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Abstract

Factors that influence the distribution, abundance, and diversification of species can simul-
taneously affect multiple evolutionary lineages within or across communities. These include
environmental changes and inter-specific ecological interactions that cause ranges of multiple,
co-distributed species to contract, expand, or become fragmented. Such processes predict
genetic patterns consistent with temporally clustered evolutionary events across species, such
as synchronous population divergences and/or changes in population size. There have been a
number of methods developed to infer shared divergences or changes in effective population
size, but not both, and the latter has been limited to approximate Bayesian computation
(ABC). We introduce a general, full-likelihood Bayesian method that can use genomic data to
estimate temporal clustering of an arbitrary mix of population divergences and population-
size changes across taxa. Applying this method to simulated data, we find that estimating the
timing and sharing of demographic changes is much more challenging than divergences. Even
under favorable simulation conditions, the ability to infer shared demographic events is quite
limited and very sensitive to prior assumptions, which is in sharp contrast to accurate, pre-
cise, and robust estimates of shared divergence times. Our results also suggest that previous
estimates of co-expansion among five Alaskan populations of threespine sticklebacks (Gas-
terosteus aculeatus) were likely driven by a combination of prior assumptions and the lack
of information about the timing of demographic changes when invariant characters are ig-
nored. We conclude by discussing potential avenues to improve the estimation of synchronous
demographic changes across populations.

KEY WORDS: phylogeography, biogeography, Bayesian model choice, Dirichlet-
process prior
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1 Introduction
A primary goal of ecology and evolutionary biology is to understand the processes influ-

encing the distribution, abundance, and diversification of species. Many biotic and abiotic
factors that shape the distribution of biodiversity across a landscape are expected to affect
multiple species. Abiotic mechanisms include changes to the environment that can cause co-
distributed species to contract or expand their ranges and/or become fragmented (Hairston
et al., 1960; Wegener, 1966; Avise et al., 1987; Knowles and Maddison, 2002). Biotic factors
include inter-specific ecological interactions such as the population expansion of a species
causing the expansion of its symbionts and the population contraction and/or fragmentation
of its competitors (Lotka, 1920; Volterra, 1926; Hairston et al., 1960; Hardin, 1960; Begon
et al., 1996; Lunau, 2004). Such processes predict that evolutionary events, such as pop-
ulation divergences or demographic changes, will be temporally clustered across multiple
species. As a result, statistical methods that infer such patterns from genetic data allow
ecologists and evolutionary biologists to test hypotheses about such processes operating at
or above the scale of communities of species.

Recently, researchers have developed methods to infer patterns of temporally clustered (or
“shared”) evolutionary events, including shared divergence times among pairs of populations
(Hickerson et al., 2006, 2007; Huang et al., 2011; Oaks, 2014, 2019) and shared demographic
changes in effective population size across populations (Chan et al., 2014; Xue and Hickerson,
2015; Burbrink et al., 2016; Prates et al., 2016; Xue and Hickerson, 2017; Gehara et al., 2017)
from comparative genetic data. To date, no method has allowed the joint inference of both
shared divergences and population-size changes. Given the overlap among processes that can
potentially cause divergence and demographic changes of populations across multiple species,
such a method would be useful for testing hypotheses about community-scale processes that
shape biodiversity across landscapes. Here, we introduce a general, full-likelihood Bayesian
method that can estimate shared times among an arbitrary mix of population divergences
and population size changes (Figure 1).

