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Abstract8

Parasite aggregation, a recurring pattern in macroparasite infections, is con-9

sidered one of the “laws” in parasite ecology. Few hosts have a large number10

of parasites while most hosts have a low number of parasites. This pattern has11

been widely studied using phenomenological models, by using the negative bino-12

mial distribution. However, to infer the mechanisms of aggregation, a mechanistic13

model is essential. Here we formulate such a mechanistic model of parasite ag-14

gregation in hosts without initially assuming a negative binomial distribution. Our15

results show that a simple model of parasite accumulation still results in an ag-16

gregated pattern, as shown by the derived mean and variance of the parasite17

distribution. By incorporating the derived mean and variance to the host-parasite18

interaction, we can predict how aggregation affects the population dynamics of19

the hosts and parasites through time. Thus, our results can directly be applied to20

observed data as well as can be utilised in designing statistical sampling proce-21

dures. Overall, we have shown how a plausible mechanistic process can result in22

the often observed phenomenon of parasite aggregation occurring in numerous23

ecological scenarios.24

Keywords: macroparasite, aggregation, negative binomial, mechanistic model,25

host-parasite interaction, accumulation26
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Key Findings27

• Parasite aggregation is considered one of the “laws” in parasite ecology – few28

hosts harbouring a large number of parasites.29

• While examples abound, there is lack of mechanistic models available to explain30

the phenomenon31

• Taking a bottom up approach we construct a simple model of host-parasite pop-32

ulation dynamics which naturally results in parasite aggregation – negative bi-33

nomial distribution of parasites in the host population34

• While providing a plausible mechanism our model can be readily deployed in35

field work when designing sampling methodology or analysis of available data.36
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1 Introduction37

Parasites are ubiquitous (Zimmer, 2001). Yet, for parasitologists, sampling can be a38

hard problem (Cundil and Alexander, 2015; Hollingsworth et al., 2015). This is due39

to how the parasites are distributed among hosts (Rozsa et al., 2000). While most40

hosts harbour very few parasites, only a few individuals are hosts to a large number41

of parasites (Crofton, 1971). Normal distribution is not appropriate to represent such42

parasite distribution in a host community. This phenomenon, termed as parasite ag-43

gregation, is perhaps one of the few “laws” in biology because it is a recurring pattern44

in nature and finding exceptions to this pattern is rare (Gourbiére et al., 2015; Poulin,45

2007; Shaw and Dobson, 1995). The pattern is specifically observed in macropar-46

asite infections, which include diseases brought about by helminths and arthropods47

(Poulin, 2007; Shaw and Dobson, 1995). The distribution pattern of macroparasites in48

host populations is an important factor in addressing challenges in investigating dis-49

ease transmission, such as in the case of human onchocerciasis and schistosomiasis50

(Basanez and Boussinesq, 1999; Churcher et al., 2005; Guilhem et al., 2012). Aggre-51

gation can also affect co-infection by various parasites, parasite-driven evolutionary52

pressures, and stability of host-parasite communities (Morrill and Forbes, 2012, 2016;53

Morrill et al., 2017; Wilson et al., 2001). Thus, the study of parasite aggregation ad-54

dresses a fundamental issue in ecology.55

The distribution of hosts with different numbers of parasites can be well captured56

by the negative binomial (Crofton, 1971; Fisher, 1941; Wilson et al., 1996). Given this57

fact, a number of theoretical models about host-parasite dynamics implicitly assume58

the negative binomial distribution, mainly based on a phenomenological (statistical)59

modeling framework (Adler and Kretzschmar, 1992; Anderson, 1978; Gourbiére et al.,60

2015; Shaw and Dobson, 1995). The phenomenological principle is based on the ob-61

servation that - (i) a distribution is Poisson if showing random behavior with equal62

mean and variance, (ii) binomial if underdispersed with greater mean than variance,63

or (iii) negative binomial if overdisperesed with greater variance than the mean (An-64

derson and Gordon, 1982; Wilson et al., 2001). Overdispersion is observed in host-65

parasite interaction such as between cattle (Bos taurus) and warble fly (Hypoderma66

bovis), and between Nile tilapia (Oreochromis niloticus) and copepod Ergasilus philip-67

pinensis (Lopez, 2001; Wilson et al., 2001). The negative binomial distribution is68

hypothesized to arise due to the heterogeneity in the characteristics of the hosts and69

parasites, and variation in the environment. Heterogeneous exposures, infection rates70

and susceptibility of host individuals are observed to produce aggregated distributions71
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of parasites (Galvani, 2003; Wilber et al., 2017; Wilson et al., 2001). However, is het-72

erogeneity in the characteristics of the hosts and parasites a necessary condition for73

aggregation? Using a mechanistic model, we show that a regular but non-extreme74

parasite accumulation can lead to aggregation. This proves that even in regular sys-75

tems (i.e., with homogeneous proportion of parasite accumulation), aggregation is76

widely possible.77

Traditionally, in arriving at the desired model for host-macroparasite interaction,78

phenomenological modelling is assumed (Anderson, 1978; Anderson and May, 1978;79

Crofton, 1971; Rosà and Pugliese, 2002; Yakob et al., 2014). Phenomenological mod-80

els are based on data gathered, but the mechanisms underlying the phenomenon are81

generally hidden. There is a need for descriptive and predictive models that assume82

the underlying mechanistic processes of parasite dynamics, which can be used in83

formulating disease control programs (Hollingsworth et al., 2015). The goal of this84

study is to mechanistically illustrate the interaction between hosts and macroparasites85

without assuming a negative binomial distribution. Our approach considers parasite86

accumulation without direct reproduction in host individuals, which is a consequence87

of the complex life history of macroparasites (Auld and Tinsley, 2015; McCallum et al.,88

