplets of coupled source signals {(s(n)

i , s
(m)
i , s

(p)
i )}Ni=1. As an ex-

ample, one can think of coupling of source signals with central frequencies
of 10Hz (α), 20Hz (β), and 30Hz (low γ) source signals, which we call 1:2:3
coupling. In this manuscript, we mainly focus on the source model in equa-
tion 1 for pairs of coupled source signals. However, we test the performance
of the method with simulated data for extraction of triplets of source signals
with 1:2:3 coupling.

3.4. Nonlinear Interaction Decomposition (NID)

As discussed in section 2, the working principle of NID is that phase-
phase and amplitude-amplitude coupled amplitude-modulated narrow band
signals can be linearly mixed in the way that the linear mixture has non-
Gaussian distribution. On the other hand, the linear mixture of independent
oscillations is approximately normally distributed.

The NID algorithm consists of two main steps: first, applying a method
to extract approximate estimates of the sources at fn and fm and second,
maximizing the non-Gaussianity of the weighted sum of projected signals
(refer to section 2). A block diagram of NID is depicted in figure 2.
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Multichannel EEG

SSD 
at frequency f

n

SSD 
at frequency f

m

Concatenation

Non-Gaussianity 
Maximization

Projecting the 
Mixing Matrices

Cross-frequency coupled 
components + their 

spatial mixing pattern

Figure 2: Block-diagram of NID. The input is the multi-channel mixed signal. Then
SSD is applied to extract estimates of the source signals at fn and fm. The SSD com-
ponents are concatenated vertically to build an augmented matrix with its rows being
estimates of source signals in the two frequency bands. The augmented matrix is then
passed to a non-Gaussianity maximization (NGM) algorithm for the separation of the
coupled sources. In the last step the weights computed by NGM algorithm are combined
with the mixing matrices of SSD in order to build the mixing patterns of the narrow-
band oscillations. In the output, the time course and the mixing patterns of the coupled
sources are extracted.

In the first step, Spatio-Spectral Decomposition (SSD) (Nikulin et al.,
2011) is applied to extract N oscillations from the multi-channel mixed sig-
nal. SSD is a method based on generalized eigenvalue decomposition, which
calculates the spatial filters that maximize the SNR at the frequency band
of interest. We denote the source model of SSD as X(n) = A

(n)
ssdX

(n)
ssd, where

X(n) ∈ RC×T contains mixed, narrow-band, multi-channel signal with cen-
tral frequency fn. X

(n)
ssd ∈ RN×T is the matrix of SSD components, and

A
(n)
ssd ∈ RC×N is the SSD mixing matrix.
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In the second step of NID, the objective is to find a subspace, in which
linear mixtures of SSD components are maximally non-Gaussian, which re-
sults in separating the cross-frequency coupled oscillations (Appendix A).
This is done through applying a non-Gaussianity maximization decomposi-
tion (NGMD) on an augmented matrix XAug = [X

(n)
ssd;X

(m)
ssd ]. In this way,

NGMD finds the linear mapping, which maximizes non-Gaussianity of the
linear mixtures of the source signal estimates. The NGMD can be formulated
as XAug = ANGRNG, where RNG includes the linear mixtures of SSD com-

ponents. ANG = [A
(n)
NG;A

(m)
NG] is the NGMD linear mapping and A

(n)
NG is the

NGMD linear mapping corresponding to SSD components of frequency fn.
The final mixing matrix, revealing an estimation of the activation patterns
of the coupled oscillations can be computed by back-projecting A

(n)
NG from

SSD space to sensor space:

P̂(n) = A
(n)
ssdA

(n)
NG (2)

We refer the reader to Appendix A and B for more discussion on NGMD
and some practical details about computing the final mixing patterns. Addi-
tionally, the MATLAB c© codes of the NID algorithm are publicly accessible
on GitHub (https://github.com/minajamshidi/NID).

3.5. Statistical testing of coupling

Statistical testing has been applied in order to control for the effects of
overfitting when extracting coupled components. For this purpose, the SSD
components of the lower frequency were cut into one-second segments, which
were then randomly permuted. The NGMD was applied to the augmented
matrix of permuted SSD components of the lower frequency and SSD com-
ponents of the higher frequency. For each iteration of the permutation test,
the strongest PLV of the extracted source pairs was taken as the PLV of that
iteration. Finally, the NID components (extracted from the non-permuted
components), whose PLVs were larger than at least 95% of the PLVs of the
permutation iterations were kept as significant components.