Whereas the theory and performance of methods that estimate shared divergence times
has been relatively well-investigated (e.g., Oaks et al., 2013; Hickerson et al., 2014; Oaks
et al., 2014; Oaks, 2014; Overcast et al., 2017; Oaks, 2019), exploration into the estimation of
shared changes in population size has been much more limited. There are theoretical reasons
to suspect that estimating shared changes in effective population size is more difficult than
divergence times (Myers et al., 2008). The parameter of interest (timing of a demographic
change) is informed by differing rates at which sampled copies of a locus “find” their common
ancestors (coalesce) going backward in time before and after the change in population size,
and this can become unidentifiable in three ways. First, as the magnitude of the change in
population size becomes smaller, it becomes more difficult to identify, because the rates of
coalescence before and after the change become more similar. Second, as the age of the de-
mographic change increases, fewer of the genetic coalescent events occur prior to the change,
resulting in less information about the effective size of the population prior to the change,
and thus less information about the magnitude and timing of the population-size change
itself. Third, information also decreases as the age of the demographic change approaches
zero, because fewer coalescent events occur after the change. To explore these potential
problems, we take advantage of our full-likelihood method to assess how well we can infer
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shared demographic changes among populations when using all the information in genomic
data. We apply our method to restriction-site-associated DNA sequence (RADseq) data
from five populations of three-spine stickleback (Gasterosteus aculeatus ; Hohenlohe et al.,
2010) that were previously estimated to have co-expanded with an approximate Bayesian
computation (ABC) approach (Xue and Hickerson, 2015). In stark contrast to shared diver-
gence times, our results show that estimates of shared changes in population size are quite
poor across a broad range of simulation conditions. We also find strikingly different esti-
mates of the demographic histories of the stickleback populations depending on whether we
include invariant sites in analyses. This alarming result makes sense in light of the inference
pathologies exhibited by our analyses of simulated data, where limited information in the
data coupled with limited prior knowledge about parameters leads to spurious support for
shared demographic changes across populations.

2 The model
We extended the model implemented in the software package ecoevolity to accommo-

date two types of temporal comparisons that are specified a priori by the investigator:

1. A population that experienced a change from effective population size NR
e to effective

size ND
e at time t in the past. We will refer to this as a demographic comparison

(Figure 1), and refer to the population before and after the change in population size
as “ancestral” and “descendant”, respectively.

2. A population that diverged at time t in the past into two descendant populations, each
with unique effective population sizes. We will refer to this as a divergence comparison
(Figure 1).

This allows inference of shared times of divergence and/or demographic change across an ar-
bitrary mix of demographic and divergence comparisons in a full-likelihood, Bayesian frame-
work. Table 1 provides a key to the notation we use throughout this paper.

2.1 The data

As described by Oaks (2019), we assume we have collected orthologous, biallelic genetic
characters from taxa we wish to compare. By biallelic, we mean that each character has
at most two states, which we refer to as “red” and “green” following Bryant et al. (2012).
For each comparison, we either have these data from one or more individuals from a single
population, in which case we infer the timing and extent of a population size change, or one
or more individuals from two populations or species, in which case we infer the time when
they diverged (Figure 1).

For each population and for each character we genotype n copies of the locus, r of which
are copies of the red allele and the remaining n − r are copies of the green allele. Thus, for
each population, and for each character, we have a count of the total sampled gene copies
and how many of those are the red allele. Following the notation of Oaks (2019) we will use
n and r to denote allele counts for a character from either one population if we are modeling
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Figure 1. An illustration of the general comparative model implemented in ecoevolity. The top
two comparisons are pairs of populations for which we are interested in comparing their time of
divergence (“divergence comparisons”). The bottom comparison is a single population for which
we are interested in comparing the time of population-size change (“demographic comparison”).
With three comparisons, there are five possible event models (i.e., five ways to assign the com-
parisons to anywhere from one to three event times; Bell, 1934), which are shown to the right
with the example model indicated. The event time (τ1 and τ2) and effective population size (NR

e ,
ND

e ) parameters are shown. Event times can be shared among comparisons, but each ancestral
and descendant population has a unique effective population size.
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Table 1. A key to some of the notation used in the text.

Symbol Description

N
The number of comparisons (or taxa); can be an arbitrary mix of populations

(comparing timing of demographic change) and/or pairs of populations (comparing
timing of divergence).

k The number of events (unique times) across the comparisons.

ti
The time in the past when comparison i either diverged or experienced a change in

effective population size.

