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 

Abstract— Objective: For more than 25 million drug-resistant 

epilepsy patients, surgical intervention aiming at resecting brain 

regions where seizures arise is often the only alternative therapy. 

However, the identification of this epileptogenic zone (EZ) is 

often imprecise which may affect post-surgical outcomes (PSOs). 

Interictal high-frequency oscillations (HFOs) have been revealed 

to be reliable biomarkers in delineating EZ. In this paper, an 

analytical methodology aiming at automated detection and 

classification of interictal HFOs is proposed to improve the 

identification of EZ. Furthermore, the detected high-rate HFO 

areas were compared with the seizure onset zones (SOZs) and 

resected areas to investigate their clinical relevance in predicting 

PSOs. Methods: FIR band-pass filtering as well as a combination 

of time-series local energy, peak, and duration analysis were 

utilized to identify high-rate HFO areas in interictal, multi-

channel intracranial electroencephalographic (iEEG) recordings. 

The detected HFOs were then classified into fast-ripple (FR), 

ripple (R), and fast-ripple concurrent with ripple (FRandR) 

events. Results: The proposed method resulted in sensitivity of 

91.08% and false discovery rate of 7.32%. Moreover, it was 

found that the detected HFO-FRandR areas in concordance with 

the SOZs would have better delineated the EZ for each patient, 

while limiting the area of the brain required to be resected. 

Conclusion: Testing on a dataset of 20 patients has supported the 

feasibility of using this method to provide an automated 

algorithm to better delineate the EZ. Significance: The proposed 

methodology may significantly improve the precision by which 

pathological brain tissue can be identified.    

 
Index Terms—Epilepsy, high-frequency oscillations (HFOs), 

false-discovery rate (FDR), epileptogenic zone, epilepsy surgery, 

sensitivity.  
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I. INTRODUCTION 

pilepsy disease afflicts more than seventy million people 

worldwide [1]. In approximately one-third of the cases, 

antiepileptic medications fail to control seizures [2]. Epilepsy 

surgery is an alternative treatment for these drug-refractory 

patients, in which areas of the brain causing seizures are either 

resected or ablated [3].    

 Resecting the entire epileptogenic zone (EZ), the regions of 

the brain responsible for generating seizures, is the main goal 

of the surgical intervention for intractable seizures [4]. That is, 

precise resection of the entire EZ leads to successful post-

surgical outcomes (PSOs) in which no future seizures should 

occur. The seizure onset zone (SOZ), the region of the brain 

where clinical seizures initiate, is thought to most closely 

localize the EZ. However, localization of the SOZ is often 

restricted due to the capability to record intracranial electro-

encephalographic (iEEG) signals from a spatially limited brain 

area and the potential for rapid spread of seizure activity [5].  

 Recently, several studies have suggested that localized high 

frequency oscillations (HFOs) detected during interictal iEEG 

recordings are relevant biomarkers to localize the EZ [6]-[9]. 

It has also been reported that interictal HFOs are more 

abundant during non-rapid eye movement (non-REM) sleep 

compared to other stages of sleep [10]. HFOs are 

characterized as spontaneous, non-linear, non-stationary, and 

low-amplitude electrophysiological activity with a frequency 

bandwidth of 80-500 Hz [11]. In general, HFOs are 

subdivided with respect to their spectral content into ripple 

(80-250 Hz) and fast-ripple (250-500 Hz) bands [12].  

HFO detection is conventionally performed using visual 

inspection of long hours of iEEG recordings. However, the 

aforementioned process is very tedious and time-consuming 

even for an expert epileptologist [13]. It also requires a great 

amount of concentration to eliminate either missing or false 

detection of any HFO events. Therefore, several automated 

HFO-detection methods have been proposed to overcome the 

aforementioned challenges.  

Finite impulse response (FIR) or infinite impulse response 

(IIR) band-pass filtering of iEEG recordings, as well as using 

Using Automated Detection and Classification 

of Interictal HFOs to Improve the  

Identification of Epileptogenic Zones in 

Preparation for Epilepsy Surgery  

Sina Farahmand, Student Member, IEEE, Tiwalade Sobayo, Member, IEEE 

and David J. Mogul, Member, IEEE  

E 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 23, 2019. ; https://doi.org/10.1101/680280doi: bioRxiv preprint 

mailto:sfarahmand@biosigtech.com
https://doi.org/10.1101/680280


 

 

2 

root-mean-squared (RMS) feature of the filtered signals, have 

been widely utilized to automatically detect HFO events [14]. 