4. Experimental Data

4.1. Simulated EEG

We used realistic head modeling to simulate EEG, consisting of cross-
frequency coupled sources and additive pink noise. In these simulations, the
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strength of the coupling, the number of cross-frequency coupled pairs, and
their mixing patterns were known a-priori; thus, allowing a calculation of the
PLV of extracted source signals and errors for the extraction of activation
patterns.

64-channel EEG signals were simulated based on a three-compartment
realistic head model (Nolte and Dassios, 2005), with channel positions cor-
responding to the standard positions of EEG on the Montreal Neurological
Institute head (Evans et al., 1994). The sources were modeled as multiple
current dipoles located in the triangularly tessellated cortical mantle. The
spatial direction and location of the dipoles were chosen randomly. For ad-
ditive noise, 100 mutually independent pink noise sources were used. N
independent coupled pairs of oscillations were generated based on the type
of interaction. Unless it is mentioned otherwise, two pairs of coupled oscil-
lations (N = 2) were produced. In the rest of the paper, we continue with
phase-phase coupled sources; however, comparable results were achieved for
amplitude-amplitude coupling.

For phase-phase coupled pairs (with PLV=1) at fn = nfb and fm = mfb,
a narrow-band signal centered at fb was produced by band-pass filtering an
array of white-Gaussian noise. The phases of the sources at frequencies fn
and fm were obtained by frequency-warping (Nikulin et al., 2012) of the
phase of the signal at fb, meaning that the phase of the oscillation at fb was
multiplied by n and m. For each of the signals at fn and fm, the amplitude
envelope was set equal to the envelope of an independent array of band-passed
white-Gaussian noise at the same frequency band. We set fb = 10Hz in the
simulations with the motivation of having α band as the base frequency. The
cuttoff frequencies of the band-pass filter was 8Hz and 12Hz.

Note that, a fourth-order Butterworth filter was used in all cases of band-
pass filtering, applied backward-forward to prevent phase distortion. Addi-
tionally, the sampling frequency was set to 500Hz.

4.1.1. Evaluating NID using simulated data

Evaluation criteria

For each simulation, the dissimilarity between the original, a-priori known
(p) and the extracted (p̂) mixing patterns was measured using the following
index for each extracted oscillation:

d(p, p̂) = 1− p.p̂

|p||p̂|
(3)
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Simulated pattern Error = 0.005 Error = 0.17 Error = 0.26

Figure 3: A simulated activation pattern and three other patterns and their dissimilari-
ties (error) to the simulated one. The error is computed according to equation 3.

Figure 3 shows an example of a simulated activation pattern and three other
patterns along with their dissimilarities to the simulated one.

Since the estimated mixing patterns are compared with the ground truth
when working with the simulated data, the above dissimilarity index is called
the error of mixing patterns. Having N pairs of coupled sources in each
simulation, 2N errors are computed. The median of these errors was reported
as the representative error of the source recovery.

Another parameter that helps to evaluate the performance of the algo-
rithm is the PLV of the extracted sources. For each simulation, the mean
PLV of all extracted pairs of sources (average of N values) was reported.

Evaluation conditions

NID’s performance was examined at various signal-to-noise ratios (SNR),
values for strength of coupling, and number of pairs of coupled oscillations.
For each condition, 100 five-minute EEG signals were simulated comprising
pairs of coupled oscillations at frequencies (10Hz,20Hz), (10Hz,40Hz), and
(20Hz,30Hz), which we refer to as 1:2, 1:4, and 2:3 coupling, respectively.
SNR was defined as the ratio of the mean power of the projected oscillations
to the power of projected pink noise at each frequency.

Another important issue was to investigate whether the method overfits
the data when finding the coupled sources. We checked this for NID consider-
ing two aspects: frequency specificity and noise overfitting. This is explained
in the next two paragraphs.

Firstly, we investigated how NID performs in separating coupled source
signals with the frequency ratio of n : m when the algorithm’s parameters are
not set equal to n and m. To verify this, coupled sources with the frequency
ratio of 1:4 were simulated, while the frequency ratio parameters of NID was
set to 1:2.
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Additionally, we investigated whether the algorithm overfits the noise of
the data by extracting spurious sources. For this purpose, the EEG signal was
first simulated without any oscillations being added (i.e. the EEG channels
contained only projected noise). Second, NID was applied on the simulated
EEG consisting of pink noise and two independent oscillations at each of
two frequency bands of interest, i.e. [8,12]Hz and [16,24]Hz. The frequency
ratio parameters of NID were then set to 1:2. The performance of NID was
evaluated in 100 simulations where NID was applied to find two 1:2 coupled
sources. The significance of the coupling of the extracted sources was assessed
through the statistical testing described in section 3.5.