τ
An event time at which one or more comparisons experienced a divergence or change in

effective population size.
T The event-time model, which comprises the assignment of comparisons to events.
τ All of the times of the events in the model (τ = τ1, . . . , τk).
α The concentration parameter of the Dirichlet process.

n, r
The number of copies of a locus sampled from a population, and the number of those

copies that are the “red” allele.
n, r The allele counts from a comparison (one or two populations).

Di
The allele counts across all characters from comparison i. I.e., all of the characters

being analyzed for comparison i.
m The number of characters collected from a taxon (comparison).
D All of the data being analyzed, i.e., the character matrices from all comparisons.
g A gene tree with branch lengths.
µ The rate of mutation.
u Relative rate of mutating from the “red” to “green” state.
v Relative rate of mutating from the “green” to “red” state.
π The stationary frequency of the “green” state.
ND

e The effective size of a descendant population.
NR

e The effective size of the root (ancestral) population.

RNR
e

The relative effective population size of the root (ancestral) population; relative to the
mean of the effective sizes of the descendant populations.

Ne
Shorthand notation for all effective population sizes for a comparison (ancestral and one

or two descendant populations).

S
The species tree for a comparison. This comprises the effective population sizes and the

time of demographic change or divergence.
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a population-size change or both populations of a pair if we are modeling a divergence; i.e.,
n, r = (n, r) or n, r = (n1, r1), (n2, r2). For convenience, we will use Di to denote these allele
counts across all the characters from comparison i, which can be a single population or a
pair of populations. Finally, we use D to represent the data across all the taxa for which
we wish to compare times of either divergence or population-size change. Note, because the
population history of each comparison is modeled separately (Figure 1), characters do not
have to be orthologous across comparisons, only within them.

2.2 The evolution of characters

We assume each character evolved along a gene tree (g) according to a finite-sites,
continuous-time Markov chain (CTMC) model, and the gene tree of each character is in-
dependent of the others, conditional on the population history (i.e., the characters are ef-
fectively unlinked). As a character evolves along the gene tree, forward in time, there is a
relative rate u of mutating from the red state to the green state, and a corresponding rela-
tive rate v of mutating from green to red (Bryant et al., 2012; Oaks, 2019). The stationary
frequency of the green state is then π = u/(u+ v). We will use µ to denote the overall rate
of mutation. Evolutionary change is the product of µ and time. Thus, if µ = 1, time is
measured in units of expected substitutions per site. Alternatively, if a mutation rate per
site per unit of time is given, then time is in those units (e.g., generations or years).

2.3 The evolution of gene trees

We assume the gene tree of each character coalesced within a simple “species” tree with
one ancestral root population that, at time t, either left one or two descendant branches
with different effective population sizes (Figure 1). We will use Ne to denote all the effective
population sizes of a species tree; NR

e and ND
e when modeling a population-size change,

and NR
e , ND1

e , and ND2
e when modeling a divergence. Following Oaks (2019), we use S as

shorthand for the species tree, which comprises the population sizes and event time of a
comparison (Ne and t).

2.4 The likelihood

As in Oaks (2019), we use the work of Bryant et al. (2012) to analytically integrate over
all possible gene trees and character substitution histories to compute the likelihood of the
species tree directly from a biallelic character pattern under a multi-population coalescent
model (Kingman, 1982a,b; Rannala and Yang, 2003); p(n, r |S, µ, π). We only need to make
a small modification to accommodate population-size-change models that have a species
tree with only one descendant population. Equation 19 of Bryant et al. (2012) shows how
to obtain the partial likelihoods at the bottom of an ancestral branch from the partial
likelihoods at the top of its two descendant branches. When there is only one descendant
branch, this is simplified, and the partial likelihoods at the bottom of the ancestral branch
are equal to the partial likelihoods at the top of its sole descendant branch. Other than this
small change, the probability of a biallelic character pattern given the species tree, mutation
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rate, and equilibrium state frequencies (p(n, r |S, µ, π)) is calculated the same as in Bryant
et al. (2012) and Oaks (2019).

