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Abstract  

Drug Design Data Resource (D3R) Grand Challenge 4 (GC4) offered a unique opportunity for 

designing and testing novel methodology for accurate docking and affinity prediction of ligands 

in an open and blinded manner. We participated in the beta-secretase 1 (BACE) Subchallenge 

which is comprised of cross-docking and redocking of 20 macrocyclic ligands to BACE and 

predicting binding affinity for 154 macrocyclic ligands. For this challenge, we developed machine 

learning models trained specifically on BACE. We developed a deep neural network (DNN) model 

that used a combination of both structure and ligand-based features that outperformed simpler 

machine learning models. According to the results released by D3R, we achieved a Spearman's 

rank correlation coefficient of 0.43(7) for predicting the affinity of 154 ligands. We describe the 

formulation of our machine learning strategy in detail. We compared the performance of DNN 

with linear regression, random forest, and support vector machines using ligand-based, structure-

based, and combining both ligand and structure-based features. We compared different structures 

for our DNN and found that performance was highly dependent on fine optimization of the 

regularization hyperparameter, alpha. We also developed a novel metric of ligand three-

dimensional similarity inspired by crystallographic difference density maps to match ligands 

without crystal structures to similar ligands with known crystal structures. This report 

demonstrates the detailed parameterization and careful data training and implementation necessary 

to obtain strong performance with more complex machine learning methods. Our DNN approach 

tied for fourth in predicting BACE-ligand binding affinities. 
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Introduction 

 

The Drug Design Data Resource (D3R) has organized four Grand Challenges (GC) for docking, 

affinity, and free energy predictions for protein-ligand complexes.[1–3] By providing high quality, 

blinded protein-ligand crystal structures and affinity datasets, D3RGC has attracted extensive 

attention from computational drug design researchers. Assessment of results from blinded 

competition has provided unbiased insights into the most effective strategies as well as the many 

shortcomings of the state of the art. This platform has sparked numerous novel computer-aided 

drug designing methods. In this article, we present our machine learning approach in GC4 for 

predicting ligand binding affinities for beta-secretase 1 (BACE), a key protein for the formation 

of amyloid -peptide and a leading drug target for Alzheimer’s disease.[4] 

Computer-aided drug design facilitates the whole process of drug development, such as virtual 

screening, lead optimization, structure-activity relationships (SAR) analysis, and ADMET 

modeling.[5] The designing and modeling of drug molecules can be classified into structure-based 

drug design (SBDD) and ligand-based drug design (LBDD), depending on whether three-

dimensional structural information is used.[6] To design a novel drug molecule, an accurate 

prediction of the binding affinity between a ligand and its target protein is helpful. However, due 

to the complex nature of intermolecular interactions, protein flexibility, solvation, and the entropic 

effect, the prediction of docked structures and affinities of protein-ligands is very challenging. 

Classically, a predicted docked pose needs to be generated first, then the affinity is calculated by 

force-field-based, knowledge-based, or an empirical scoring function. Popular docking programs 

and scoring functions such as the AutoDock family[7–9], Glide[10], GOLD[11], and X-Score[12] 

have demonstrated their advantages in predicting docked poses and protein-ligand affinities. 

Machine learning models have shown great potential in advancing current computer-aided drug 

designing methodology.[13] The advance of machine learning platforms and tools for chemistry, 

such as TensorFlow[14] and scikit-learn[15], and the public availability of high-quality protein-

drug datasets, such as the PDB[16] and PDBbind[17], greatly enables the application of machine 

learning to drug design. Novel machine learning-based scoring methods, such as RF-Score[18] 

and KDEEP[19], or machine learning-optimized software, such as Vinardo[20], smina[21], RF-

Score-v3[22], have demonstrated superior performance in addition to their generalizability and 
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accessibility. Machine learning methods have been shown to perform better than conventional 

scoring methods in benchmark studies.[23] For example,  KDEEP, RF-Score, X-Score, and Cyscore 

have Pearson’s correlation coefficients (R) of 0.82, 0.80, 0.66, 0.65, respectively, for 290 protein-

ligand affinities in the PDBbind v.2016 core set.[19] Surprisingly, these four scoring methods are 

very poor at predicting the affinities of ligands to BACE, as they yield Pearson’s correlation 

coefficients (R) of -0.06, -0.14, -0.12, and 0.2, respectively for 36 BACE ligands. It is still an 

unresolved question why some protein targets are more difficult than others for different 

algorithms and scoring functions. 

