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Abstract: 

Bone mass loss contributes to the risk of bone fracture in elderly. Many factors including 

age, obesity, estrogen and diet, are associated with bone mass loss. Some mice 

transplantation experiments suggest that the intestinal microbiome might influence the 

bone mass by regulating the immune system. However, there has been little evidence 

from human studies, not to mention the metagenome-wide association studies (MWAS). 

We have recruited 361 Chinese elderly women to explore the influence of gut 

microbiome on bone health by metagenomic shotgun sequencing data. Our results 

indicate that some lifestyle habits, like tea-drinking, have beneficial effects on bone mass 

loss. In addition, the gut microbiome diversity mildly increases with bone mass loss 

which might be contributed by the raise of pathogenic genera, such as Escherichia. 

Moreover, we have detected some microbial species and modules as markers for bone 

mineral density (BMD). Functionally, we observed positive correlation between bone 

mass loss and some modules which might influence the BMD, saying pectin degradation, 

trehalose degration and arginine degration.  

Importance: 

Our study firstly indicates that the gut microbiota might play an important role in bone 

mass loss. Our findings offer new insights on the bone mass loss process, and suggest 

better diagnosis as well as mechanistic understandings of this devastating disease. 
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Introduction 

Bone mass loss is a process that reabsorb calcium and phosphate from the bones instead 

of keeping these minerals just make our bones weaker [1]. It is a severe and common 

disease in elderly population, also the most common reason for fracture, giving rise to 

ache, even death [2]. Many factors influence the illness including the age, obesity, 

estrogen level and diet [3]. More seriously, for elderly women the bone loss will increase 

after menopause due to lower levels of estrogen [4].The high-morbidity and serious 

drawbacks of elderly bone mass loss urge us to do more to its prevention and treatment. 

Recently a new concept, “osteoimmunology”, have revealed tight interaction between the 

immune system and bone metabolism [5]. The new term highlights the role of 

immune-related factors in modulating bone remodeling. Interestingly, it has been widely 

recognized that the gut microbiota could influence host health by interacting with the host 

immune system [6, 7].  

The human gastrointestinal tract harbors trillions of microbial cells [8]. These 

microorganisms help us to digest food and also could access to many important complex 

functions including regulation of the host immune system [9]. Moreover, the 

transplantation of fecal or specific bacteria to specific pathogen free (SPF) mice or 

germ-free mice also showed that the gut microbiota could also modulate the bone 

homeostasis by immune system modulating and osteoclast formation [10]. But most of 

these experiments [7, 11] were carried on mice and 16S sequencing which is poor 

taxonomic resolution, low sensitivity and no functional related information [12].Notably, 

the metagenome-wide association studies (MWAS) based on the human shotgun 
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sequencing which could reveal the relationship between the bone mass loss and the 

microorganisms [13]. 

Here we carry out the MWAS on fecal samples from 361 Chinese elderly women in the 

city town. Species and functional profile are calculated by Metaphlan2 [33]and the 

GMMs [23]. Gut microbial species and modules that change along with T-score of BMD 

are identified and some species as well as modules which could serve as biomarkers for 

diagnosis of bone mass lose are suggested. 

Results 

To explore the gut microbiome in bone loss, feces from 361 Chinese elderly women in 

city town are collected and metagenomic shotgun sequencing is performed to obtain an 

average of 7.7 gigabase (Gb) host removing clean data per sample (sTable1C). For the 

result part, firstly, the life and clinical index (sTable1A-B) to the T-score in our cohort is 

assessed and the significant factors such as age and body mass index (BMI) to the 

microbiome are excluded, then the alteration of the gut microbiome along with the 

T-score was evaluated. Lastly, stable regression model is built at species and module 

level for the cohort. The T score of the BMD in the lumbar spine is used to represent the 

bone mass [14]. The specific details are showed following. 

 

Result 1. Beneficial effects of tea drinking on BMD. 

The influence of the life and clinical index to the T-score of BMD are accessed. We find 

that the age (p = 0.000279, adjusted R
2
=0.034, linear regression, Fig1B), BMI (p = 

8.08e-8, adjusted R
2
=0.11, linear regression, Fig1C) and one interesting factor, tea 

drinking (p = 0.017, Wilcox test, Fig1A) have benign effect on the bone. But for other 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 23, 2019. ; https://doi.org/10.1101/679985doi: bioRxiv preprint 

https://doi.org/10.1101/679985
http://creativecommons.org/licenses/by-nc-nd/4.0/


life index including coffee drinking, alcohol and smoking show no significance (sFig1). 