NID for triplets of sources

To test the reliability of NID for recovering triplets of the coupled sources
(refer to section 3.4), two triplets of 1:2:3 coupled sources (oscillations at
10Hz, 20Hz, and 30Hz) were simulated at different SNRs and the performance
of NID was evaluated by assessing the error of mixing patterns and the mean
PLV of the extracted sources. Note that for each set of coupled oscillations,
the PLV is computed as the mean PLV of 1:2 and 1:3 coupled signals.

4.2. Real EEG

We applied NID to resting-state EEG data from the open access database
of the LEMON study (the Leipzig study for mind-body-emotion interac-
tions). This study was carried out in accordance with the Declaration of
Helsinki and the study protocol was approved by the ethics committee at
the medical faculty of the University of Leipzig (Babayan et al., 2018). The
dataset includes 16-min, 62-channel resting-state EEG recordings, which con-
sist of 16, interleaved, one-minute blocks of eyes-closed (EC) and eyes-open
(EO) conditions. The EEG was recorded with a band-pass filter between
0.015 Hz and 1 kHz and a sampling frequency of 2500 Hz.

For our analysis, we have used the recordings of young (20-35 years old),
right-handed men, which totaled 81 subjects. From the total EEG available
(16 min), only the EC condition was used, resulting in eight-minute resting
EEG data for each of the subjects.

The preprocessed EEG data from the LEMON study is publicly available
in the database. In the preprocessing steps, the signal has been downsampled
to 250 Hz, band-pass filtered within [1,45]Hz with a fourth-order Butterworth
filter (applied backward-forward), and split into EO and EC conditions. Arti-
fact rejection has been done through visual inspection, principal component
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analysis (PCA), and ICA. For more details of preprocessing procedure we
refer the reader to (Babayan et al., 2018).

4.2.1. Extraction of interacting sources from real data

We used NID for extracting phase-phase coupling between alpha ([8,12]Hz)
and beta ([16,24]Hz) frequency bands.

For each subject, five pairs of coupled oscillations were initially extracted.
The significance of the extracted sources for each subject was determined
with the permutation test explained in section 3.5. From the extracted pairs
of coupled source signals, those that their PLVs could survive the permuta-
tion test were kept as significant and used in the further analysis.

4.2.2. Evaluating NID using real data

While decomposing real data, it is not possible to examine the validity
of the extracted mixing patterns. Therefore, we , firstly, examined the PLV
of the extracted source signals. In the next step, in order to inspect the
relationship of the spatial location of the paired oscillations, the dissimilarity
of their activation patterns was calculated using equation 3. The smaller the
computed index, the more similar the activation patterns. A dissimilarity
of zero would indicate that the cross-frequency interactions can be due to
the presence of multiple harmonics, while non-zero dissimilarities is likely to
indicate the presence of genuine interactions. Spatially distinct interactions
are mostly interesting for us, because they can demonstrate remote interac-
tions in the brain. Additionally, we investigated the relationship between the
PLV of the extracted coupled oscillations and the dissimilarity between their
activation patterns to assess whether the spatial location of the extracted
coupled oscillations has any impact on the PLV of their coupling..

Note that with synthetic data the Ground Truth is a-priori known; there-
fore, equation 3 gives the error of the estimated mixing patterns. However,
with real biological data this equation is used to estimate the dissimilarity
of the two mixing patterns.

4.2.3. Localizing the activation patterns

We localized each of the extracted components in the source space using
the eLORETA inverse modelling (Pascual-Marqui, 2007) and the New York
head model (Haufe et al., 2015; Huang et al., 2016) with approximately
2000 voxels. The MATLAB c© implementation of the eLORETA algorithm
is available in MEG/EEG Toolbox of Hamburg (METH). The voxels of the
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head model are attributed to regions of interest (ROI) based on the Harvard-
Oxford atlas, which has 96 cortical ROIs. In order to analyze the relationship
of the localization of alpha and beta sources at the group level, we pooled
all the extracted oscillations of all subjects together. In the inverse model
of each source, the voxel values were thresholded by 95% of the maximum
activity across all voxels. Therefore, for the inverse model of the i-th pair,
Ni,α andNi,β voxels remained with non-zero values for the α and β oscillations

respectively, from which N
(r)
i,α and N

(r)
i,β voxels were in ROI r.