2017; Viney and Cable, 2011). For example, the Nile tilapia fish are infected by the89

acanthocephalans parasites via the ingestion of infected zooplankton. The parasites90

grow, mate and lay eggs inside the fish, and then eggs are expelled in the lake through91

faecal excretions. The parasites in the excretions attach to the zooplanktons, and the92

cycle of infection through foraging continues (de la Cruz et al., 2013; Paller et al.,93

2016).94

Recently, various attempts have been made to model the accumulation and aggre-95

gation of parasites mechanistically. The stratified worm burden, which is based on a96

chain of infected compartments as in Susceptible-Infected (S-I) modeling framework,97

was used to model schistosomiasis infections (Gurarie et al., 2010, 2015, 2016). This98

model can be well simulated numerically for specific cases, but possibly difficult to99

implement analytic studies to find general mathematical conclusions (Gurarie et al.,100

2010). Moreover, the Poisson-Gamma Mixture Model has been proposed to model101

aggregation based on parasite accumulation (Calabrese et al., 2011). The negative102

binomial distribution arises naturally from a Poisson-Gamma process; however, is it103

possible to derive a mechanistic model of aggregation without initially assuming a dis-104

tribution related to the negative binomial? In another study, a mechanistic model has105

been proposed based on the random variation in the exposure of hosts to parasites106

and the infection success of parasites (Gourbiére et al., 2015). This model anchors its107
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derivation and conclusion on the common assumption that heterogeneity in individ-108

ual hosts leads to parasite aggregation. Moreover, in most models of macroparasite109

infections, the rate of disease acquisition by susceptible individuals (known as the110

“force of infection” β) is assumed as a parameter. However, identifying the value of111

β can be difficult or infeasible even in the availability of data (McCallum et al., 2017).112

In our proposed model, this challenge can be addressed since our assumed infection113

parameter, denoted by P , can be directly estimated from parasite count data gathered114

from host samples in empirical studies. Our model is simple and tractable, and can be115

incorporated as part of classical modeling frameworks (e.g., host-parasite interaction116

with logistic growth) (Edelstein-Keshet, 2005).117

2 Model118

The core concept of our model is captured in Fig. 1. The total host population has119

a density of X. With probability P0, the hosts are parasite-free and the density of120

parasite-free hosts is then X0 = P0X. In a similar fashion, the density of hosts121

which have at least one parasite is X1 = P1X. The total host population is there-122

fore equivalent to X = X0 + X1 = P0X + P1X. Moreoever, the class of individuals123

Xi which have at least i > 1 number of parasites is assumed as a subset of X1 (i.e.,124

Xn+1 ⊆ Xn ⊆ . . . ⊆ X2 ⊆ X1), and can be modeled as,125

X0 = P0X

X1 = P1X

X2 = P2X1 = P2P1X
... (1)

Xn = PnXn−1 = PnPn−1 · · ·P2P1X

Xn+1 = Pn+1Xn = Pn+1PnPn−1 · · ·P2P1X.

From the above set of equations, we can derive the distribution of living hosts (all126

except the n+1 compartment) with different parasite load with respect to the total host127

population. Fig. 1 represents the classification of the states of the hosts depending128

on their parasite load. The compartment associated with Xi, i ≥ 1 contains the hosts129

infected by at least i number of parasites. The parameter Pi+1 is the probability that a130

host in Xi acquires an additional parasite. Consequently, the difference Xi−Xi+1, i ≥131

1 is the population density of hosts with exactly i number of parasites. The population132

density of living hosts (with maximum tolerable parasite load n) is then Xn − Xn+1.133
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Hosts with exactly 1 parasite

with exactly n parasites

with exactly n+1 parasites
(dead hosts)

X
<latexit sha1_base64="kpPTAtGMnO2krFRSnNrra2xDivU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZqdfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8ftweM4A==</latexit>
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Figure 1: Hierarchical compartment model of macroparasite accumulation in hosts.
The total host density is X. The density of parasite-free hosts is denoted by X0. The
population density of hosts with at least i number of parasites is Xi, i ≥ 1 (Xi+1 ⊆ Xi).
When a host in Xi acquires a parasite, we are assured that the host is also a host
with at least i+1 parasites. A living host can harbour a maximum of n parasites. The
parameter Pi, i ≥ 1 can be interpreted as the net probability of parasite acquisition
by a host in state Xi−1. Refer to Table SI.1 in SI.1.1 for the description of the state
variables and parameters.
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Thus the death of hosts due to the parasite is captured by the transition into the134

Xn+1 state given by Xn+1 = Pn+1Xn =
∏n+1

i=1 PiX, the number of dead hosts (last135

compartment in Eqs. (1)).136

Our model, described as such, does not follow the classical input-output modeling137

framework (e.g., stratified worm burden model which is an extension of the stan-138

dard S-I epidemiological models). Such a classical modeling framework could be139

intractable when modeling aggregation (Gurarie et al., 2010). The number of vari-140

ables and equations in the stratified worm burden model can increase as the number141

of states (compartments) increases. Here, we model the states in the compartment142

diagram using proportions so we can easily analyze the distribution of parasites using143

probabilities. The dynamics of parasite infection can then be summarized using the144

properties of the derived distributions, such as the mean and variance. Also, in input-145

output models, the transfer from one state (e.g., susceptible) to another (e.g., state146

with 3 parasites) needs to pass through intermediate diseased states (e.g., states147

with 1 and 2 parasites, respectively). In our model, a host can acquire more than 1148

parasite, and this can be modeled by adjusting the parameter Pi. This is consistent149

with the experimental approaches and comparable to the data gathered. For exam-150

ple, the proportion Pi is directly computable from parasite load data from sampled151

hosts as compared to computing the force of infection β in S-I models (Gandon and152