And for the clinical index, N-amino terminal propeptide of type I collagen (P1NP) (p = 

0.00224, adjusted R
2
=0.0234, linear regression, Fig1D, sTab1C), β⁃Crosslaps (CROSSL) 

(p = 5.87e-5, adjusted R
2
=0.0421, linear regression, Fig1E, sTab1C) and high-density 

lipoprotein (HDL) (p = 0.00168, adjusted R
2
=0.0249, linear regression, Fig1F, sTab1C) 

are significant. Among these indexes, the age [15] and BMI [16] are reported to have key 

influence on gut microbiota. So, the two-stage least square [17] are used to exclude the 

error which caused by age and BMI. The description of this method is showed in the 

methods part. 

Result 2. A mild gut microbiome dysbiosis seen for bone mass loss. 

  

To show the alteration of the gut along with the change of the T-score, the change in 

different taxonomy levels are analyzed. Diversity at each level increase with the T-score 

probably caused by the flourish of pathogenic microcells in our gut. In detail, gene (p = 

4.53e-9, adjusted R
2
=0.0904, linear regression, sFig2B, sTab2), species (p = 1.17e-15, 

adjusted R
2
=0.162, linear regression, sFig2D, sTab2) and genus (p = 7.98e-14, adjusted 

R
2
=0.144, linear regression, Fig2B, sTab2) level are showed. In addition, the count data 

also shows increase with the T-score at gene (p = 0.0114, adjusted R2=0.0152, liner 

regression, sFig2A, sTab2), species (p = 2.33e-5, adjusted R2=0.0465, liner regression, 

sFig2C, sTab2), and genus (p = 7.73e-10, adjusted R2=0.0992, liner regression, Fig2A, 

sTab2) level. Then, the top 20 abundant species are chosen (Fig2C, sTab3A). The data 

show that the B.stercoris, E.coli, B.uniformis, B.coprocola, B.fragilis , E.rectale and 

E.eligens significantly negatively associated with T score. While for the B.vulgatus, 
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B.massiliensis, B. caccae and Megamonas unclassified display obvious positive 

correlation with T score (Fig2C, sTab3A). In addition, in the top 15 abundant genera, the 

Eubacterium, Escherichia, Subdoligranulum, Klebsiella, Clostridium and Blautia have 

significant negative correlation with the T-score (sFig3, sTab3B). Among these genera，

the Eubacterium, Escherichia are normal microorganism of the intestinal tract and can 

cause infection under opportunistic conditions [5, 18]. For the positively correlated 

genera, the Prevotella, Parabacteroides, Megamonas and Akkermansia are inside of them 

(sFig3, sTab3B). For the top 10 enriched phyla, the Bacteroidetes, Verrucomicrobia, 

Fusobacteria, Euryarchaeota and Ascomycota are positive to BMD T-score (sFig4, 

sTab3C), while the Proteobaccteria, Actinobacteria, Synergistetes and Chlorobi are 

negative (sFig4, sTab3C). 

 

Result 3. Species linked to BMD 

 

To select the species which have strong connection with the T-score, we use the 

two-stage least square method [17] to regress the species to the T-score (details are 

showed in methods part). The model shows a high R square (more than 0.99, sTab3, 

Fig3A), and 18 species are selected. The importance of these species (Fig3B, sTab3A) 

are ranked in order. Spearman` rank correlation method is used to evaluate the 

relationship between the selected species and the clinical indexes (Fig3C). From the 

results, it is easy to find that some T-score negatively correlated species like the 

Streptococcus parasanguinis has enriched in atherosclerotic cardiovascular patients [19], 

Clostridium perfringens, Haemophilus sputorum, Enterobacter aerogenes, Actinobacillus 
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unclassified and Chlorobium phaeobacteroides are negatively connected with the 

triglyceride (TG), but positively to CROSSL and HDL. And some T-score positively 

correlated species, for example the Roseburia intestinalis which is a butyrate-producing 

bacterium that could influence human` immune system [20], Enterobacter cloacae that 

could promote obesity level in mice model [21] and Sutterella wadsworthensis. These 

species have positive correlation to TG, but negative to CROSSL and HDL. 