In order to quantify the activity in each ROI, the following value was
computed for all ROIs (r = 1, · · · , 96):

N (r)
α =

∑Np

i=1 N
(r)
i,α/Ni,α

max
r

∑Np

i=1 N
(r)
i,α/Ni,α

, r = 1, · · · , 96 (4)

where Np is the total number of extracted pairs for all the subjects. Similar

equation is used to compute N
(r)
β by replacing all the α indexes by β. N

(r)
α ,

computed in equation 4, reflects the total amount of α activity in the r-th
ROI, which is related to the number of active voxels in this ROI in all the
activation patterns of all subjects.

To investigate how ROIs interact with each other, a 96×96, non-symmetric
matrix R was calculated. Element R(r1, r2) of the matrix reflects the amount
of interaction between α oscillations in ROI r1 and β oscillations in ROI r2.
R(r1, r2) is not a measure of the strength of the interaction (PLV) but how
often β activity is observed in ROI r2 when there is α activity in ROI r1.
The following equation is used to compute R(r1, r2):

R(r1, r2) =
∑
i

N
(r1,r2)
i,β

Ni,β

.
N

(r1,r2)
i,α

Ni,α

(5)

where N
(r1,r2)
i,β (N

(r1,r2)
i,α ) for the i-th α-β pair is the number of voxels with β

(α) activity in ROI r2 (r1) when the coupled α (β) oscillation has activity in
ROI r1 (r2).

R is an asymmetric adjacency matrix of a graph. For the visualization
purposes, we converted it to a bipartite graph, which has 96 nodes in each
part. It means that the (r1, r2) element of R translates to the edge between
node r1 of part 1 and node r2 of part 2.
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5. Results

In most cases, box-plots are used for reporting the results. The band
displayed within each box is the second quartile (the median), and the box
expands between the first and the third quartiles. The whiskers have a
maximum length of 1.5 times the Interquartile range (IQR). Note that all
the analysis were performed in MATLAB c© R2017b.

5.1. Simulations

5.1.1. NID has reliable performance at different SNRs

The simulations were performed with SNR = −15,−10,−5, 0 (dB) for
two coupled pairs of sources. Figure 4 depicts the error box-plots of mixing
patterns and the graph of the mean PLV of the extracted sources. One can
see that the median error is < 0.05 and the mean PLVs are > 0.1 even for the
very low SNR of −10 (dB) (meaning that the power of noise is 10 times larger
the power of the signal of interest). This shows that in the most simulation
runs NID successfully recovers the activation patterns of the components.
Comparable results were achieved for oscillations with amplitude-amplitude
coupling: at SNR −15 (dB) with median errors of < 0.03 and mean PLVs of
> 0.4 (figure S3 of supplementary material).

5.1.2. NID can extract multiple pairs of coupled sources reliably

We also investigated the impact of the number of interacting pairs on the
performance of NID. In the previous section, two pairs of source signals were
simulated. Here, five independent pairs were simulated. The box-plots of
the errors of mixing patterns and mean PLVs of the extracted oscillations
at SNR=−10 (dB) are illustrated in figure 5. The median errors of < 0.05
indicate that NID is successful in extracting even five pairs of interacting
oscillations even at a low SNR of −10 (dB).

5.1.3. NID can extract weakly coupled oscillations

In this section, the simulations were performed for different synchroniza-
tion strength at SNR=−10 (dB). Details of generating coupled sources with
different synchronization strength are presented in section 2.1 of the supple-
mentary material.

Figure 6 depicts how median errors of mixing patterns change with mean
PLV of the underlying coupled sources. It is clear that even for very weak
couplings, NID successfully recovers patterns of the interacting components
with the corresponding errors being < 0.05.