Day, 2009).153

The quantities relating to the host and parasite proportions, Xi, Pi and n can be154

dynamic (e.g., may change over time). Here, we assume that Xi changes following a155

logistic growth with parasitism, and Pi is a function of parasite population Y (hence,156

also a function of time). This allows us to connect our model to experimental data.157

The parameter values (e.g., Pi) can be determined from the samples gathered at a158

certain time instant, and the pattern of the temporal evolution of the parameter values159

can be inferred from time series data.160

Depending on the exact transmission mode of the parasite, Pi can have different161

functional forms. A basic assumption would be that Pi is a function of parasite en-162

counter and transmission rates. For example, we could have Pi =
Y p

nK+c
for all i 6= 0.163

Here, the total ecological carrying capacity for the parasite population is assumed to164

be nK + c, where K is the host carrying capacity and n is the maximum number of165

parasites that a living host can harbour without dying. The parameter c is the quanti-166

tative representation of the environment where the parasites can survive outside the167

hosts. Thus we can interpret Y
nK+c

as the parasite encounter probability with p being168

the parasite transmission probability. We focus on cases where parasites highly de-169
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pend on the hosts to survive, and without loss of generality, we assume a small value170

c = 1. Assuming homogeneity in parasite transmission, p is kept constant. Moreover,171

the host basal growth rate is set to a constant rH , assuming that macroparasites do172

not affect reproduction of hosts.173

For the parasite population, the total parasite density in host population is Y =174 ∑n
i=1 Yi where Yi = i(Xi − Xi−1), i ≥ 1. The distribution of parasites is according to175

the following:176

Y1 = (P1 − P2P1)X

Y2 = 2

(
2∏
i=1

Pi −
3∏
i=1

Pi

)
X

Y3 = 3

(
3∏
i=1

Pi −
4∏
i=1

Pi

)
X

... (2)

Yn = n

(
n∏
i=1

Pi −
n+1∏
i=1

Pi

)
X.

Based on the set of Eqs. (2), the parasite population density in host population can177

be written as Y =
∑n

i=1 Yi = Ẽ[N ]X. Here, N is the random variable representing the178

parasite load in a living host, and Ẽ[N ] is the approximate mean of N .179

The carrying capacity of the host population is assumed to be equal to K. The180

death rate of the hosts is assumed to be
(

Y p
nK+1

)n+1
, which is derived from the equation181

representing Xn+1. Moreover, the per capita parasite reproduction rate is assumed to182

be rp. Together with the carrying capacity for the parasites (nK+1) the population dy-183

namics between the hosts and parasites can be modeled assuming logistic growth as184

follows (refer to Table SI.1 for the description of the state variables and parameters):185

dX

dt
=

host logistic growth︷ ︸︸ ︷
rHX

(
1− X

K

)
−

host death due to parasites︷ ︸︸ ︷(
Y p

nK + 1

)n+1

X (3)

dY

dt
=

parasite logistic growth︷ ︸︸ ︷
rP Ẽ[N ]X

(
1− Y

nX + 1

)
. (4)
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3 Results186

The distribution of the parasites in the living hosts is represented by Ẽ[N ]. The gen-187

eral expression for this distributions as discussed above is given by,188

Ẽ[N ] =
n∑
i=1

iP i
i (1− Pi)

=
Y p

nK + 1

(
1− Y p

nK + 1

)
A (5)

where A is derived from the derivative of a geometric series (see SI.1.2). If the para-
site transmission Pi = Y p

nK+1
= 1 (for i 6= 0), then the distribution of the parasites in the

living hosts has Ẽ[N ] = 0 since all hosts that are harbouring at least n+ 1 number of
parasites are dead. Now, supposing, P = Pi =

Y p
nK+1

< 1, we have,

Ẽ[N ] =
nP n+2 − (n+ 1)P n+1 + P

1− P . (6)

as the mean, and the variance, Ṽ ar[N ], derived in the SI.1.3.189

A negative binomial distribution describing the probability distribution of the num-190

ber of successes before the m-th failure, where ρ is the probability of success can be191

written as NB(m, ρ). The mean and variance of NB(m, ρ) are mρ
1−ρ and mρ

(1−ρ)2 , respec-192

tively. From Eq. (6), Ẽ[N ] is equivalent to the mean of a negative binomial distribution193

with m = nP n+1 − (n+ 1)P n + 1 and ρ = P . For the non-truncated negative binomial194

distribution, we consider n → ∞ (Crofton, 1971; Shonkwiler, 2016). In the next sec-195

tion (3.1), we discuss that as n → ∞, Ẽ[N ] and Ṽ ar[N ] respectively converge to the196

mean and variance of a geometric distribution (NB(1, ρ)).197

3.1 Constant host-parasite encounter probability198

Suppose the parasite encounter probability
(

Y
nK+1

)
is fixed. This implies that whatever199

the values of Y and nK +1, P = Y p
nK+1

is always constant. We can also interpret P as200

the constant geometric mean of the parasite acquisition probabilities Pi, i ≥ 1.201

For a large n and P < 1, Ẽ[N ] and Ṽ ar[N ] approximate the mean and variance202

of N ∈ {0, 1, 2, ..., n}, respectively. E[N ] can be interpreted as the average number203

of parasites in a host with variance V ar[N ]. From Eq. (6) as n → ∞, Ẽ[N ] = E[N ]204

is equivalent to the mean of a negative binomial distribution with m = 1 and ρ = P ,205

which characterizes the mean of a geometric distribution. Let us denote this mean206
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and variance as207

E[∞]P =
P

1− P and V ar[∞]P =
P

(1− P )2 . (7)