 

Result 4. Modules suggesting for bone mass loss 

 

The functional analysis is a critical advantage of the shotgun sequencing data. Traditional 

Kyoto Encyclopedia of Gene and Genomes (KEGG) annotation [22] methods hold 

redundant information and not suitable for the interaction between the host and 

microorganism. So, we use the Gut metabolic modules (GMMs) [23] to show the 

functional changes in bone mass loss cohort.  

 

To find the higher correlation modules with the T-score, we also use the two-stage least 

square method [17] mentioned as before. 13 modules with more than 0.99 R square 

(sTab4, Fig4A) are obtained by the model and plotted in rank by their importance (Fig4B, 

sTab4). In addition, for the correlation with clinical indexes, the negatively correlated 

modules like the lactate consumption, sucrose degradation that would impart a significant 

impact on bone structural integrity [24] and tryptophan degradation which plays a 

complicated role in osteoblastic differentiation [25] are positively associated with HDL 

and CROSSL, but negatively with TG. By comparison, the BMD positive modules, for 
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example the pectin degradation that would inhibit bone resorption and strength the bone 

[26], trehalose degradation which could be effective on the prevention of bone mass loss 

[27], arginine degradation that can prevent bone mass loss and bone collagen breakdown 

in rats’ model [28], mucin degradation and rhamnose degradation. These modules are 

positive to TG, but negative to HDL and CROSSL. And for the detail part (enzyme) of 

these modules, you could refer to the supplementary figure (sFig5). 

 

Discussion: 

 

We carry out the first study to explore the alteration of the gut microbiome along with 

bone mass loss in the 361 elderly Chinese urban women with MWAS. Firstly, the life and 

clinical indexes are evaluated and tea drinking is suggested as a factor which could 

reduce the bone mass loss. Then, taxonomy diversity is observed to increase at many 

levels which may be contributed by the growth of some opportunistic pathogens. In 

addition, some high correlated species and functional modules are also suggested which 

might offer us a new way for better diagnosis as well as mechanistic understandings of 

the bone mass loss. 

 

First, the change of the life indexes with the T score shows us some ways to prevent the 

loss of the bone mass in our daily life. The life indexes show that the people who with 

high BMI [29] and tea drinking [30] will have higher bone mass, which is consistent with 

the previous study. BMI is not a percentage of body fat which should take age, gender, 

and occupation into consideration when using it to predict body fat percentage or obesity. 
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And higher BMI could recover by regular exercise. As tea is an important part of Chinese 

tradition and tea drinking is common in Chinese, especially green, black, white, and 

Oolong tea. High quality tea contains many nutrients, in particular flavonoids and 

vitamins, which might contribute to higher bone density [31]. 

 

Second, the gut is closely connected with the bone mass loss. With the loss of bone mass, 

some pathogenic microorganisms including Escherichia will mildly increase which 

attribute to the up of the species diversity. F. prausnitzii is reported as the 'probiotic of 

the future' microbe and short chain fatty acid (SCFAs) producer[32], its profile lightly 

declines with the loss of bone mass. 

 

Third, the observed species and modules markers offer new insights about the microbial 

cells’ role in the bone mass loss process. These bacteria, taking Roseburia intestinalis [20] 

as an example, may be involved in SCFAs synthesis related pathways to influence the 

immune system of the host. Some targeted modules, like the degradation of pectin [26], 

trehalose [27] and arginine [28], are related to bone protection. But for the sucrose 

degradation module, it would impart a significant impact on bone structural integrity [24], 

which suggest that we should reduce the intake of foods rich in sucrose in our daily diet. 

 

In all, our study suggests that the gut microbiome is closely related to the process of bone 

mass loss in elder population. Although the mechanism of how do the gut microbes affect 

and modulate bone metabolism is not fully understood, our research indicates that gut 
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microbiota may be novel targets for the protection of bone mass loss and provide a new 

avenue for the future studies and treatment of this field.   

 

Materials and Methods 

 
Statement of IRB approval. This study was approved by the Institutional Review Board 

on Bioethics and Biosafety at Shenzhen people`s Hospital. 