15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 23, 2019. ; https://doi.org/10.1101/680397doi: bioRxiv preprint 

https://doi.org/10.1101/680397
http://creativecommons.org/licenses/by-nc-nd/4.0/


1:2

2:3

1:4

1:2

1:4
2:3

E
rr

o
r 

o
f 

M
ix

in
g
 P

at
te

rn

0
.3

5
0
.3

0
.2

5
0
.2

0
.1

5
0
.1

0
.0

5
0

SNR=-15dB SNR=-10dB SNR=-5dB SNR=0dB

0

SNR (dB)

-5-10-15

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n
 P

h
as

e 
L

o
ck

in
g
 V

al
u
e

Figure 4: The performance of NID with simulated EEG, for the extraction of two pairs
of cross-frequency phase-phase coupled oscillations at different SNRs and frequency ra-
tios. Main plot: Box-plots of errors of mixing patterns. Subplot: Mean PLV vs. SNR for
extracted components.The small median errors as well as the relatively large mean PLVs
show that the performance of NID in untangling the coupled source signals is reliable.
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Figure 5: The performance of NID for extraction of five pairs of cross-frequency phase-
phase coupled oscillations at SNR= −10 (dB) and different frequency ratios applied on
simulated EEG. (a) Box-plots of error of mixing patterns. (b) Box-plots of the mean
PLV. We conclude the reliable performance of NID from the small activation pattern
errors and large mean PLVs.
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Figure 6: Median error vs. coupling strength (PLV) for different frequency ratios at
SNR=−10 (dB) with two pairs of phase-phase coupled sources. The median errors de-
crease as the PLV of the simulated coupled oscilaltions increases. Even for weak cou-
plings (e.g. PLV=0.1), the errors of pattern extraction are small.
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Figure 7: The performance of NID for the extraction of two 1:2:3 coupled triplets of
oscillations at different SNRs. (A) Mixing pattern error box-plots. (B) Mean PLV of the
extracted sources. NID extracted the source signals reliably.

5.1.4. NID is able to detect triplets of coupled sources

As mentioned in section 3, NID can easily be generalized to extract n :
m : p coupling (triplets of coupled sources). Figure 7 shows the box-plots of
errors of mixing patterns and mean PLVs of the extracted sources when two
triplets of 1:2:3 (with base frequency of 10Hz) coupled sources exist in the
simulated EEG. NID can extract the oscillations reliably even at SNR=−15
(dB) with median error < 0.05 and mean PLV of the extracted sources > 0.3.
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5.1.5. NID does not overfit the data

As mentioned in section 4.1.1, we investigated the behavior of NID in
the case where the frequency ratios are specified with mismatches, or where
there are no coupled sources in the data.

For checking the frequency specificity, 1:4 phase-phase coupled sources
were simulated at SNR=−10 (dB), while NID’s frequency ratio parameter
was set to 1:2. Such mismatch in frequencies lead to very large errors (me-
dian error> 0.3, supplementary figure S2), indicating that the successful ex-
traction of the coupled components requires a-priori knowledge of frequency
information.

In addition, NID was applied to simulated EEG consisting of only noise,
or with 2 uncoupled sources at each of the frequencies of interest. In the
former case, the median of the PLV of the extracted pairs was 0.025, and non
of the pairs of the extracted sources survived permutation test ( Bonferroni
multiple testing corrected).

5.2. Resting-state EEG

With the procedure explained in section 4.2.1, a total number of 243
alpha-beta, significant, interacting pairs of oscillations were extracted from
all the subjects.

5.3. NID-component analysis

As mentioned in section 4.2.2, the dissimilarity between the mixing pat-
terns of each pair of source signals was computed using equation 3. Figure
8-A illustrates the relation between the strength of coupling and the similar-
ity of the activation patterns of each pair. No significant linear correlations
was observed between these two variables. Additionally, figure 8-B shows a
box-plot of the PLVs of the extracted pairs of oscialltions. Comparing these
PLVs with the PLVs in the sensor-space, one can clearly see a two-fold im-
provement in the estimation of PLV using NID. A box-plot representation
of the sensor-space PLVs (median of 0.06) of the subjects is presented in
supplementary figure S6.

5.4. Localization of NID components

Referring to section 4.2.3, figure 9 illustrates the ROI-based localization
of NID components using the values calculated with equation (4). For both
frequencies, subjects have non-linearly interacting sources primarily in oc-
cipital regions extending to parietal regions, as well as in the sensorimotor
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Figure 8: (A) The relation between PLVs of each pair and dissimilarities between their
mixing patterns. (B) Box-plots of the PLVs of extracted phase-phase coupled oscilla-
tions.

areas extending to the frontal regions. Additionally, beta activity in the
sensorimotor areas occurred more frequent than alpha activity.