The primary drawback of using this method is the high false 

discovery rate (FDR), which mainly stems from filtering of 

transient signals such as artifacts, spikes, and sharp waves 

without any superimposed HFOs [15]. That is, the FIR 

filtering of these broadband spectrum transient signals may 

generate oscillations in both ripple and fast-ripple bands, 

which represent spurious HFOs, that can be incorrectly 

attributed as true HFO events [15]. Therefore, it is of a crucial 

importance to combine FIR-filtering based methodologies 

with a FDR reduction process in order to separate and remove 

spurious HFOs from true HFO events. 

 Many time-frequency analyses such as Fourier, wavelet, 

and matching pursuit have been also used in detecting HFOs 

[14]-[17]. These methods, while convenient, assume a priori 

basis functions of the wideband electrophysiological signals 

such as cosine, sine, and different wavelet and Gaussian 

shapes. Therefore, they may fail to decompose signals into a 

set of narrowband components based on their intrinsic non-

stationary and non-linear features. 

Although several automated HFO detection methods have 

been proposed in the literature, the evidence for the correlation 

between the clinical relevance of the high-rate HFO areas in 

identifying the EZ and predicting the PSOs is rather poor [18]. 

That is, the application of using detected high-rate HFO areas 

as a resecting-map for epilepsy surgery is in an early stage of 

development and requires more investigation. 

In this paper, an automated detection and classification of 

interictal HFOs is proposed to identify the high-rate HFO 

areas in multi-channel iEEG recordings. Moreover, different 

types of detected HFO areas were compared with the resected 

areas and SOZ to evaluate the relevance of areas with high-

rate HFO activity in identifying the EZ and predicting PSOs. 

The paper is organized as follows. Section II discusses the 

specifications of the adopted clinical dataset, along with the 

framework of the proposed HFO-detection method. In section 

III, performance analysis and experimental results of using the 

proposed HFO analysis to identify the EZ and predict PSOs 

are described. Section IV discusses the results, and Section IV 

provides conclusions to this research.                

II. DATASET AND METHODS 

The conceptual framework of the proposed automated HFO 

detection and classification is illustrated in Fig. 1(a). Multi-

channel iEEG data recorded from different brain regions of 

epilepsy patients were used as input to the analytical signal 

processing procedure. Following a pre-processing step on the 

iEEG data, the output signal was filtered within ripple and 

fast-ripple bandwidths in order to be used for HFO event 

detection. Next, a combination of signal processing procedures 

were performed in order to select HFO candidates from these 

oscillators. Following an automated FDR reduction process, 

the final HFO events were obtained and saved in the HFO 

database. Fig. 1(b) exhibits the framework for evaluating 

clinical relevance of the detected final HFOs, in identifying 

the EZ and predicting PSOs, using both rate thresholding and 

resection ratio (RR) analysis.   

A. Patients and iEEG Dataset 

In this study, invasive, multi-channel iEEG data recorded 

from 20 patients who afterward underwent epilepsy surgery, at 

the Neurosurgery Department of the University Hospital of 

Zurich, Switzerland were used [19]. The iEEG recordings 

were performed using subdural strip, grid, as well as depth 

electrodes. For each epilepsy patient, up to six intervals, each 

containing five minutes of interictal slow-wave sleep, were 

selected for the analysis. In this stage of sleep, interictal HFO 

activities are abundant compared to other sleep stages [10]. 

Long-term data acquisition was carried out using a Neuralynx 

system with a sampling frequency of 4000 Hz, which was later 

down-sampled to 2000 Hz for HFO analysis, and a 0.5-1000 

Hz band-pass filtering. Furthermore, a digital 60 Hz notch 

filter was used to eliminate line noise. Additional clinical 

information regarding the 20 analyzed patients and dataset are 

provided in Table І. For each epilepsy patient, the channels 

within the SOZ were assigned by epileptologists through 

identification of the region most proximal to iEEG recording 

sites where ictal discharges were first observed.   