The variance-to-mean ratio is 1
1−P , which increases as P increases (Table SI.2).208

The implication of this result is that even if the host can sustain a large number of209

parasites (n→∞) for P < 1, we have finite mean and variance at the population level.210

Also, the variance-to-mean ratio is greater than 1 characterizing an over-dispersed211

distribution of parasite load in the host population. For example, E[∞]0.5 implies that212

the average number of parasites in a host is 1 with variance V ar[∞]0.5 = 2. E[∞]0.9213

implies that the average number of parasites in a host is 9 with variance V ar[∞]0.9 =214

90.215

As stated earlier, E[∞]P is clearly an approximation. The error due to the approx-216

imation can be estimated and is shown in Fig. 2A. For a wide range of parameter217

values of the maximum tolerable parasite load of the host (n) and of the probability of218

parasite acquisition by a host (P ) we see that the mean of the geometric distribution219

is a good estimate for Ẽ[N ]. Fig. 2A further illustrates that as n approaches infinity,220

the error becomes smaller. While, a small value for n and a higher P produce higher221

error, this could also be an improbable scenario in nature. The condition where the222

probability of acquiring more parasites is high and the number of tolerable parasites223

is low, would result in higher infection rates and potentially lead to the extinction of224

the hosts. This is illustrated in Fig. 3 where high parasite-driven host death drives the225

host population extinct X∗
1 = 0.226

The same is true with the approximation of Ṽ ar[N ] by V ar[∞]P . Fig 2B shows227

that as n → ∞, the error becomes smaller. This illustrates that the variance of the228

geometric distribution is a good estimate for Ṽ ar[N ] (Fig. 3).229

In the supplementary information Figs. SI.1 and SI.2, we present examples of230

parasite load distribution in host population with differing values of P . An intermediate231

value of P results in aggregated distribution. However, the distribution becomes more232

negatively skewed as P increases which shows high host mortality due to harbouring233

high parasite load. This is the reason why as P increases, the errors in approximating234

Ẽ[N ] and Ṽ ar[N ] using the geometric distribution also increase.235

3.1.1 Population dynamics236

We now analyze in detail the population dynamics between the hosts and parasites237

(Eqs. (3) and (4)). Since the probability of parasite acquisition by a host P is constant,238
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A

B

Figure 2: Approximation of Ẽ[N ] and Ṽ ar[N ] using the mean and variance of
the geometric distribution, respectively. This shows how well the geometric dis-
tribution represents the parasite load distribution in hosts, especially when n is
high and P is relatively low. (A) Absolute difference between Ẽ[N ] and E[∞]P ,
error =

∣∣∣Ẽ[N ]− E[∞]P

∣∣∣. (B) Absolute difference between Ṽ ar[N ] and V ar[∞]P ,

error =
∣∣∣Ṽ ar[N ]− V ar[∞]P

∣∣∣.
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we can decouple the host-parasite dynamics. Analyzing first the host population (Eq.239

(3)), we have a logistic growth function with death or harvesting term (D = P n+1X)240

(Clark, 2010). In Fig. 3, the blue curve represents the logistic growth function G.241

The red line represents the death function D. The intersection of the two curve is an242

equilibrium.243

There are two equilibrium points if rH > P n+1, where one is unstable (X∗
1 = 0)244

and the other is stable
(
X∗

2 = (rH−Pn+1)K
rH

)
(Fig. 3A). If rH ≤ P n+1, the zero equilib-245

rium point is stable and the only steady state of the dynamics (Fig. 3B), implying an246

eventual extinction of the host population. For the parasites to exploit the maximum247

growth rate of the hosts (rHK/4) (Fig. 3), the parasite-driven host death rate should248

be P n+1 = rH/2.249

Now, analyzing the parasite population (Eq. (4)), there are two possible equilib-250

rium states: the parasite can go extinct, Y ∗
1 = 0 which happens if X = 0 or Ẽ[N ] = 0,251

and a stable coexistence of hosts and parasites at Y ∗
2 = nX∗ + 1 where X∗ is the252

host equilibrium. The equilibrium state Y ∗
1 is unstable, and Y ∗

2 is stable. The condition253

Ẽ[N ] = 0 for Y ∗
1 only happens if P = 0 (proof in SI.1.4).254

Over time the total parasite population density in living host population converges255

to Y ∗
2 = nX∗ + 1. The expected number of parasites in the hosts then tends to n256

(parasites in the environment represented by c are not included since they are outside257

the living hosts). One might think that this limiting case may not be the situation if258

parasite distribution in living hosts is aggregated. If aggregation affects the carrying259

capacity of the parasite population, the parameter n in the denominator nX + 1 in260

Eq. 4 can be replaced by261

E[N ] + σ
√
V ar[N ] < n (8)

where σ represents the contribution of the variance to the average number of par-262

asites in a host. Hence, if the distribution associated with parasite aggregation is263

considered, Ẽ[N ] → E[N ] + σ
√
V ar[N ] as time t → ∞. In the next section, we264

investigate the case when P is not constant through time.265

3.2 Variable host-parasite encounter probability266

Until now we assumed that the parasite encounter probability P as a constant. How-267

ever, P = Y
nK+1

(Eqs. (3) and (4)) is a function of the dynamic variable Y , the parasite268

density. Given the dynamics of the parasite, we can have three possible equilib-269

rium points. Two of the equilibrium points are trivial, one where no host and par-270
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Figure 3: Illustration of the population dynamics of hosts based on Eq. (3). Suppose
the host logistic growth function is G = rHX