Computed in equation 5, we have a measure of the interactions between
different brain regions, which is depicted in figure 10. These interactions can
be depicted with a weighted, bipartite graph, whose nodes are the ROIs and
where the edges denote the interactions between two ROIs. The connection
between nodes r1 of the upper part and r2 of the other part indicates that
there is alpha-activity in ROI r1 that is interacting with beta-activity in ROI
r2. The weight of the edges are proportional to the number of active voxels
in the two regions. Figure 10-A depicts the bipartite graph representing the
adjacency matrix of ROI-interactions. (pre-)Frontal areas, and pre- and post-
central gyri of both hemispheres have beta sources which interact with alpha
sources of other ROIs. Additionally, in precuneous cortex and occipital areas
both alpha- and beta-sources have interactions with the sources of alpha and
beta oscillations at multiple ROIs. Some medial ROIs show interactions for
their beta-sources in one of the hemispheres. The most connected regions in
figure 10 can also be observed in figure 9 .

6. Discussion

We introduced a novel, general framework for the extraction of cross-
frequency coupled sources from EEG/MEG, namely Non-linear Interaction
Decomposition (NID). The idea of assessing the distribution of a mixture
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Figure 9: ROI-based analysis of NID source signals based on equation 4 for (A) alpha
and (B) beta oscillations. For both frequencies, subjects have mainly activities in occip-
ital, parietal, sensorimotor, and frontal regions. The beta-activity in motor regions are
more pronounced than alpha-activity.

of coupled oscillations is introduced for the first time and provides a novel
perspective for investigating non-linear interactions in EEG/MEG.

We validated the method with extensive simulations in different condi-
tions. NID showed reliable performance in the extraction of cross-frequency
phase-phase and amplitude-amplitude coupled oscillations in simulated EEG
even at a very low SNR of −15 (dB) and also for weak coupling strengths. We
also used NID for extracting phase-phase coupled sources in human resting-
state EEG data. The PLV was found to be considerably higher compared
to the PLV obtained for each of the single channels, while multiple testing
and uncertainty caused by volume conduction were avoided by projecting the
data to the lower dimensional space of NID.

NID can be used for the extraction of coupled sources originating from
different recording modalities or investigating the interactions between dif-
ferent subjects. NID is also generalizable to the investigation of interactions
between more than two frequency bands, e.g. alpha-beta-gamma, which is
not possible through other methods. In addition, the algorithm has the po-
tential to be tuned for a specific type of coupling through the contrast func-
tion of the non-Gaussianity maximization step, although this latter aspect
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Figure 10: The bipartite graph illustrating the alpha-beta interactions among ROIs of
Harvard-Oxford atlas, computed for 82 subjects. A connection between node r1 of the
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requires a more systematic investigation.

Remote interactions are captured by NID

An important feature of NID is that it separates coupled oscillations at
distinct spatial locations. We tested this by computing the dissimilarity be-
tween the topographies of the extracted sources where larger values indicate
spatially distinct sources. It could be the case that sources which have sim-
ilar topographies are harmonics of a non-sinusoidal source in the brain and
therefore, we can investigate the remote interactions by assessing the dis-
similarity of mixing patterns of coupled sources. The relation between the
PLV of the source pairs and the dissimilarity of their topographies is plotted
in figure 8, which shows that they are not linearly correlated. Therefore,
one can conclude that strong interactions (high PLV) exist for sources with
similar topographies as well as for those with different topographies, showing
that NID is able to extract spatially distinct oscillations with large PLVs.
This finding can also be observed on the bipartite graph of figure 10, which
illustrates the existence of remote interactions between different ROIs. From
this graph, diverse interactions between the two hemispheres, or between
central, parietal, and occipital areas can be observed.

There is a rich literature focused on alpha and beta oscillations in the
brain. The oscillations in the alpha-frequency range, are particularly preva-
lent in parietal and occipital regions, while beta-oscillations are pronounced
over sensorimotor cortex (Groppe et al., 2013; Tewarie et al., 2016). In line
with these observations, figure 9 shows the presence of alpha activity in occip-
ital and beta activity in sensorimotor regions. Moreover, figure 10 suggests
the existence of interactions between beta oscillations in central and alpha os-
cillations in occipital areas. These may be viewed as a functional substrate for
visuo-motor integration (Tewarie et al., 2016). There is actually an anatom-
ical evidence that these two areas are indirectly connected which might be
important for sensory guidance of movement (Glickstein, 2000; Kravitz et al.,
2011; Strigaro et al., 2015). Our results suggest that such indirect anatomi-
cal connectivity can be manifested electrophysiologically through alpha-beta
phase-phase coupling in resting-state.