B. Signal Pre-Processing 

The multi-channel iEEG signals were recorded based on a 

common intracranial reference. As the first stage of the signal 

pre-processing, bipolar derivations from iEEG signals were 

measured by taking the voltage difference between adjacent 

channels. This is done to eliminate the confounding effects of 

both common reference signal and volume conduction in the 

HFO events detection [20], [21]. Next, the bipolar-derivate 

signals were divided in consecutive, non-overlapping, 1-s 

windows. The second stage of the signal pre-processing was to 

eliminate the edge effect problem related to the data 

segmentation prior to executing the FIR band-pass filtering on 

each 1-s window. In order to do that, 500 samples from 

neighboring segments were incorporated to both ends of each 

1-s data segment. However, after performing the FIR filtering, 

only the output corresponding to the original data segment 

were retained. 

C. FIR Band-Pass Filtering 

FIR band-pass filtering was carried out on each bipolar-

derivate iEEG data-segment in the ripple and fast-ripple bands 

in order to prepare data for HFO detection. In the fast-ripple 

band, each data-segment was filtered using a FIR equiripple 

filter with a pass-band between 250-490 Hz and the stop-band 

of 240 Hz and 500 Hz with a 60 dB stop-band attenuation. In 

the ripple band, the same FIR filter-type was used with a pass-

band between 80-240 Hz and the stop-band of 70 Hz and 250 

Hz with a 60 dB stop-band attenuation. It should be noted that 

a FIR filter was preferred over IIR filter due to its linear phase 

properties as well as its less ringing tendency especially when 

dealing with a high attenuation level [15]. Each data-segment 

was also band-pass filtered in the gamma band merely for the 

FDR-reduction purpose as described later in this paper. In the 

gamma band, the FIR equiripple filter was used with a pass-

band between 40-70 Hz and the stop-band of 30 Hz and 80 Hz 
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with a 60 dB stop-band attenuation. Fig. 2(a) illustrates a 1-s 

bipolar-derivate iEEG data-segment containing ripple activity 

along with its FIR filtered version in the ripple band. Fig. 2(b) 

also exhibits a 1-s iEEG data-segment containing fast-ripple 

activity along with its FIR band-pass filtered version in the 

fast-ripple band.  

D. HFO Detection 

Following the FIR band-pass filtering on the bipolar-

derivate iEEG data and extracting filter outputs or neuronal 

oscillators in the ripple and fast-ripple bands, their root-mean- 

squared (RMS) amplitude were measured individually using a 

2-ms sliding window in order to determine the local energy of 

the oscillators. Next, an RMS-threshold value was determined 

using the whole 5-min of each interval for both the ripple and 

fast-ripple filtered signals respectively. It should be noted that 

the RMS-thresholds were later optimized to maximize the 

sensitivity of the automated HFO detector while minimizing 

its FDR, which are described in detail in the results section. 

For each filtered signal, successive RMS values that exceed its 

corresponding RMS-threshold longer than 6-ms in duration 

were considered as putative HFOs and their onset and offset 

were marked and saved in the database. Moreover, the 

consecutive putative HFO events detected in the fast-ripple 

band, HFO-FR, as well as the ones detected in the ripple-band, 

HFO-R, separated by less than 10-ms were combined as one 

event respectively. The detected events within each band were 

then rectified and those with at least six peaks above a peak-

threshold were classified as HFO-FR and HFO-R candidates. 

The peak-threshold was set to (µ + 3σ) of the filter output’s 

 
Fig. 1.  Framework of the proposed HFO detection and classification methodology in identifying the EZ and predicting PSOs.  (a)  Automated HFO 

detection and classification.  (b)  Clinical evaluation of the identified HFO areas. 

TABLE I 

PATIENT CLINICAL INFORMATION 

Patient ID 
Age(y) / 

Sex 
Epilepsy 

Outcome 

(ILAE) 