(
1− X

K

)
(blue curve) and parasite-driven

death rate function is D = P n+1X (red line). The possible maximum growth rate of
the hosts is rHK/4 where rh is the host basal growth (reproduction) rate and K is the
carrying capacity of the host population X. If G > D (blue curve is above the red line)
then the population of host increases. If G < D (blue curve is below the red line) then
the population of host decreases. An intersection of the growth curve (blue) and the
death rate line (red) is an equilibrium point. (A) There are two equilibrium points: the
unstable X∗

1 and the stable X∗
2 . (B) There is one equilibrium point: the stable X∗

1 that
represents parasitism-driven extinction of hosts. The red line with steep slope which
possibly leads to the extinction of hosts and parasites can arise due to low value of n
and/or large value of P .
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asite exist (X∗ = 0, Y ∗ = Y0), and another at the carrying capacity of the hosts271

(X∗ = K,Y ∗ = Y0 = 0) with Ẽ[N ] = 0 representing the disease-free state.272

The third equilibrium point posits a coexistence of hosts and parasites and can be
derived from  rH

(
1− X∗

K

)
=
(
Y ∗p
nK+1

)n+1

Y ∗ = nX∗ + 1.
. (9)

This leads to

rH

(
1− X∗

K

)
=

(
nX∗ + 1

nK + 1
p

)n+1

, (10)

which we can analyze by investigating the intersection of the curves formed by the left273

and right hand sides of this equation. Suppose this intersection is X∗ = α > 0 (Fig. 4).274

The equilibrium point is then (X∗ = α, Y ∗ = nα + 1) where α satisfies Eq. (10). This275

equilibrium point is stable (Fig. 4).276

If parasite aggregation affects the carrying capacity of the parasite population, we277

can replace Y ∗ in Eq. 9 by an implicit equation Y ∗ =
(
E[N ] + σ

√
V ar[N ]

)
X∗ + 1.278

Since E[N ] + σ
√
V ar[N ] < n, the new equilibrium state, if it exists, is X∗ = γ > α,279

where α is the equilibrium state if Y ∗ = nX∗+1 (Fig. 4). This means that aggregation280

limits the parasitism-driven stress affecting the host population. Sample numerical281

simulations of host-parasite population dynamics are shown in Fig. 5 with varying282

values of σ. The value of E[N ] + σ
√
V ar[N ] converges to n if the value of σ is283

increased. In the example, notice that an aggregated parasite distribution with σ = 2284

increases the parasite population rapidly but without causing too much harm to the285

host population (Fig. 5).286

4 Discussion287

Negative binomial distribution is commonly used in modeling macroparasite infections288

(Pennycuick, 1971; Wegner et al., 2008). Here, we propose a mechanistic model of289

parasite aggregation without initially assuming a statistical distribution. Our results290

show that the emergent values of the mean and variance of the macroparasite dis-291

tribution indeed denote a negative binomial. We have shown that accumulation of292

macroparasites (e.g., through foraging) is sufficient for aggregation to arise under a293

wide range of conditions (Fig. 2). The complex life cycle of parasites, a relatively large294
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Figure 4: Illustration of the intersection of the curves formed by the left- (blue line) and
right-hand (red curve) sides of Eq. (10). Right-hand side is based on G = rH

(
1− X

K

)
,

the left-hand side is based on D =
(
nX+1
nK+1

p
)n+1. If G > D (blue line is above the red

curve) then the population of host increases. If G < D (blue line is below the red
curve) then the population of host decreases. The intersection of the two curves is a
non-zero stable equilibrium point (X∗). The broken red curve represents the function

D =

((
E[N ]+σ

√
V ar[N ]

)
X+1

nK+1
p

)n+1

.
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Figure 5: Host-parasite dynamics for different values of σ, the intensity of how
much the variance affects the average number of parasites per host. The value
of σ affects (A) host density and (B) parasite density. (C) The average number of par-
asites in a (living) host (E[N ]+σ

√
V ar[N ]) converges to the maximum possible (here

n = 5) as the variance becomes more of a contributing factor (increase in σ). For low
contribution of the variance (low σ), the hosts are typically parasite free, however in-
creasing σ strengthens the host-parasite interactions leading to the typical oscillations
(or an internal fixed point where both population coexist). Parameter values used in
the numerics: K = 1000, rH = 0.01, rP = 0.1, and p = 0.8.
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maximum tolerable parasite load n, and relatively moderate parasite acquisition prob-295

ability Pi are important factors in parasite aggregation. This means that parasites296

have the opportunity to reproduce through infecting hosts but without killing many297

hosts. It would be rare in nature to find hosts having low n with parasites having high298

Pi resulting in non-aggregated parasite distribution since these hosts (as well as the299

parasites, if specific) are expected to be extinct.300

Our model design can be used to predict what conditions result in over-dispersed301

(aggregated), under-dispersed, and random parasite distributions by investigating the302

values of the parasite acquisition parameter Pi. Over-dispersion is observed when the303

variance of the parasite load in hosts is higher than the mean, while under-dispersion304

has a mean higher than its variance. Random pattern arises if mean equals the305

variance. This prediction is valuable in parasitology when performing empirical stud-306

ies, especially when designing statistical sampling procedures. If the parasites are307

aggregated in the host population, then a large number of samples is expected to308

be needed to select those hosts with high parasite load at the tail of the distribution309

(Shvydka et al., 2018).310

The main advantage of our model compared to the classical input-output mod-311

elling framework is its simplicity without losing important biological details, such as312

we can model host-parasite interaction using minimal models but still aggregation313

is considered. The designed model framework has few variables since the effect314

of parasite distribution can be summarised using its moments (mean and variance).315

The framework supports traditional population dynamic models, such as the logistic316

host-parasite interaction model, which are amenable to numerical and analytic math-317

ematical investigations. Remarkably, our assumed parameters, especially Pi, can be318

directly calculated from available empirical data. Moreover, our model is more gen-319

eral than the stratified worm burden in terms of parasite acquisition (Gurarie et al.,320