We are especially interested in answering the question of whether a machine learning model 

trained on a specific target can improve the affinity prediction performance for ligands to this 

target. Since D3R GC4 provided a high-quality and blinded BACE affinity dataset, we took this 

opportunity to explore the performance of a target-trained machine learning model. We also 

demonstrate how the combination of structure-based and ligand-based features benefit machine 

learning performance. 

 

Methods 
 

Affinity model overview 

 

To build and test the affinity prediction performance for BACE-specific trained machine learning 

models, three essential elements: training BACE input features (X training), training BACE 

experimental affinities (y training), and BACE test input features (X test), see Fig. 1. To generate 

input features of ligands, we compared using structure-based features and ligand-based features, 

thus the method of obtaining accurate docked is important. 

The compilation of training dataset and test input features are discussed in the “Test dataset 

compilation for BACE-ligand affinity modeling” section. Before that, our workflow of 

generating predicted docked pose is introduced in “Semi-automated ligand pose generation and 

docking” section. 
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Fig. 1 Workflow for generating machine learning models for affinity prediction. Green boxes 

indicate the steps in the auto-pose generator for the 154 ligands in D3R GC4 BACE Stage 2 affinity 

prediction challenge. Orange boxes represent procedures in the BACE-specific machine learning 

models of affinity prediction. 

 

Semi-automated ligand pose generation and docking 
 

Our first objective was to develop a docking workflow for the 154 ligands without crystal 

structures. It was shown in D3R GC3 that docking to the appropriate receptor structure is important 

for success [3]. In GC4 Stage 2, D3R provided SMILES codes of the 154 macrocyclic ligands for 

the affinity prediction test; 20 co-crystal structures were released earlier in D3R GC4 Stage 1B. 

We looked for chemical similarity between the 154 ligands (BACE_1 to BACE_158) for the 

affinity prediction test and the 20 ligands (BACE_1 to BACE_20) with crystal structures using the 

FragFp method in DataWarrior 4.7.2,[24] see supplemental Table S1 for the full similarity list. 

The FragFp descriptor uses chemical fingerprints based on substructure fragment matching. 

We cross-docked each of the 154 test ligands to the BACE receptor bound to the ligand with the 

highest similarity out of BACE_1 to BACE_20. An automated cross-docking python script using 
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Open Babel[25] and smina[21] was written to generate the docked poses for the 154 test ligands 

for Stage2. Smina was used for the cross-docking procedure with the Vinardo scoring function 

[20]. The docking box was centered on the most similar ligand with a reduced buffer padding of 

2.0 Å (default 4.0 Å) to confine docking poses in a narrower space. The reduced docking volume 

helped eliminate false positive poses. 

Widely used simply root-mean-square deviation (RMSD) metrics for measuring the 3D similarity 

for different molecules are not applicable, since atom pairs for different compounds are not 

identical. Given multiple docked poses for one ligand, a 3D structural similarity score (Rsim) 

inspired by crystallographic electron density difference maps was calculated for each docked pose 

to the most chemical similar ligand with an available cocrystal structure: 

 𝑅𝑠𝑖𝑚 =
∑|𝐸𝐺1−𝐸𝐺2|

∑𝐸𝐺1
  (Eq. 1) 

where EG denotes the electron grid of a molecule. The electron grid of a molecule is calculated by 

setting a molecule centered in a box with a user-defined padding distance in each dimension (5 Å 

used here). The box was treated as a 3D electron grid. To calculate the grid density, each atom of 

the molecule is treated as a spherical Gaussian distribution of electrons, with the integration of 

electron density being the atomic number, and with the standard deviation being the van der Waals 

radii divided by 2.3548.[26] For example, consider two conformers (A and B) of the same 

compound. If A and B overlap with each other perfectly, Rsim equals 0 since EGA=EGB. If A and 

B do not overlap at all spatially, Rsim would be 2. An example is shown in Fig. 2. The Stage 2 

affinity test ligand BACE_73 is most similar to BACE_10 which has a known co-crystal structure. 