6.1. Relation to previous methods

ICA is frequently used for the extraction of EEG/MEG sources signals.
Since NID has a non-Gaussianity maximization decomposition (NGMD) step,
it is necessary to emphasize the distinction between NID and ICA. The main
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technical difference between NID and ICA is that an augmented matrix of
different frequency contents is decomposed to maximally non-Gaussian com-
ponents. This is in contrast to ICA methods (e.g. JADE, fastICA, InfoMax),
where the broad-band multi-channel signal is decomposed. This very differ-
ence gives the NGMD algorithm the flexibility to select different weights for
the components at different frequencies. Therefore, the weights of the lin-
ear mixture of the coupled sources are selected flexibly to make the mixture
maximally non-Gaussian, while ICA forces all frequency contents to be mixed
with the same weights. Moreover, the SNR has been improved in the two
frequency bands of interest via the application of SSD in the first step of
NID, which clearly contributes to its successful performance.

There are not many multivariate methods for the extraction of cross-
frequency coupled sources. The novelty of NID lies in the extraction of the
coupled sources based on the statistical properties of the coupled oscillations.
Other methods are optimized for the detection of a specific coupling; however,
they can also be sensitive to other types of coupling. As an example, our
simulations show that cSPoC (Dähne et al., 2014), optimized for detection
of oscillations with power dependencies, is also able to detect phase-phase
coupled sources 2. Although it is not surprising that NID outperforms cSPoC
in the extraction of phase synchronized sources, we emphasize that there
is no explicit optimization of any contrast function based on the type of
coupling in NID’s algorithm. NID is at least as good as cSPoC (Dähne et al.,
2014) in detection of cross-frequency amplitude-amplitude coupling (figure
S4 of supplementary material), while being 1.5 times faster. It is worth
mentioning that it has been shown that cSPoC outperforms other methods
in the extraction of oscillations with power dependencies (Dähne et al., 2014).

Cross-frequency decomposition (CFD) (Nikulin et al., 2012) is a multi-
variate method for the detection of phase synchrony in MEG/EEG. While
NID imposes no restriction on frequency ratios (n : m coupling, n,m ∈ N),
CFD only works for the case where n=1. The supplementary figure S5 com-
pares the performance of the two methods in the extraction of two pairs of
1:m (m ∈ N) phase-phase coupled sources. Although both methods have re-
liable performance, NID still outperforms CFD. Generalized cross-frequency
decomposition (GCFD) (Volk et al., 2018) is a generalization of CFD for ar-

2This phenomenon that methods designed for detecting a specific coupling detect
other types of couplings is also reported in the literature (Hyafil, 2015).
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bitrary frequency ratios n : m (n,m ∈ N). GCFD extracts the phase-phase
coupled sources by finding the spatial filter that optimizes the correlation
of frequency-warped SSD components. This approach results in a reliable
extraction of the coupled sources; however, it is asymmetric (i.e. depends on
which band is used as a regressor) and computationally expensive. Addition-
ally, frequency-warping (multiplying the phase of a signal by a factor) distorts
the frequency content of a signal; therefore, the relations of frequency-warped
signals may not directly reflect true oscillations in the brain.

6.2. Future work

Our observation is that the distribution of the mixture of cross-frequency
coupled sources differs depending on the type of coupling. For example, we
observed that the distribution of the mixture has longer tails for amplitude-
amplitude coupled source signals, while it is skewed and has ”shoulders” for
phase-phase coupled sources. These properties can be better explained by
different measures. For instance, ”tailedness” is expressed best by kurtosis,
while skewness can be described the distributions skewed to one side. Ad-
ditionally, we know that higher order odd moments of a Gaussian signal are
zero; therefore, they can explain some features of non-Gaussian signals. Con-
sequently, one of the future works for extending the NID algorithm is how
to define the NGMD contrast function to get even better results for different
types of coupling.