2010). In stratified worm burden, a host can only acquire one parasite at a time. In321

our model, hosts can acquire more than one parasite since compartments associated322

with Xi are defined as hosts with “at least” (not “exactly”) i parasite load, a scenario323

impossible in the stratified worm burden model.324

There are multiple indices that are proposed to measure parasite aggregation.325

One example is the negative binomial parameter k, which is equivalent tom inNB(m, ρ).326

This is defined by the equation V ar[N ] = E[N ] + E2[N ]/k. As k decreases to zero327

(e.g, less than 1 but positive), the parasite distribution is said to become more aggre-328

gated. This low k can also infer heterogeneity in infection factors (Bolker, 2008). If329

k approaches infinity, the Poisson distribution results. Increases in k are used to in-330
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dicate a movement toward “randomness” (Bolker, 2008; Young and Young, 1990). In331

the case of parasite population following a geometric distribution, k = 1. Based on our332

results, we have identified parameters that affect the aggregation index k, most no-333

tably are the parameters Pi and n. This implies that Pi can be used as an alternative334

measure of aggregation that biologists can use in studying patterns of macroparasite335

distribution in hosts.336

Given a set of parasite counts gathered from host samples, one can calculate the337

estimates for Pi, Ẽ[N ] and Ṽ ar[N ]. If we want to calculate the expected value of N ∈338

{0, 1, 2, ..., n} without assuming a large n, we can simply normalize the probabilities339

associated with N . That is, E[N ] = Ẽ[N ]

1−
∏n+1

i=1 Pi
. Similarly, we can do this normalization340

to obtain the variance of N , V ar[N ]. The variables and parameters Xi, Yi, Pi, E[N ]341

and V ar[N ] can be functions of time, and a time series analysis to study the temporal342

pattern of these variables and parameters can be implemented. If Pi’s, the host-343

parasite encounter probabilities, are statistically equal, we can assume a fixed P for344

each unit of time by taking the geometric mean of Pi (i ≥ 1), that is, P = (
∏n

i=1 Pi)
1/n.345

The mortality rate due to parasitism in Eq. (3) can be modified to include the346

cases where a fraction of the hosts with i < n number of parasites could also die due347

to infection. This rate can be formulated as bX where b is as follows:348

b =
n∑
i=1

ωi

(
i∏

j=1

Pj −
i+1∏
j=1

Pj

)
+

n+1∏
k=1

Pk. (11)

The parameter ωi is the fraction of Xi −Xi+1 killed by the parasites. Our conclusions349

from the qualitative analysis, especially given a fixed P = Pi for i ≥ 1, still remain350

true since we can suppose the mortality rate b as the slope of the parasite-driven host351

death in Fig. 3.352

Here, we have shown the resulting distribution of parasites in the host population353

using homogeneous parasite acquisition probability. If the values of the acquisition354

probabilities become heterogeneous, such as if P1 < P2 < · · · < Pn, P1 > P2 >355

· · · > Pn or Pi’s are completely arbitrary, then our derived formulas to estimate E[N ]356

and V ar[N ] are not applicable (e.g., Eq. (6)). However, our qualitative analysis to357

investigate the dynamics of Eqs. (3) and (4) could still hold and a numerical study358

would then be the feasible way forward. To find appropriate formulae (if data are not359

available) for Ẽ[N ] and Ṽ ar[N ] would then be a challenge for the future.360

Various future studies can stem from our model design. One can include the exis-361

tence of alternative or intermediate hosts and vectors, especially that neglected tropi-362

cal diseases are commonly due to vector-borne macroparasite infections (Hollingsworth363
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et al., 2015). Our model can also be extended to include how spatial aspects and dif-364

ferent treatment strategies affect the population dynamics of the hosts and parasites,365

and to infer the reasons why the value of k is dynamic as observed in empirical studies366

(Boag et al., 2001; Crompton et al., 1984; Pennycuick, 1971; Scott, 1987). Inclusion367

of multiple parasites (Hafer and Milinski, 2015), different models of host-parasite in-368

teractions in food webs (Flor, 1956), or the explicit inclusion of population dynamics369

together with host-parasite co-evolution (Gokhale et al., 2013; Rabajante et al., 2016;370

Song et al., 2015) are possible directions. Testing if such complexities retain the371

observed phenomenon of parasite aggregation would be a true test of the “law”.372
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R. Guilhem, A. Šimková, S. Morand, and S. Gourbière. Within-host competition and443

diversification of macro-parasites. Journal of The Royal Society Interface, 9:2936–444

2946, 2012.445

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 23, 2019. ; https://doi.org/10.1101/680041doi: bioRxiv preprint 

https://doi.org/10.1101/680041
http://creativecommons.org/licenses/by-nc-nd/4.0/


D. Gurarie, C. H. King, and X. Wang. A new approach to modelling schistosomiasis446

transmission based on stratified worm burden. Parasitology, 137:1951–1965, 2010.447

D. Gurarie, N. Yoon, E. Li, M. Ndeffo-Mbah, D. Durham, A. E. Phillips, H. O. Aurelio,448

J. Ferro, A. P. Galvani, and C. H. King. Modelling control of schistosoma haemato-449

bium infection: predictions of the long-term impact of mass drug administration in450

africa. Parasites & Vectors, 8, 2015.451

D. Gurarie, C. H. King, N. Yoon, and E. Li. Refined stratified-worm-burden models452

that incorporate specific biological features of human and snail hosts provide better453

estimates of schistosoma diagnosis, transmission, and control. Parasites & Vectors,454