Using smina with the Vinardo scoring function, multiple docked poses were generated to the 

receptor structure from the co-crystal structure of BACE_10. The second-best pose (Vinardo 

affinity score: -11.2 kcal/mol) and the fourth-best pose (Vinardo affinity score: -8.8 kcal/mol) are 

shown in Fig. 2. Using the Rsim method, the 3D-similarity of the BACE_73 second pose was shown 

to be more 3D-similar to BACE_10 than the BACE_73 fourth pose, as the Rsim is lower for the 2nd 

pose (0.72 versus 1.36).  

This 3D similarity algorithm works well when comparing docked poses to cocrystal structures. 

For all Stage 2 ligands, the docked poses were scored with this method. Docked poses with the 

lowest Rsim value (highest 3D similarity) were picked for further analysis for affinity estimation. 
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Fig. 2 3D similarity with the Rsim method for D3R GC4 BACE ligands. Using the Rsim method, 

the 3D-similarity of the BACE_73 second pose (top) was shown to be more 3D-similar to 

BACE_10 than the BACE_73 fourth pose (bottom), as the Rsim is lower for the second pose. 

PyMOL was used for generating part of this figure.[27] 

 

Training dataset compilation for affinity modeling of BACE-ligand 

To build a BACE-specific affinity machine learning model, a dataset comprised of 222 published 

BACE ligand affinities (label value ytraining, dimension: 222×1) was extracted from PDBbind 

v.2017 which contains 14,761 protein-ligand complexes affinity data, see Table S2.[17]  

In this work, structure-based and/or ligand-based features were used as input features (X) for our 

machine learning models. To generate the structure-based features used for machine learning 

model training, ten AutoDock Vina-like scoring terms were generated for the 222 BACE-ligands 

using smina, (Table 1). To obtain the ten scoring values, “scoring_only” functionality was used in 

smina, without conformation search and docking. The scores from smina were compiled as the 
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training set (Xtraining_structure-based, dimension: 222×10). To generate the ligand-based 

chemoinformatic features, DataWarrior 4.7.2 was used to produce twenty-four ligand-based 

descriptors (Xtraining_ligand-based, dimension: 222×24) for the 222 training ligands (Table 2). When 

structure-based and ligand-based features were used together, a full training set (Xtraining, dimension: 

222×34) was obtained by addition of the two datasets (Xtraining_structure-based + Xtraining_ligand-based). 

 

Table 1 Ten structure-based AutoDock Vina terms generated by smina. Fine parameters o, w, c, 

g, b, s, i, j, ^ are used in the generation of the terms. Briefly, o is offset between atom pairs, w is 

the width of the Gaussian function, c is distance cutoff, g is a good distance, b is a bad distance, s 

is a smoothing, i and j are Lennard-Jones exponents, ^ is the cap.   

Term description Fine parameters 

Gaussian o=0, w=0.5, c=8 

Gaussian o=3, w=2, c=8 

repulsion o=0, c=8 

hydrophobic g=0.5, b=1.5, c=8 

van der Waals 
i=6, j=12, s=1, 

^=100, c=8 

non_dir_h_bond g=-0.7, b=0, c=8 

non_dir_h_bond_lj 
o= -0.7, ^=100, 

c=8 

non_dir_anti_h_bond_quadratic o=0, c=8 

acceptor_acceptor_quadratic o=0, c=8 

donor_donor_quadratic o=0, c=8 

 

Table 2 Twenty-four ligand-based features generated by DataWarrior.  