Study cohort and sample information. Fecal samples and clinical indexes were 

collected at Shenzhen people`s Hospital, transported frozen, and extracted at 

BGI-Shenzhen [12]. The BMD was calculated by Hologic dual energy X-ray machine at 

Shenzhen people`s Hospital. We use the T-score of BMD in the lumbar spine to represent 

the bone mass [14]. A sample`s T-score is a relative measure of the sample`s BMD 

compared to the reference population of young, healthy individuals with the same gender. 

The sequencing data of 361 sample were filtered low quality reads and the reads align to 

host genome (Hg19) with in-house scripts, finally we get the cleaned data.  

Taxonomic abundance calculation  

The cleaned data were used for the annotation and profile of taxon by MetaPhlan2 [33]. 

We remove species presented in less than 10% of the samples for later analysis.  

Gut metabolic module analysis  

Each GMM abundance was calculated as the median of KO abundance with 66% 

coverage just as showed in the former article [23]. 

Two-stage least square 
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Stage 1: In the first step we regress the taxonomic abundance or metabolic module 

abundance on the Age and BMI with linear regression and save the prediction value. The 

detail of the taxonomic abundance is in ‘Taxonomic abundance calculation’ part (sTab 3). 

The detail of the metabolic module abundance is in ‘Gut metabolic modules analysis’ 

part (sTab 4). This step is used to adjust the effects of Age and BMI to the contribution of 

BMD by the taxonomic abundance or metabolic module abundance. 

Stage 2: Five-fold cross-validation is performed ten times on a random forest regression 

model (Y: the BMD T score; X: the prediction value from the stage 1). The error curves 

from ten trials of fivefold cross-validation are averaged. We chose the model which 

minimized the sum of the test error and its standard deviation in the averaged curve.  

Alpha-diversity and count 

The within-sample diversity is calculated by profile of samples with Shannon index, as 

described previously [14]. Genes were considered present with more than one read map 

to it.  

 

Data Availability  

The sequencing reads from each sequencing library have been deposited at EBI with the 

accession number: PRJNA530339. 

 

Acknowledgments 

This work was financially supported by grants from the Shenzhen Municipal Government 

of China（No.JCYJ20160229172757249 and No.JCYJ20170817145523036). And thanks 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 23, 2019. ; https://doi.org/10.1101/679985doi: bioRxiv preprint 

https://doi.org/10.1101/679985
http://creativecommons.org/licenses/by-nc-nd/4.0/


to Shenzhen Municipal Government of China (No. CXB201108250098A) Shenzhen Key 

Laboratory of Human commensal microorganisms and Health Research. 

 

Authors' contributions 

Design of the study: H.J. and S.P.; methodology: Q.W., Q.S., H.Z., J.C.; data analysis: 

Q.W., Q.S., H.Z., J.C., Y.J., R.G., Z.J.; sample collection: Q.W., J.C., Z.W., X.Y, X.S.; 

Clinical information collection: Q.W., F.W., J.C., Y.L., T.H.;  writing of the first 

version of the manuscript: Q.W., J.C., H.Z.; restructuring and extensive revision of the 

manuscript: Q.S., X.S., T.Z., H.Y, X.X.; funding acquisition: H.J. and S.P.  

 

Competing Interests 

The authors declare no competing financial interests.  

 

References: 

 [1]. Khosla, S. and B.L. Riggs, Pathophysiology of Age-Related Bone Loss and Osteoporosis. 

Endocrinology and Metabolism Clinics of North America, 2005. 34(4): p. 1015-1030. 

 [2]. Leopold, S.S., et al., Clinical Orthopaedics and Related Research, The Bone &amp; Joint Journal, the 

Journal of Orthopaedic Research, and The Journal of Bone and Joint Surgery Will Not Accept Clinical 

Research Manuscripts Previously Posted to Preprint Servers. J Bone Joint Surg Am, 2019. 101(1): p. 

1-4. 

 [3]. Burger, H., et al., Risk factors for increased bone loss in an elderly population: the Rotterdam Study. 

Am J Epidemiol, 1998. 147(9): p. 871-9. 

 [4]. Margaret Riley, M., et al., Health Maintenance in Women. Am Fam Physician, 2013. 87(1): p. 30-37. 

 [5]. Guentzel, M.N., Escherichia, Klebsiella, Enterobacter, Serratia, Citrobacter, and Proteus. 1996. 