Types of 

electrodes 

Patient-1 25 / M TLE 1 
1 strip 4x1, 
1 strip 6x1, 

5 depth 

Patient-2 33 / M TLE 1 8 depth 

Patient-3 20 / F TLE 1 5 depth 

Patient-4 20 / F TLE 1 8 depth 

Patient-5 40 / M TLE 1 8 depth 

Patient-6 48 / M TLE 1 8 depth 

Patient-7 25 / M TLE 3 8 depth 

Patient-8 21 / F TLE 3 8 depth 

Patient-9 52 / M TLE 5 8 depth 

Patient-10 37 / M ETE 1 
1 grid 8x4, 
2 strips 4x1 

Patient-11 36 / M ETE 1 
1 grid 8x8, 

1 depth 

Patient-12 49 / M ETE 1 
1 grid 8x4, 

1 depth 

Patient-13 17 / M ETE 1 
1 grid 8x8, 

1 depth 

Patient-14 46 / F ETE 1 

2 grids 8x2, 

1 strip 6x1, 

1 strip 4x1, 
1 depth 

Patient-15 31 / F ETE 1 
1 grid 8x4, 

2 strips 4x1 

Patient-16 17 / F ETE 1 
1 grid 8x4, 

1 depth 

Patient-17 30 / M ETE 5 
2 grids 8x2, 

1 depth 

Patient-18 40 / M ETE 5 
2 strips 6x1, 

1 depth 

Patient-19 38 / M ETE 6 
1 grid 8x4, 
1 grid 8x2 

Patient-20 17 / M ETE 5 1 grid 8x2 

M= male; F= female; ILAE= international league against epilepsy, TLE= 

temporal lobe epilepsy; ETE= extratemporal lobe epilepsy; grid= grid 
electrodes; depth= depth electrodes. 

 

 
 

Fig.  2.  FIR band-pass filtering of a 1-s, bipolar-derivate iEEG signal. 

(a) 1-s bipolar-derivate iEEG data-segment containing ripple activity 
along with its FIR filtered version in the ripple band. (b) 1-s iEEG data-

segment containing fast-ripple activity along with its FIR band-pass 

filtered version in the fast-ripple band. 
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instantaneous amplitude using the whole 5-min of each 

interval. In addition, the HFO-FR candidates that occur 

concurrently with HFO-R candidates were classified as HFO-

FRandR candidates.   

E. FDR Reduction Process 

 FIR band-pass filtering of high-energy spikes, artifacts, and 

sharp waves without superimposed HFOs is sensitive to the 

misclassification of the resultant HFOs as true HFOs. 

In this study, the time-frequency properties of spikes along 

with a concurrent multi frequency-band analysis were utilized 

to significantly reduce the sensitivity of the proposed method 

to the misclassification of high-energy spikes as true HFOs. 

This process is described for monophasic and biphasic spikes 

in Fig. 3 and Fig. 4 respectively. Fig. 3(a) illustrates an 

intracranially-recorded monophasic spike, which comprises a 

relatively wide base and a pointed peak. Based on the time-

frequency analysis using Fourier transform, the pointed peak 

of spike is made of high-frequency components while its base 

is constructed using lower-frequency components. Moreover, 

the temporal extent of high-frequency components is smaller 

than that of the lower-frequency ones. It should be noted that 

for the purpose of FDR-reduction, the same procedure for 

detecting the HFO-FR and HFO-R candidates, as mentioned in 

the last section, were applied to the filtered output of bipolar-

derivate iEEG data-segments in the gamma band. Fig. 3(b) 

exhibits the signals resulted from filtering of the spike in the 

fast-ripple, ripple, and gamma bands. Fig. 3(c) shows the local 

energy of each FIR-filtered signal, measured using RMS 

values of their instantaneous amplitudes, over a 2-ms sliding 

window. The purple dashed lines denote the RMS-thresholds 

measured for each FIR-filtered signal over the entire 5-min of 

the interval in which the spike occurred. Furthermore, the 

green dashed lines indicate the onset and offset time when the 

local energy, for each filtered signal, exceeds its 

corresponding RMS-thresholds. The detected events in both 

ripple and gamma bands must individually satisfy their peak, 

energy, and duration criteria, mentioned in the last section, in 

order to be enrolled in spike rejection. As it is demonstrated in 

Fig. 3(c), the local energy of the gamma band encompasses 

the one in the ripple band considering both timing and energy 

intensity. It should be noted that the HFO-FR event, detected 

in its corresponding FIR-filtered signal, failed to exceed the 

RMS-threshold for more than 6-ms. Fig. 4 shows a 

synthesized biphasic spike along with its FIR-filtered signals 

in gamma, ripple, and fast-ripple bands and local energy 

characteristics. The local energy of the gamma band embraces 

the ones in the ripple and fast-ripple bands, and the local 

energy in the ripple band encompasses the one in the fast-

ripple band. Moreover, the detected HFO-FR and HFO-R 

events satisfied all the energy, peak, and duration criteria.  