Ligand-based 

features 

Ligand-based 

features 

Molecular weight Non-H atoms 

cLogP Non-C/H atoms 

cLogS 
Electronegative 

atoms 

H-acceptors Stereo-centers 

H-donors Rotatable bonds 

Total surface area Ring closures 

Relative PSA Small rings 

Polar surface area Aromatic rings 
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Drug-likeness Aromatic atoms 

Shape index sp3-Atoms 

Molecular flexibility Symmetric atoms 

Molecular complexity Amides 

 

Test dataset compilation for BACE-ligand affinity modeling 

D3R GC4 BACE Stage 2 requires the affinity prediction of 154 ligands. To utilize our BACE 

specifically trained machine learning model for affinity prediction, the same ten structure-based 

features (Xtest_structure-based, dimension: 154 × 10) and twenty-four ligand-based features (Xtest_ligand-

based, dimension: 154 × 24) for the test ligands were generated. To calculate structure-based features 

for the 154 test ligands, the docked poses for the ligands was generated using the method described 

previously. Then, the ten AutoDock Vina terms (Table 1) was calculated using smina. The ligand-

based features for this test set were generated in the same way as the training set, using the twenty-

four molecular descriptors (Table 2) from DataWarrior 4.7.2.  

 

Construction, training, and tuning of machine learning models for BACE-ligands 

affinity 

After we obtained a training dataset (Xtraining) and training affinities (ytraining), five common machine 

learning models (Table 3) were constructed, refined, and compared, using structure-based and/or 

ligand-based features, in Python using scikit-learn.  

To validate and compare machine learning models, the training dataset was first linearly rescaled 

to facilitate model convergence, then treated with 10-fold cross-validation with the dataset shuffled 

(“random state” defined as one, for reproducibility). To refine each model, fine-tuning of machine 

learning models was scrutinized and adjusted. For evaluation, the coefficient of determination (R2) 

of 10-fold validations of each model was compared.  

 

Table 3 Machine learning models for BACE-ligand affinity investigated in this study. 

Number Model Type Fine-tuning parameters adjusted 

1 Linear regression N/A 
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2 
Support vector machine 

regressor 
Kernel functions, regularization (C) 

3 Random forest regressor Number of estimators, max depth 

4 
Regularized linear 

regression 
Regularization () 

5 Deep neural network Hidden layer size, regularization () 

 

 

Result and Discussion 

Pose generator and docking performance evaluation 

In the D3R GC4 BACE Subchallenge, we also submitted pose predictions in Stages 1A (cross-

docking for BACE_1 through BACE_20, with no receptor coordinates of the 20 ligands provided) 

and Stage 1B (redocking for BACE_1 through BACE_20, with receptor coordinates of the 20 

ligands provided). We decided on a strategy based on optimizing the AutoDock Vina algorithm 

and scoring method which has been shown to perform well for pose ranking[7], where docked 

poses are scored based on a linear combination of five  terms:  

Einter = w1 × Egauss1 + w2 × Egauss2+ w3 × Egauss3+ w4 × Ehydrophobic+ w5 × Ehydrogenbond     [7, 21] (Eq. 2)  

To achieve an improved cross-docking pose prediction performance for BACE specifically, the 

weights (wn) in the Vina scoring function (Equation 2) were optimized and customized on a 

training dataset of 24 BACE ligands and test dataset of 229 BACE ligands deposited in the PDB. 

The weights of the five Vina terms were refined via partial gradient descent of each weight until 

the overall RMSD reached a local minimum (Table 4).  

 

Table 4 Cross-docking performance evaluation for BACE-ligands. The weights (wn) are the 

scaling factors in Equation (2). The mean and standard error of RMSD for each method were 

evaluated on 229 BACE-ligand cocrystal structures deposited in the PDB using smina (receptor 

PDB used: 4L7G).  
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 w1 w2 w3 w4 w5 
Mean(SE) of 

RMSD (Å) 

Vina[7] -0.035579 -0.005156 0.840245 -0.035069 -0.587439 2.42(10) 

Vinardoa[20] -0.045 0.000 0.800 -0.035 -0.600 2.55(10) 

BACE 

custom 
-0.02558 -0.00516 1.19025 -0.05507 -0.83744 2.33(10) 

aVinardo also has modified term functions besides weight. 