For a given comparison, we can calculate the probability of all m characters for which
we have data given the species tree and other parameters by assuming independence among
characters (conditional on the species tree) and taking the product over them,

p(D |S, µ, π) =
m∏
i=1

p(ni, ri |S, µ, π). (1)

We assume we have sampled biallelic data from N comparisons, which can be an arbitrary
mix of (1) two populations or species for which t represents the time they diverged, or (2)
one population for which t represents the time of a change in population size. Assuming
independence among comparisons, the likelihood across all N comparisons is simply the
product of the likelihood of each comparison,

p(D |S,µ,π) =
N∏
i=1

p(Di |Si, µi, πi), (2)

where D = D1, D2, . . . , DN , S = S1, S2, . . . , SN , µ = µ1, µ2, . . . , µN , and π = π1, π2, . . . , πN .
As described in Oaks (2019), if constant characters are not sampled for a comparison, we
condition the likelihood for that comparison on only having sampled variable characters.

2.5 Bayesian inference

As described by Oaks (2019), to relax the assumption of temporal independence among
comparisons, we treat the number of events (population-size changes and/or divergences) and
the assignment of comparisons to those events as random variables under a Dirichlet process
(Ferguson, 1973; Antoniak, 1974). We use T to represent the partitioning of comparisons to
events, which we will also refer to as the “event model.” The concentration parameter, α,
controls how clustered the Dirichlet process is, and determines the probability of all possible
T (i.e., all possible set partitions of N comparisons to 1, 2, . . . ,N events). We use τ to
represent the unique times of events in T . Using this notation, the posterior distribution of
our Dirichlet-process model is

p(α, τ , T ,Ne ,µ,π |D) =

p(D | τ , T ,Ne ,µ,π)p(τ | T )p(T |α)p(α)p(Ne)p(µ)p(π)

p(D)
,

(3)

where Ne is the collection of the effective population sizes (Ne) across all of the comparisons.

2.5.1 Priors

Prior on the concentration parameter Our implementation allows for a hierarchical
approach to accommodate uncertainty in the concentration parameter of the Dirichlet process
by specifying a gamma distribution as a hyperprior on α (Escobar and West, 1995; Heath
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et al., 2011). Alternatively, α can also be fixed to a particular value, which is likely sufficient
when the number of comparisons is small.

Prior on the divergence times Given the partitioning of comparisons to events, we use
a gamma distribution for the prior on the time of each event, τ | T ∼ Gamma(·, ·).

Prior on the effective population sizes We use a gamma distribution as the prior on
the effective size of each descendant population of each comparison. Following Oaks (2019),
we use a gamma distribution on the effective size of the ancestral population relative to the
size of the descendant population(s), which we denote as RNR

e
. For a comparison with two

descendant populations (i.e., a divergence comparison), the prior on the ancestral population
size is specified as relative to the mean of the descendant populations. For a comparison with
only one descendant population (i.e., a demographic comparison), the prior on the ancestral
population is relative to the size of that descendant.

Prior on mutation rates We follow the same approach explained by Oaks (2019) to
model mutation rates across comparisons. The decision about how to model mutation rates
is extremely important for any comparative phylogeographic approach that models taxa as
disconnected species trees (Figure 1; e.g., Hickerson et al., 2006, 2007; Huang et al., 2011;
Chan et al., 2014; Oaks, 2014; Xue and Hickerson, 2015; Burbrink et al., 2016; Xue and
Hickerson, 2017; Gehara et al., 2017; Oaks, 2019). Time and mutation rate are inextricably
linked, and because the comparisons are modeled as separate species trees, the data cannot
inform the model about relative or absolute differences in µ among the comparisons. We
provide flexibility to the investigator to fix or place prior probability distributions on the
relative or absolute rate of mutation for each comparison. However, if one chooses to ac-
commodate uncertainty in the mutation rate of one or more comparisons, the priors should
be strongly informative. Because of the inextricable link between rate and time, placing a
weakly informative prior on a comparison’s mutation rate prevents estimation of the time of
its demographic change or divergence, which is the primary goal.