The extracted time-frequency features of spikes without 

HFOs were tested and validated using the visually detected 

spikes within 2-h of the iEEG dataset. These features were 

then used in the proposed classifier in order to discriminate 

spurious HFOs from true HFOs. These features are outlined as 

follows: 

 
 
Fig. 4.  FDR reduction process for a biphasic spike.  (a)  A simulated 
biphasic spike used for FDR reduction process. (b) Output signals 

resulted from FIR band-pass filtering of the biphasic spike in the fast-

ripple (FR), ripple (R), and gamma (G) bands. (C) Local energy of 
each FIR-filtered signal, measured using RMS values of their 

instantaneous amplitudes, over a 2-ms sliding window. The purple 

dashed lines indicate the RMS-threshold that were independently 
measured for each FIR-filtered signal over the entire 5-min of the 

interval, in which spike occurred. The green dashed lines denote the 

onset and offset time when the local energy, for each FIR-filtered 

signal, exceeds its corresponding RMS-threshold. 

 
 

Fig. 3.  FDR reduction process for a monophasic spike.  (a)  An intra-
cranially recorded monophasic spike used for FDR reduction process. (b) 

Output signals resulted from FIR band-pass filtering of the monophasic 

spike in the fast-ripple (FR), ripple (R), and gamma (G) bands. (c) Local 
energy of each FIR-filtered signal, measured using RMS values of their 

instantaneous amplitudes, over a 2-ms sliding window. The purple 

dashed lines indicate the RMS-threshold that were independently 
measured for each FIR-filtered signal over the entire 5-min of the interval 

in which spike occurred. The green dashed lines denote the onset and 

offset time when the local energy, for each FIR-filtered signal, exceeds 
its corresponding RMS-threshold. The green dashed lines were not 

shown for the local energy in the fast-ripple band because it failed to 
exceed its RMS-threshold for more than 6-ms.          
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1. RMS(G) onset time < RMS(R) onset time < RMS(FR) 

onset time* 

2. RMS(FR) offset time* < RMS(R) offset time < RMS(G) 

offset time  

3. RMS(FR) energy* < RMS(R) energy < RMS(G) energy 

* The FR-related criteria can be ignored in case the extracted 

FIR-filtered signal(FR) fails to satisfy the HFO-FR candidate 

conditions.  

The RMS(x) energy indicates the measured RMS values of 

the FIR-filtered signal(x), where  ' ', ' ', ' 'x FR R G , during the 

time that it exceeds its corresponding RMS-threshold. 

 The detected HFO-candidates, from the previous stage, that 

fulfil all the aforementioned three criteria were removed from 

the HFO database and the remaining ones were considered and 

classified as final HFOs; namely, final HFO-FR, final HFO-R, 

and final HFO-FRandR.  

F. Visual Inspection and Performance Analysis 

Visual inspection of 2-h of bipolar-derivate, interictal iEEG 

signals were carried out independently by two reviewers 

trained in electrophysiology and HFO analysis in order to 

analyze the performance of the proposed HFO detector. The 

zoomed-in interictal iEEG signals, 1-s/plot, were provided in 

the first trace while the FIR band-pass filtered signals in the 

ripple and fast-ripple bands were provided simultaneously in 

the second and third trace. Besides, the FIR filtered signals in 

the fast-ripple and ripple bands were viewed at a higher gain 

due to their lower amplitudes compared to the unfiltered input 

signal. Reviewers used the FIR-filtered data in order to verify 

their visually detected HFOs. Next, they classified and labeled 

the visually marked HFO events from the iEEG data as HFO-

FR and HFO-R. They also marked spikes without HFOs on 

the iEEG data merely to verify the FDR-reduction process as 

described in the last section. All the visually detected HFO 

events that were jointly marked by both reviewers, in ripple 

and fast-ripple bands, were considered as a gold standard to 

quantitatively evaluate the performance of the automated HFO 

detector using sensitivity and FDR parameters. The sensitivity 

parameter measures the proportion of HFO events, detected 

using our methodology, overlapping with the visually detected 

ones and is defined as follows:   

                         TP
Sensitivity 100

P
                                    (1) 

in which TP indicates the number of correctly detected HFO 

events and P is the total number of visually detected HFOs. 

The FDR parameter calculates the incorrectly detected HFO 

events and is described by equation (4).  

                          
FP

FDR 100
FP TP

 


                                 (2) 

where FP represents the number of incorrectly detected HFO 

events such as interictal spikes, artifacts, and sharp waves. 