 

Although a statistically improved cross-docking performance was achieved for 229 BACE ligands 

deposited in PDB, we discovered that the Vinardo scoring function yielded the best re-docking 

performance (lowest RMSD) for the macrocyclic BACE ligands that were the subject of D3R GC4 

(Table 5). Thus, Vinardo scoring was applied to D3R GC4 BACE Stage 1B for BACE_1 to 

BACE_20 redocking. The re-docking performance of our method was released by D3R, this 

method yielded a mean (standard deviation) RMSD of 1.97 (1.55) Å for the 20 BACE macrocyclic 

ligands, ranking 48th place among 70 submissions. A RMSD below 2.0 Å has traditionally been 

considered a good result for docking. However, other research teams demonstrated superior cross-

docking and re-docking performance during this challenge. We speculate that an additional 

relaxation and optimization step after docking would improve our docking performance. 

   

Table 5. Redocking performance evaluation for BACE-macrocyclic ligands deposited in PDB. 

Docking was conducted with smina with Vina/Vinardo/custom scoring methods [20]. Test 

cocrystal structures were obtained from the PDB. RMSD was calculated and compared using 

Pymol. 

PDB 

ID 
Vina Vinardo 

BACE 

customa 

4KE1 0.185 0.178 0.266 

4KE0 0.154 0.136 0.122 

4K8S 0.164 0.319 0.374 

3K5C 0.913 2.165 2.145 

3DV5 0.571 0.988 0.578 

3DV1 0.290 0.618 2.608 
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2F3E 3.844 4.031 2.352 

1XS7 2.708 3.410 2.787 

Mean 1.481 1.104 1.404 

Median 0.803 0.431 1.362 

STD 1.537 1.399 1.164 

aThe BACE custom scoring function is shown in Table 4. 

 

After D3R GC4 Stage1B, twenty cocrystal structures of BACE_01:BACE_20 macrocyclic ligands 

were released. When overlaying the D3R ligands with macrocyclic ligands deposited in PDB, it 

was found that these ligands shared a similar structural motif in the main site: the macrocycle 

occupying an empty cavity with a large substituent extended to the other side of the main cavity 

via a linker that usually contains hydrogen-binding, electronegative functional groups, as shown 

in Fig 3. 

Since the Vinardo scoring function was shown to be effective in generating docked poses for 

macrocyclic BACE ligands (Table 5), we used an automated pose selection method to select the 

best pose from the multiple docked poses generated by smina/Vinardo.  

We hypothesized that a chemically similar BACE macrocyclic ligands should share a similar 

docked pose (154 BACE chemical similarity pairs are provided in Table S1). The semi-automated 

docking and pose selection workflow was described above. Given multiple cross-docked poses of 

the 154 ligands without crystal structures, the pose with the lowest Rsim (defined in Equation 1) 

was selected for structure-based scoring. Two examples are shown in Fig 4. BACE_26 (test) is 

chemically similar to BACE_3 (crystal structure known). A docked pose generated by 

smina/Vinardo produced a lower Rsim = 0.553 and was used for affinity prediction. BACE_137 is 

similar to BACE_12. A docked pose with Rsim = 0.564 was used for further calculation. Using this 

semi-automated workflow, 154 predicted docked structures were generated for BACE-ligand 

affinity prediction. We expect that further optimization of the selected pose will improve pose 

accuracy.  
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Fig. 3 Structure overlay of macrocyclic ligands of BACE. A, five published ligands structures 

deposited in the PDB: 2F3E-AXQ(red), 3DV1-AR9(green), 3DV5-BAV(blue), 3K5C-

OBI(yellow), 4KE0-1R8(magenta), receptor PDB used: 4KE0.[16] B, twenty D3R GC4 released 

macrocyclic ligands (BACE_1 to BACE_20, receptor used BACE_BA01. Top and bottom figures 

show rotated views of the same structure. PyMOL was used to generate this figure.  
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Fig. 4 Chemical structures and structural overlays of two sets of docked macrocyclic ligands in 

D3R GC4 BACE Stage 2. A, BACE_26 (red) was found to be most chemically similar to BACE_3 

(light pink), that has a released cocrystal structure, via the FragFp method in DataWarrior. Between 

two docked poses of BACE_26 generated by Vinardo scoring using smina, the pose with the lowest 

Rsim = 0.553 was used for structure-based affinity calculations. B, similarly, ligand BACE_137 

(red) was docked to mimic the 3D structure of the most chemically similar ligand BACE_12 (light 

orange); the pose with the lowest Rsim = 0.564 was used for affinity modeling. ChemBioDraw and 

PyMOL were used to generate this figure.  