 [6]. Hernandez, C.J., et al., Links Between the Microbiome and Bone. J Bone Miner Res, 2016. 31(9): p. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 23, 2019. ; https://doi.org/10.1101/679985doi: bioRxiv preprint 

https://doi.org/10.1101/679985
http://creativecommons.org/licenses/by-nc-nd/4.0/


1638-46. 

 [7].Xu, X., et al., Intestinal microbiota: a potential target for the treatment of postmenopausal osteoporosis. 

Bone Research, 2017. 5: p. 17046. 

 [8]. Yatsunenko, T., et al., Human gut microbiome viewed across age and geography. Nature, 2012. 

486(7402): p. 222-227. 

 [9]. The, H.M.P.C., et al., Structure, function and diversity of the healthy human microbiome. Nature, 

2012. 486: p. 207 

 [10]. Chen, Y., et al., Association Between Gut Microbiota and Bone Health: Potential Mechanisms and 

Prospective. The Journal of Clinical Endocrinology & Metabolism, 2017. 102(10): p. 3635-3646. 

[11]. Nilsson, A.G., et al., Lactobacillus reuteri reduces bone loss in older women with low bone mineral 

density: a randomized, placebo-controlled, double-blind, clinical trial. J Intern Med, 2018. 284(3): p. 

307-317. 

[12]. Fang, C., et al., Assessment of the cPAS-based BGISEQ-500 platform for metagenomic sequencing. 

GigaScience, 2018. 7(3). 

[13]. Wang, J. and H. Jia, Metagenome-wide association studies: fine-mining the microbiome. Nature 

Reviews Microbiology, 2016. 14(8): p. 508-522. 

[14]. Kanis, J.A., et al., A reference standard for the description of osteoporosis. Bone, 2008. 42(3): p. 

467-475. 

[15]. Zhu, Q., et al., RETRACTED: Analysis of gut microbiota in long-lived older adults and their relatives: 

a gradual change with ageing. Mechanisms of Ageing and Development, 2019. 178: p. 1-8. 

[16]. Liu, R., et al., Gut microbiome and serum metabolome alterations in obesity and after weight-loss 

intervention. Nature Medicine, 2017. 23(7): p. 859-868. 

[17]. Hsiao, C., Statistical Properties of the Two-Stage Least Squares Estimator Under Cointegration. The 

Review of Economic Studies, 1997. 64(3): p. 385--398. 

[18]. Actor, J.K., 11 - Basic Bacteriology, in Elsevier's Integrated Review Immunology and Microbiology 

(Second Edition), J.K. Actor, J.K. Actor^Editors. 2012, W.B. Saunders: Philadelphia. p. 93 - 103. 

[19]. Jie, Z., et al., The gut microbiome in atherosclerotic cardiovascular disease. Nature Communications, 

2017. 8(1). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 23, 2019. ; https://doi.org/10.1101/679985doi: bioRxiv preprint 

https://doi.org/10.1101/679985
http://creativecommons.org/licenses/by-nc-nd/4.0/


[20]. Geirnaert, A., et al., Butyrate-producing bacteria supplemented in vitro to Crohn's disease patient 

microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci Rep, 

2017. 7(1): p. 11450. 

[21]. Woting, A. and M. Blaut, The Intestinal Microbiota in Metabolic Disease. Nutrients, 2016. 8(4): p. 

202. 

[22]. Xie, H., et al., Shotgun Metagenomics of 250 Adult Twins Reveals Genetic and Environmental 

Impacts on the Gut Microbiome. Cell Systems, 2016. 3(6): p. 572-584.e3. 

[23]. Vieira-Silva, S., et al., Species–function relationships shape ecological properties of the human gut 

microbiome. Nature Microbiology, 2016. 1(8). 

[24]. Tian, L. and X. Yu, Fat, Sugar, and Bone Health: A Complex Relationship. Nutrients, 2017. 9(5): p. 

506. 

[25]. Michalowska, M., et al., New insights into tryptophan and its metabolites in the regulation of bone 

metabolism. Journal of physiology and pharmacology : an official journal of the Polish Physiological 

Society, 2015. 66(6): p. 779. 

[26]. Bartolo, L., Biomaterials for Stem Cell Therapy: State of Art and Vision for the Future. 2013. {}. 