9, 2016.455

N. Hafer and M. Milinski. When parasites disagree: evidence for parasite-induced456

sabotage of host manipulation. Evolution, 69(3):611–620, 2015.457

T. D. Hollingsworth, J. R. C. Pulliam, S. Funk, J. E. Truscott, V. Isham, and A. L.458

Lloyd. Seven challenges for modelling indirect transmission: Vector-borne dis-459

eases, macroparasites and neglected tropical diseases. Epidemics, 10:16–20,460

2015.461

N. C. Lopez. Parasitic crustaceans in fishes from some philippine lakes. In C B462

Santiago, M L Cuvin-Aralar, and Z U Basiao, editors, Conservation and Ecological463

Management of Philippine Lakes in Relation to Fisheries and Aquaculture, pages464

75–79. Southeast Asian Fisheries Development Center, Aquaculture Department,465

Iloilo, Philippines; Philippine Council for Aquatic and Marine Research and Devel-466

opment, Los Banos, Laguna, Philippines; and Bureau of Fisheries and Aquatic467

Resources, Quezon City, Philippines, Philippines, 2001.468

H. McCallum, A. Fenton, P. J. Hudson, B. Lee, B. Levick, R. Norman, S. E. Perkins,469

M. Viney, A. J. Wilson, and J. Lello. Breaking beta: deconstructing the parasite470

transmission function. Philosophical Transactions of the Royal Society B, 372,471

2017.472

A. Morrill and M. R. Forbes. Random parasite encounters coupled with condition-473

linked immunity of hosts generate parasite aggregation. International Journal for474

Parasitology, 42:701–706, 2012.475

A. Morrill and M. R. Forbes. Aggregation of infective stages of parasites as an adap-476

tation and its implications for the study of parasite-host interactions. The American477

Naturalist, 187:000–000, 2016.478

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 23, 2019. ; https://doi.org/10.1101/680041doi: bioRxiv preprint 

https://doi.org/10.1101/680041
http://creativecommons.org/licenses/by-nc-nd/4.0/


A. Morrill, M. R. Forbes, and F. Dargent. Explaining parasite aggregation: more than479

one parasite species at a time. International Journal for Parasitology, 47:185–188,480

2017.481

V. G. V. Paller, D. J. B. Resurreccion, C. P. P. de la Cruz, and M. Z. Bandal. Acan-482

thocephalan parasites (Acanthogyrus sp.) of nile tilapia (Oreochromis niloticus) as483

biosink of lead (pb) contamination in a philippine freshwater lake. Bulletin of Envi-484

ronmental Contamination and Toxicology, 96(6):810–815, 2016.485

L. Pennycuick. Frequency distributions of parasites in a population of three-spined486

sticklebacks, gasterosteus aculeatus l., with particular reference to the negative487

binomial distribution. Parasitology, 63(3):389–406, 1971.488

R. Poulin. Are there general laws in parasite ecology? Parasitology, 134(Pt 6):763–489

776, 2007.490

J. F. Rabajante, J. M. Tubay, H. Ito, T. Uehara, S. Kakishima, S. Morita, J. Yoshimura,491

and D. Ebert. Host-parasite red queen dynamics with phase-locked rare genotypes.492

Science Advances, 2(3), 2016. doi: 10.1126/sciadv.1501548.493
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Table SI.1: Description of the state variables and parameters. All state variables and
parameters are non-negative.
Notation Description
X total host population density

X0 population density of hosts without parasite

Xi, i ≥ 1 population density of hosts with at least i number of parasites

Xi −Xi+1, i ≥ 1 number of hosts having exactly i number of parasites

Y total parasite population density

Yi population density of parasites associated with hosts having
exactly i number of parasites

rH basal host population growth rate

rP basal parasite population growth rate

K carrying capacity of host population

c quantitative measure of the environment where the parasites
can survive apart from the hosts

p parasite transmission probability

n maximum parasite load of a host without dying

P0 proportion of X without parasite

Pi, i ≥ 1 proportion of Xi−1 infected by at least i number of parasites;
net probability of parasite acquisition by a host

G growth function

D death function
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SI.1 Supplementary Information535

SI.1.1 List of state variable and parameters536

Since we have537

X0 + (X1 −X2) + (X2 −X3) . . .+ (Xn −Xn+1) +Xn+1 = X

P0 + (P1 − P2P1) +

(
2∏
i=1

Pi −
3∏
i=1

Pi

)
+ . . .+

(
n∏
i=1

Pi −
n+1∏
i=1

Pi

)
+

n+1∏
i=1

Pi = 1,

the mean of the random variable N + 1 is538

E[N+1] = 0P0+1(P1−P2P1)+2

(
2∏
i=1

Pi −
3∏
i=1

Pi

)
+ . . .+n

(
n∏
i=1

Pi −
n+1∏
i=1

Pi

)
+w

n+1∏
i=1

Pi

The random variable N + 1 ∈ {0, 1, 2, . . . , n, w} (where w ≥ n + 1) represents the539

parasite load in living and parasitism-driven dead hosts. For simplicity, we let w = n+1540

since hosts with equal or more than n + 1 parasites are dead due to parasitism. Let541

us define Ẽ[N ] = E[N +1]− (n+1)
∏n+1

i=1 Pi = E[N +1]− (n+1)
(

Y p
nK+1

)n+1
, which is542

the approximate mean of N (where N ∈ {0, 1, 2, . . . , n}) is as discussed in the main543

text.544

SI.1.2 Derivation of A545

We assume that the parasite acquisition probability is P = Y p
nK+1

< 1. Using the
geometric series, we know that,

1 + P + P 2 + . . .+ P n =
1− P n+1

1− P .

Then taking the derivative of this geometric series results in

1 + 2P + . . .+ nP n−1 =
nP n+1 − (n+ 1)P n + 1

(1− P )2
.