 

Comparisons between machine learning models of BACE-ligand affinities  

We obtained a dataset (Xtraining) of 222 BACE-ligands deposited in PDB with their affinities (ytraining) 

extracted from PBDBind v2017[17]. We investigated three aspects of applying machine learning 
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in BACE-ligand affinity prediction: input feature selection, machine learning model selection, and 

machine learning model regularization. 

First, for feature selection, we compared the model performance based on structure-based features 

only (Table 1), ligand-based features only (Table 2), and a combination of both using five machine 

learning models (Table 3), linear regression, regularized linear regression, random forest regressor 

(RF), support vector machine regressor (SVM), and deep neural network/multilayer perceptron 

(DNN/MLP).  

When only structure-based terms were used for affinity modeling (Fig. 5A), linear regression (LR) 

and regularized LR yielded poor performance, with low coefficients of determination (R2) at 0.3(7), 

0.28(8) for the ten-fold cross-validation set (Xtraining). This indicates the limitations of linear 

customization of Vina terms to predict ligand affinity. We point out that multilinear regression is 

still the most commonly used method for developing docking and affinity scoring functions. Using 

random forest regressor (RF, number of estimators: 100, maximum depth: 1), support vector 

machine regressor (SVM, kernel: Gaussian, regularization: C = 2), and multiple layer perceptron 

(MLP, layer structure: 10 × 8 × 8, activation function: ReLU, L2 regularization: alpha = 10) with 

structure-based only terms yielded reasonable performance after fine-tuning the hyperparameters. 

The SVM regressor model performed well and achieved an R2 of 0.65(11) for the 10-fold cross-

validation set, and 0.77(1) for the same 10-fold cross-training set.  

The performance of only using ligand-based terms was also evaluated (Fig. 5B). Interestingly, all 

five machine learning models yielded comparable results, suggesting that linear regression 

adequately utilizes most of the information in the input features. The SVM performed the best 

among the models, with an R2 of 0.62(13) for the 10-fold cross-validation set and 0.836(9) for the 

cross-training set. 

When a combination of structure-based terms and ligand-based terms was utilized in machine 

learning models, slightly improved performance was obtained across the different modeling 

methods (Fig. 5C). LR and regularized LR yielded equivalent performance, with R2 = 0.59(13) 

for the 10-fold cross-validation set. RF (number of estimators: 200, maximum depth: 8) yielded 

an R2 of 0.61(19) for the cross-validation set. SVM regressor (kernel: Gaussian, regularization: C 

= 2.5) had a R2 = 0.64(17) for the validation set. We compared DNN/MLP architecture with 10 × 

8 × 8, 8 × 10 × 10, 8 × 8, and 10 (Table 6). Only four networks were explored given limits on our 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 23, 2019. ; https://doi.org/10.1101/680306doi: bioRxiv preprint 

https://doi.org/10.1101/680306
http://creativecommons.org/licenses/by/4.0/


time. It was found that MLP model performance is slightly affected by the choice of the number 

of layers and numbers of neurons in layers, as R2 of 0.65 were achieved in all four architectures. 

Careful hyperfine tuning is necessary to obtain an effective model. For example, in the 10 × 8 × 8 

DNN, an alpha of 0.01 overfit the training set and yielded a poor R2 (0.3±0.4) of the ten-fold cross-

validation sets; when alpha of 50 was used, the model was underfitted, with poor R2 (0.54±0.15). 

For the D3R GC4 BACE Stage 2 affinity predictions, we selected the refined 10 × 8 × 8 DNN 

model due to its superior performance over other architectures. The hyperfine tuning of this model 

is shown in Fig. 6A. When the regularization parameter alpha was 10, the model achieves optimal 

performance for the ten-fold cross-validation, with Pearson’s correlation (R) = 0.82. Using this 

model, the predicted versus experimental affinities for the whole training dataset are shown in Fig. 