G. Clinical Evaluation of the Identified HFOs 

In order to assess the clinical relevance of the detected final 

HFOs in different classes, in detecting the EZ and predicting 

PSOs, the rate of their HFO activities were computed for each 

5-minutes interval. Next, the median rate of the intervals was 

chosen to represent the HFO rate of a particular channel for 

each patient. Finally, a rate threshold was measured separately 

for different classes of final HFOs using Kittler's method to 

identify channels with high HFO rates [22]-[25]. Kittler's 

algorithm is a histogram-based thresholding method that 

approximates the histogram as a bimodal distribution and 

finds the cutoff point to separate it. Due to the small sample 

size, the bootstrap method was used to reliably estimate the 

rate threshold [26]. One thousand bootstrap samples were 

generated, with replacement from the original dataset, 

containing the median rates of each channel. Kittler's threshold 

was measured for each of the 1000 bootstrap samples and the 

mean value of the obtained 1000 thresholds was chosen as the 

final threshold to separate the high-rate HFO channels, defined 

as HFO areas, from the ones with low rates of HFOs. In 

addition to Kittler’s method, we also tried to separate channels 

with high HFO rates using Tukey’s upper fence and the 95th 

percentile. Kittler’s method provided results with the highest 

sensitivity with the resected area.     

In order to assess the clinical relevance of the detected HFO 

areas, in all three classes, in predicting PSOs the resection 

ratio (RR) of the HFO areas is described as follows: 

           
X

Resected Channels of HFO-x Areas
RR

Total Channels of  HFO-x Areas
              (3) 

in which subscript x indicates different HFO classes; namely, 

FR, R, and FRandR. The RR has values from zero to one. 

III. EXPERIMENTAL RESULTS 

In this section, the performance of the proposed automated 

HFO detector is assessed using the jointly marked HFO events 

by both reviewers, before and after the FDR-reduction 

process. Moreover, the identified HFO areas were compared 

with the SOZ and resected areas for each patient to investigate 

their clinical relevance in detecting the EZ and predicting 

PSOs. 

 
Fig. 5.  The simulated ROC curves for both HFO-FR, blue curve, 

and HFO-R, orange curve, events. It should be noted that the RMS-

threshold was optimized individually for the FIR-filtered signals in 
the ripple and fast-ripple bands. 

TABLE II 

PERFORMANCE OF THE PROPOSED HFO-DETECTION METHOD 

HFO-Detection 

Technique 

Sensitivity 

(%) 

FDR  

(%) 

FIR Band-Pass Filtering +  
RMS Feature  

91.3 (FR) 
90.4 (R) 

16.2 (FR) 
15.5 (R) 

FIR Band-Pass Filtering +  

RMS Feature + FDR Reduction  

89.1 (FR) 

88.3 (R) 

8.7 (FR) 

  8.2 (R) 
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A. Performance Results 

In the training stage of the HFO-events detection, the RMS-

threshold was optimized individually for the FIR-filtered 

signals in the ripple and fast-ripple bands to enhance the 

detection sensitivity while reducing the FDR. During this 

stage, the peak-threshold was kept fixed and equal to the (µ + 

3σ) of the filter output’s instantaneous amplitude using the 

whole five minutes of each interval. Next, the RMS-threshold 

was varied according to the formula (µ + kσ), where µ is the 

mean of the RMS values over the 5-min interval, σ is their 

standard deviation, and k ranged from 0 to 10 with 0.5 

increments. A maximum value of 10 was selected for k to 

guarantee that at least 99% of the RMS values lie below the 

RMS-threshold according to Chebyshev's inequality [27]. To 

find the optimum RMS-threshold for HFO detection, the ROC 

curve was used to plot the sensitivity as a function of FDR, 

when varying RMS-threshold [28]. Fig. 5 illustrates the ROC 

curves for HFO-FR, blue curve, and HFO-R, orange curve, 

events. The optimum RMS-threshold value for both HFO-FR 

and HFO-R, where the discrimination between the sensitivity 

and FDR is maximum, were found equal to (µ + 5σ). The 

obtained optimum RMS-threshold was consistent among all 

intervals within the 2-h test data. The automated HFO detector 

was tuned to that obtained, optimum RMS-threshold for HFO 

detection, classification, and FDR-reduction process. The 

sensitivity and FDR of the automated HFO detector prior and 

after the FDR-reduction process are provided in Table II. The 

reported sensitivity and FDR values of the HFO detector were 

measured with respect to the jointly marked HFO events by 

reviewers.  

B. HFO-Area Identification 

In this section, the identification of channels with high-rate 

HFO activities, HFO-areas, from 24 bipolar-derivate channels 

is described. For simplicity, only the detected HFO-FR areas 

from all six intervals is demonstrated. Fig. 6(a) illustrates the 

histogram of the detected HFO-FR events across all channels. 