The expression for A is:546

A =
n∑
i=1

(iP )i−1

=
n (P )n+1 − (n+ 1) (P )n + 1

(1− P )2
. (SI.1)
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Table SI.2: Description of the notations used in representing the mean and variance
of the parasite distribution.
Notation Description
E[N ] and E[N + 1] mean of the random variable N ∈ {0, 1, 2, ..., n} (living hosts)

and N + 1 ∈ {0, 1, 2, ..., n+ 1} (living and dead hosts), respectively

V ar[N ] and V ar[N + 1] variance of the random variable N ∈ {0, 1, 2, ..., n}
and N + 1 ∈ {0, 1, 2, ..., n+ 1}, respectively

Ẽ[N ] pseudomean for approximating E[N ];
equal to E[N + 1]− (n+ 1)

∏n+1
i=1 Pi which is the

relative parasite population frequency in living hosts,
representing the distribution of the parasites in the living hosts

Ṽ ar[N ] pseudovariance for approximating V ar[N ]

E[∞]P mean of the geometric-distributed parasite population
with parasite acquisition probability P

V ar[∞]P variance of the geometric-distributed parasite population
with parasite acquisition probability P
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SI.1.3 Explicit formula for the variance547

Let us define Ṽ ar[N ] = V ar[N +1]− (n+ 1− E[N + 1])2
∏n+1

i=1 Pi where V ar[N +1] =548

E[(N + 1)2]− E[N + 1]2 is the variance of the random variable N + 1.549

With the same assumption as above for P , The expression for E[(N + 1)2] is

E[(N + 1)2] =
n∑
i=1

i2P i (1− P ) + (n+ 1)2P n+1

= P (1− P )B + (n+ 1)2P n+1.

The expression for B can be derived using the geometric series. We know that550

1 + 2P + . . .+ nP n−1 =
nP n+1 − (n+ 1)P n + 1

(1− P )2
.

Multiplying both sides by P , we have

P + 2P 2 + . . .+ nP n =
nP n+2 − (n+ 1)P n+1 + P

(1− P )2
.

Taking the derivative of the left- and right-hand sides, we arrive at the following ex-
pression for B:

1 + 4P + . . .+ n2P n−1 = B =

−n2P n+2 + (2n2 + 2n− 1)P n+1 − (n+ 1)2 P n + P + 1

(1− P )3
.

Hence, the explicit formula for Ṽ ar[N ] is

Ṽ ar[N ] =

P
(
−n2P n+2 + (2n2 + 2n− 1)P n+1 − (n+ 1)2 P n + P + 1

)
(1− P )2

+ (n+ 1)2 P n+1 −
(
Ẽ[N ] + (n+ 1)P n+1

)2
−
(
n+ 1− Ẽ[N ] + (n+ 1)P n+1

)2
P n+1. (SI.2)

SI.1.4 Proof for a claim in Section 3.1551

Here is the proof that ˜E[N ] = 0 when Y ∗
1 = 0 only happens if P = 0. Suppose P < 1:

Ẽ[N ] =
P (nP n+1 − (n+ 1)P n + 1)

1− P
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implies P = 0 or nP n+1 − (n+ 1)P n + 1 = 0. If nP n+1 − (n+ 1)P n + 1 = 0 then

nP n (1− P ) = 1− P n.

Note that nP n = 1−Pn

1−P represents the geometric series:

nP n = 1 + P + P 2 + . . .+ P n−1.

However, P n = P 0+P 1+...+Pn−1

n
is the arithmetic average of {P n−1, P n−2, . . . , P 1, P 0}.552

This is a contradiction since P n /∈ {P n−1, P n−2, . . . , P 1, P 0}.553

Suppose P = 1: Note that P =
Y ∗
1 p

nK+1
is fixed. If P = 1, then Y ∗

1 p

nK+1
= 1 or554

Y ∗
1 = nK+1

p
. But Y ∗

1 = 0 and p <∞, a contradiction.555

Hence, Ẽ[N ] = 0 only if P = 0.556

SI.1.5 Histograms given different values of P , n = 10557

30

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 23, 2019. ; https://doi.org/10.1101/680041doi: bioRxiv preprint 

https://doi.org/10.1101/680041
http://creativecommons.org/licenses/by-nc-nd/4.0/


Distribution of hosts with different parasites for 
different encounter probabilities (P)

0

20

40

60

80

100

N
um

be
r o

f h
os

ts

Parasite load per host

0.01 0.05 0.1 0.3 0.5 0.7 0.9 0.95 0.99

0 10 0 10 0 100 10 0 10 0 10 0 10 0 10 0 10

Figure SI.1: The distributions for parasite load in hosts for different parasite
acquisition probabilities P . The distribution becomes more negatively skewed as
P increases. Higher P results in high host mortality due to harbouring high parasite
load. This is the reason why as P increases, the errors in approximating Ẽ[N ] and
Ṽ ar[N ] using the geometric distribution also increase (Fig. 2).
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Figure SI.2: An intermediate value of P results in parasite aggregation
(variance>mean). A value of P near 1 when n = 10 results in nonaggregated par-
asite distribution (mean>variance), which is possibly due to high mortality in hosts.

32

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 23, 2019. ; https://doi.org/10.1101/680041doi: bioRxiv preprint 

https://doi.org/10.1101/680041
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Model
	Results
	Constant host-parasite encounter probability
	Population dynamics

	Variable host-parasite encounter probability

	Discussion
	Acknowledgements
	Financial Support

	Declarations
	Author Contributions
	Data Availability
	Supplementary Information
	List of state variable and parameters
	Derivation of A
	Explicit formula for the variance
	Proof for a claim in Section 3.1
	Histograms given different values of P, n=10