[27]. Nishizaki, Y., et al., Disaccharide-trehalose inhibits bone resorption in ovariectomized mice. Nutrition 

Research, 2000. 20(5): p. 653 - 664. 

[28]. Fiore, C.E., et al., L-arginine prevents bone loss and bone collagen breakdown in cyclosporin 

A-treated rats. Eur J Pharmacol, 2000. 408(3): p. 323-6. 

[29]. Asomaning, K., et al., The association between body mass index and osteoporosis in patients referred 

for a bone mineral density examination. Journal of women's health (2002), 2006. 15(9): p. 1028-1034. 

[30]. Guo, M., et al., Tea consumption may decrease the risk of osteoporosis: an updated meta-analysis of 

observational studies. Nutr Res, 2017. 42: p. 1-10. 

[31]. Rababah, T.M., N.S. Hettiarachchy and R. Horax, Total phenolics and antioxidant activities of 

fenugreek, green tea, black tea, grape seed, ginger, rosemary, gotu kola, and ginkgo extracts, vitamin 

E, and tert-butylhydroquinone. J Agric Food Chem, 2004. 52(16): p. 5183-6. 

[32]. Khan, M.T., J.M. van Dijl and H.J. Harmsen, Antioxidants keep the potentially probiotic but highly 

oxygen-sensitive human gut bacterium Faecalibacterium prausnitzii alive at ambient air. PLoS One, 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 23, 2019. ; https://doi.org/10.1101/679985doi: bioRxiv preprint 

https://doi.org/10.1101/679985
http://creativecommons.org/licenses/by-nc-nd/4.0/


2014. 9(5): p. e96097. 

[33]. Segata, N., et al., Metagenomic microbial community profiling using unique clade-specific marker 

genes. Nat Methods, 2012. 9(8): p. 811-4. 

 

 

Figure legends 

Figure 1: The clinical index of the samples. Different distribution of the BMD T-score 

versus tea drinking or not. (A, two-tailed Wilcoxon-rank sum test); The correlation 

between Age (B), BMI (C), P1NP(D), CROSSL (E), HDL (F) with the BMD Tscore. 

(Liner regression) 

 

Figure 2 |slightly increase gut microbial richness. (A-B) Richness and alpha-diversity 

(Shannon index) at the genus level of the two cohorts (liner regression). (C). The top 15 

species. (The spearman`s correlation,’+’ for p<0.05;’*’ for p<0.01). 

 

Figure 3 |. Fecal microbial species markers for BMD. (A) The R square during the 

Ten-time cross-validation process (the blue lines show the ten different process, the red 

line for the average of the ten-time cross validation, and the pink line show the best 

variables). (B). The lncMSE of the 18 chosen species markers. (C). The correlation 

between the marker with the clinical index. (Spearman` correlation,’+’ for p<0.05;’*’ for 

p<0.01). 

 

Figure 4 |. Fecal microbial module markers for BMD. (A) The R square during the 

Ten-time cross-validation process (the blue lines show the ten different process, the red 
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line for the average of the ten-time cross validation, and the pink line show the best 

variables). (B). The lncMSE of the 13 chosen modules markers. (C). The correlation 

between the marker with the clinical index. (Spearman` correlation,’+’ for p<0.05;’*’ for 

p<0.01). 

 

Supplementary materials description 

sFigure1.The other clinical index. Different distribution of the BMD T-score in coffee, 

drink and smoking (A-C, two-tailed Wilcoxon-rank sum test). 

 

sFigure2 |slightly increase gut microbial richness. (A-D) Richness and alpha-diversity 

(Shannon index) at the gene and species level of the two cohorts (liner regression).  

 

sFigure3. The top 15 genera. (The spearman`s correlation,’+’ for p<0.05;’*’ for p<0.01). 

 

sFigure4. The top 10 phyla. (The spearman`s correlation,’+’ for p<0.05;’*’ for p<0.01). 

 

sFigure5. The detail information of the chosen modules with the clinical index. (The 

spearman`s correlation,’+’ for p<0.05;’*’ for p<0.01). 

 

sTab1.The basic information of the samples. 

 

sTab2. The diversity data.  
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sTab3.The taxon related data. 

 

sTab4.The GMMs related data. 
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