6B (the last cross-validated model in the 10-fold cross-validation dataset). This model exhibited 

very good correlation metrics for BACE affinity prediction. It greatly outperforms the published 

performance of KDEEP, RF-Score, X-Score, and Cyscore, with their R equal to -0.06, -0.14, -0.12, 

and 0.2, respectively to 36 BACE ligands[19]. The architecture and mapping matrix (Wn) are 

represented in Fig. 6C. Every neuron in the MLP take a linear combination of earlier neurons as 

input, and output after ReLU (rectified linear unit) activation. 

D3R released the performance of GC4 BACE Stage 2. Our results tied for the fourth best 

performance with a Kendall’s  = 0.30(5) and Spearman’s  = 0.43(7).  

 

Table 6 Evaluation of different layer structures of MLP models for the 10-fold cross-validation 

set for the 222 BACE-ligands dataset (Xtraining). Activation function: ReLU, L2 regularization 

parameter was adjusted. 

Regularization 

(alpha) 

MLP (10 × 8 × 8) MLP (8 × 8 × 10) MLP (8 × 8) MLP (10) 

0.01 0.3(4) 0.3(4) 0(2) 0.3(5) 

0.1 0.4(2) 0.3(3) 0(1) 0.4(5) 

1 0.4(4) 0.5(4) 0.6(2) 0.6(3) 

10 0.67(13) 0.66(14) 0.66(16) 0.65(16) 

20 0.61(17) 0.61(17) 0.62(17) 0.61(19) 

50 0.54(15) 0.54(15) 0.57(15) 0.59(17) 
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Numpy and scikit-learn were used to generate the values in this table. 

 

 

Fig. 5 Performance of machine learning models of BACE affinity. Red boxes indicate the mean 

of R2 for the 10-fold cross-validations, cyan boxed indicate the mean of R2 for the training set. The 

error bars represent the standard error (SE) for the 10-fold cross-validation metric evaluation. A, 

only the ten structure-based Vina terms were used. B, only the twenty-four ligand-based terms 

(Table 2) were used. C, both the structure-based and ligand-based terms were applied. Numpy, 

Matplotlib, and scikit-learn were used to generate this figure. 
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Fig. 6 The regularization, fitting, and representation of our DNN/MLP model submitted for D3R 

GC4 BACE Stage 2. Model parameters: layer structure: 10 × 8 × 8, activation function: ReLU, 

regularization: alpha = 10. A, MLP model performance (R2) over variations of a range of L2 

regularization alpha (0.01-50.0). B, BACE affinity fitting ability of this MLP model. Blue dots are 

for the last training set in the 10-fold cross-training, and red spots are for the last validation set in 

10-fold cross-validation. C, the architect and mapping coefficient of this MLP. Redlines indicate 

positive coefficients and blue lines indicate negative coefficients, and the thickness indicates the 

absolute value of coefficients connecting neurons. Numpy, Matplotlib, and scikit-learn were used 

to generate this figure. 
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Conclusions 

Through participating in the D3R GC4 BACE Subchallenge, we investigated optimizing the 

AutoDock Vina docking scoring function and designed and compared machine learning models 

using a combination of structure-based and ligand-based terms. To generate docked poses for 

BACE macrocyclic ligands, a 3D similarity pose automated selection script was shown to be 

effective in generating accurate docked poses. Five different machine learning models were 

explored ranging in complexity from linear regression to a deep neural network. From tuning 

different models, we found that hyperparameter tuning greatly affects the accuracy of protein-

ligand affinity prediction.  

This work shows that machine learning models are highly effective for protein-ligand affinity 

prediction if high-quality training datasets are available for the target protein. We found that the 

Vinardo scoring function, developed from a broad set of ligands, performed best for docking 

macrocyclic ligands to BACE. We expect docking performance can be further improved by careful 

choice and optimization of receptor structures. In contrast, a deep neural network trained 

specifically on BACE ligands performed best for affinity prediction. Affinity prediction can 

probably be improved by training on larger datasets, training on ligand/target-specific datasets, 

using deeper neural networks and adopting advanced neural networks such as convolutional neural 

networks, automated tuning of hyperparameters, and carefully selecting a larger set of informative 

input features. 
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