The x-axis indicates the median of the HFO-FR rate values 

from all six intervals, each containing 5 min. of iEEG data. A 

rate-threshold, denoted by a purple dashed line, equal to 8, 

was measured based on Kittler’s method for all channels. Fig. 

6(b) exhibits the channels in which the median of their HFO-

FR rate values, from all six intervals, exceeded the measured 

rate-threshold.  

C. Clinical Assessment of the Identified HFO-Areas 

For all the patients reported in Table I, seizure outcome of 

the resecting surgery was evaluated in subsequent visits and 

then classified according to the International League Against 

Epilepsy (ILAE) scale [29]. For instance, Patient-1, Patient-2, 

and Patient-3 were reported seizure-free after surgery (ILAE 

Class 1, Table І). However, Patient-9 (ILAE Class 3, Table І) 

Patient-17, and Patient-18 (ILAE Class 5, Table І) still had 

recurrent seizures. For each patient, a summary of the resulted 

RR values for different HFO classes; namely, HFO-FR, HFO-

R, and HFO-FRandR is reported in Table ІIІ. It was found that 

the identified HFO-FRandR areas better predicted PSOs 

relative to the other two classes. The RR(FRandR) values equal 

to 1 indicated that all the identified HFO-FRandR areas, using 

the proposed method, were within the resected areas of brain. 

TABLE III 

RESECTION RATIO (RR) FOR THE IDENTIFIED HFO AREAS 

IN DIFFERENT HFO CLASSES 

Patient ID 
Outcome 

(ILAE) 
RR(FR) RR(R) RR(FRandR) 

Patient-1 1 1.0 1.0 1.0 

Patient-2 1 0.67 0.67 1.0 

Patient-3 1 0.5 0.4 1.0 

Patient-4 1 1.0 1.0 1.0 

Patient-5 1 0.67 0.75 1.0 

Patient-6 1 1.0 1.0 1.0 

Patient-7 3 0.33 0.25 0.0 

Patient-8 3 1.0 1.0 0.33 

Patient-9 5 1.0 1.0 0.5 

Patient-10 1 0.75 0.63 1.0 

Patient-11 1 0.88 0.75 1.0 

Patient-12 1 0.75 0.5 1.0 

Patient-13 1 1.0 0.5 1.0 

Patient-14 1 0.5 0.33 1.0 

Patient-15 1 0.8 0.6 1.0 

Patient-16 1 0.5 0.14 1.0 

Patient-17 5 0.63 0.5 0.6 

Patient-18 5 0.33 0.5 0.0 

Patient-19 6 0.88 0.76 0.5 

Patient-20 5 0.0 0.0 0.0 

 

 
Fig. 6.  Identification of channels with high-rate HFO-FR activities.  (a)   Histogram of the detected HFO-FR events across 

all 24 bipolar-derivate channels.  The x-axis denotes the median of the HFO-FR rate values from all six intervals.  (b)  The 

identified channels with median HFO-FR rate, measured from all six intervals, above the rate threshold.   
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Consistent with the notion that HFO-generating areas are a 

suitable biomarker for the EZ, the identified HFO-FRandR 

channels in the patients overlapped well with the SOZ. In 17 

out of 20 patients, the HFO-FRandR area formed a subset of 

the SOZ, while the remaining three patients had an overlap 

greater than 50%. It should be noted that the identified HFO 

areas for FR, R, and FRandR can be distinct. In particular, as 

shown for Patient-8 and Patient-9, it is possible for the HFO-R 

and HFO-FR areas to be fully resected, but not the identified 

high-rate HFO-FRandR channels or HFO-FRandR areas. That 

is, PSOs of epilepsy patients showed a high specificity to the 

identified HFO-FRandR areas.     

IV. DISCUSSION 

The primary aim of this study was to develop an automated 

HFO detection and classification methodology to improve the 

identification of the EZ prior to epilepsy surgery. The clinical 

relevance of different classes of identified HFO areas; namely, 

HFO-FR, HFO-R, and HFO-FRandR in predicting PSOs was 

investigated using rate thresholding and RR. A combination of 

FIR band-pass filtering and FDR reduction process was 

utilized to not only reliably detect HFO events, but also to 

decrease the sensitivity of the proposed method to the 

misclassification of high-energy transients such as sharp 

waves and spikes as true HFOs.  