In recent years, there has been a considerable interest to whole-brain con-
nectivity and its relation to cognitive performance (Palva et al., 2010; Palva
and Palva, 2012; Siebenhühner et al., 2016; Siebenhuehner et al., 2019). In
this regard, brain networks demonstrating cross-frequency interactions are
becoming popular as well (Siebenhühner et al., 2016; Siebenhuehner et al.,
2019; Tewarie et al., 2016), reflecting the importance of spectrally distributed
information processing in the brain. Using multivariate methods like NID
for extraction of a subspace of brain oscillations with cross-frequency cou-
pling, can be helpful for alleviating signal mixing problem and extracting
meaningful interacting components. These components can then be used
for further MEG/EEG analysis e.g. to investigate the properties of cross-
frequency brain networks in resting-state or during the cognitive, sensory
and motor task performance.
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Appendix A

Further discussion about NID

In this section we discuss that the non-Gaussianity maximization step of
the NID algorithm is able to separate the non-linearly coupled sources.

SSD components and patterns can be modeled as a mixture of the true
sources and their mixing patterns according to:

X
(n)
ssd = L(n)S(n) (6)

A
(n)
ssd = P(n)H(n) (7)

The i-th row of H(n) ∈ RN×N includes the contribution weights of p
(n)
i in

SSD patterns. Also, the i-th column of L(n) ∈ RN×N represents the contri-
bution weights of s

(n)
i in SSD components.

Without the loss of generality, for the sake of simplicity, we assume the
case of n : m coupling, i.e. coupling of pairs of sources.

Let w =
[
w

(n)
1 , · · · , w(n)

M , w
(m)
1 , · · · , w(m)

M

]
=
[
w(n),w(m)

]
be the filter

relating to one of the dimensions of NGMD subspace, then r = wXAugwould
be the projection of the SSD sources on this dimension. We can rewrite r as
follows:

r =
M∑
i=1

(
N∑
j=1

w
(n)
j l

(n)
ji )s

(n)
i +

M∑
i=1

(
M∑
j=1

w
(m)
j l

(m)
ji )s

(m)
i

=
M∑
i=1

g
(n)
i s

(n)
i + g

(m)
i s

(m)
i =

M∑
i=1

yi

(8)

where g
(n)
i =

〈
w(n), l

(n)
i

〉
, and L(n) =

[
l
(n)
1 , · · · , l(n)

M

]
. Additionally, yi =

g
(n)
i s

(n)
i + g

(m)
i s

(m)
i is defined as the weighted sum of signals of pair i. By

assuming that each coupled pair is independent from other pairs, yi is inde-
pendent of yj for i 6= j. Since, by assumption, the sources at each frequency
have approximately the same distribution, we expect yi,∀i to be roughly
identically distributed. From central limit theorem we know that the sum
of i.i.d. random variables is “more Gaussian” than each of them separately.
Thus, we can claim that the non-Gaussianity of r is maximized if it is equal
to one yi, meaning that ∃k : g

(n)
i = g

(m)
i = 0, i 6= k. This means that the ith

source of NGMD is the mixture of signals of the kth pair.
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Algorithms of ICA can be used as the non-Gaussianity maximization
decomposition. In addition, any contrast function maximizing the non-
Gaussianity can be exploited. For instance, we suggest the following contrast
function:

F (w) = E{r5}+
1

3
E{r3} (9)

where r is the random variable representing r. F is a combination of fifth
order moment of the projected signal and its skewness. It is known that the
fifth order moment and skewness of a Gaussian variable are zero; therefore,
by maximizing the contrast function in equation 9 we are maximizing the
non-gaussianity.

Our strategy to maximize the non-gaussinity of projected sources is to
take the advantage of both the contrast function in equation 9 and JADE
(Cardoso and Souloumiac, 1996) algorithm. Therefore, both contrast func-
tions (JADE and equation 9) are optimized and the optimization proce-
dure which produces projections with maximum negentropy (maximum non-
gaussianity (Hyvärinen and Oja, 2000)) is selected.

Appendix B

Practical details of computing the final mixing patterns

Each of P̂(n) and P̂(m) in equation 2 contain 2N patterns and N of them
should be selected (i.e. N pairs of interacting sources should be selected).
For this purpose, we firstly find the similar pairs; i.e. those pairs i and j, for
which d(p

(n)
i ,p

(n)
j ) < ε and d(p

(m)
i ,p

(n)
j ) < ε, where d(., .) is computed as the

dissimilarity between the two patterns as in equation 3. Among the similar
pairs the one with largest negentropy (largest non-gaussianity (Hyvärinen
and Oja, 2000)) is selected and others are omitted. Afterwards, from the
remaining pairs, pairs with the largest PLV (or envelope correlation) are
selected as the final mixing patterns.
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