The FDR reduction process was not only capable of 

removing the spurious HFOs created from the FIR-filtering of 

spikes without HFOs, it was also sensitive to detecting HFO 

events superimposed on spikes or sharp waves. This mainly 

stemmed from the following two reasons. First, HFO events 

can take place at any portion of spikes; therefore, the first and 

second spike-rejection criteria corresponding to onset and/or 

offset times are not necessarily fulfilled. Second, HFO-FR 

and/or HFO-R superimposed on spikes can enhance their 

corresponding local energy level that may contradict the third 

spike-rejection criteria.  

 Patient-16 (ILAE Class 1, Table І) and Patient-17 (ILAE 

Class 5, Table І) were selected as case studies to discuss and 

visually demonstrate the process for investigating the clinical 

relevance of the identified HFO-FRandR areas in identifying 

the EZ and predicting PSOs. Resecting the HFO-FRandR 

areas was found to be better than the HFO-FR areas and the 

HFO-R areas at predicting PSOs on the group level. This 

finding is consistent with other studies [30], [31]. Fig. 7(a)-(b) 

show the anatomical position of the implanted electrodes in 

Patients-16 and Patient-17 as well as their SOZ, determined by 

clinicians, as electrode sites with blue ×. Moreover, the HFO-

FRandR areas obtained using our automated methodology are 

presented with electrode contacts filled with red. The 

identified HFO-FRandR areas, in both patients, overlapped 

well with their SOZ. Furthermore, they are smaller than the 

annotated SOZ and form a subset of it. Our analysis suggests 

the EZ in these patients might have been significantly smaller 

than the SOZ identified by clinicians. Therefore, the proposed 

HFO analysis in these epilepsy patients might have 

significantly improved the surgical planning that defined the 

resected area. Moreover, Patient-16 who was seizure-free after 

epilepsy surgery had his identified HFO-FRandR area fully 

resected, but not the entire annotated SOZ. On the other hand, 

Patient-17 did not have a good PSO despite the resection of 

most of the SOZ. For Patient-17, a large portion of the right 

frontal cortex was resected. Although parts of the HFO-

FRandR areas identified using the proposed HFO detection 

and classification methodology were included in the resection, 

its resection was not complete.  

Our results suggest that the detected HFO-FRandR areas in 

concordance with the SOZ would have better delineated the 

EZ, while limiting the area of the brain required to be resected. 

This might have improved the PSO for Patient-17 with less 

destruction of brain tissue and therefore, fewer side effects. 

Although this protocol will need to be assessed further 

using additional epilepsy patients, it provides an analytical 

protocol that may not only increase surgical efficacy for 

 
Fig. 7.  The HFO-FRandR areas identified in Patient-16 and Patient-17 with extratemporal lobe epilepsy. (a) Anatomical position of the implanted 

grid and depth electrodes for Patient-16. (b) Anatomical position of the implanted grid and depth electrodes for Patient-17. The SOZ identified by 
clinician are denoted as electrode contacts with the blue ×. The HFO-FRandR areas detected by the proposed analysis is denoted by contacts filled 

with red color. The resected areas during epilepsy surgery are represented by blue ellipse.   
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patients, but it may also minimize neurological deficits that 

may arise as a result of this surgery. 

V. CONCLUSION 

In this study, an automated HFO detection and classification 

methodology is proposed to improve the localization of the EZ 

in patients with drug-resistant epilepsy using interictal iEEG 

recordings. Different types of HFOs; namely, HFO-FR, HFO-

R, and HFO-FRandR were detected and classified using FIR 

band-pass filtering in the ripple and fast-ripple bands along 

with a HFO detection process. Moreover, the spurious HFOs 

caused by FIR-filtering of spikes without HFOs were removed 

from the final HFO database using the FDR reduction process. 

Next, the high-rate HFO channels were identified in all three 

classes to evaluate the clinical relevance of them in localizing 

the EZ and predicting PSOs. Our results suggested that 

patients who had their HFO-FRandR areas fully resected 

ended up seizure-free while patients with HFO-FRandR areas 

that were not fully resected still had recurrent seizures.                    

Testing on a preliminary dataset of 20 epilepsy patients has 

supported the feasibility of using our method to provide an 

automated algorithm that can be used in concordance with the 

SOZ to better delineate the EZ. This could potentially lead to 

an improvement in the surgical planning of the resected area.  
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