Prior on the equilibrium state frequency Recoding four-state nucleotides to two states
requires some arbitrary decisions, and whenever π 6= 0.5, these decisions can affect the
likelihood of the model (Oaks, 2019). Because DNA is the dominant character type for
genomic data, we assume that π = 0.5 in this paper. This makes the CTMC model of
character-state substitution a two-state analog of the “JC69” model (Jukes and Cantor, 1969).
However, if the genetic markers collected for one or more comparisons are naturally biallelic,
the frequencies of the two states can be meaningfully estimated, and our implementation
allows for a beta prior on π in such cases. This makes the CTMC model of character-state
substitution a two-state general time-reversible model (Tavaré, 1986).

2.5.2 Approximating the posterior with MCMC

We use Markov chain Monte Carlo (MCMC) algorithms to sample from the joint posterior
in Equation 3. To sample across event models (T ) during the MCMC chain, we use the Gibbs
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sampling algorithm (Algorithm 8) of Neal (2000). We also use univariate and multivariate
Metropolis-Hastings algorithms (Metropolis et al., 1953; Hastings, 1970) to update the model,
the latter of which are detailed in Oaks (2019).

2.6 Software implementation

The C++ source code for ecoevolity is freely available from https://github.com/
phyletica/ecoevolity and includes an extensive test suite. From the C++ source code,
two primary command-line tools are compiled: (1) ecoevolity, for performing Bayesian
inference under the model described above, and (2) simcoevolity for simulating data
under the model described above. Documentation for how to install and use the soft-
ware is available at http://phyletica.org/ecoevolity/. We have incorporated help
in pre-processing data and post-processing posterior samples collected by ecoevolity in
the Python package pycoevolity, which is available at https://github.com/phyletica/
pycoevolity. We used Version 0.3.1 (Commit 9284417) of the ecoevolity software pack-
age for all of our analyses. A detailed history of this project, including all of the data
and scripts needed to produce our results, is available at https://github.com/phyletica/
ecoevolity-demog-experiments (Oaks et al., 2019a).

3 Materials & Methods

3.1 Analyses of simulated data

3.1.1 Assessing ability to estimate timing and sharing of demographic changes

We used the simcoevolity and ecoevolity tools within the ecoevolity software pack-
age (Oaks, 2019) to simulate and analyze data sets, respectively, under a variety of conditions.
Each simulated data set comprised 500,000 unlinked biallelic characters from 10 diploid in-
dividuals (20 genomes) sampled per population from three demographic comparisons. We
specified the concentration parameter of the Dirichlet process so that the mean number of
demographic change events was two (α = 1.414216). We assumed the mutation rates of all
three populations were equal and 1, such that time and effective population sizes were scaled
by the mutation rate. When analyzing each simulated data set, we ran four MCMC chains
for 75,000 generations with a sample taken every 50 generations. From preliminary analyses,
we calculated the potential scale reduction factor (PSRF; the square root of Equation 1.1 in
Brooks and Gelman, 1998) and effective sample size (ESS; Gong and Flegal, 2016) from the
four chains for all continuous parameters and the log likelihood using the pyco-sumchains
tool of pycoevolity (Version 0.1.2 Commit 89d90a1). Based on these metrics of MCMC
convergence and mixing, we conservatively chose to summarize the last 1000 samples from
each chain for a total of 4000 samples of parameter values to approximate the posterior dis-
tribution for every simulated data set. When plotting results, we highlight any simulation
replicates that have a PSRF > 1.2.

Initially, we simulated data under a variety of settings we thought covered regions of
parameter space that are both conducive and challenging for estimating the timing and
sharing of demographic changes. However, estimates were quite poor across all our initial
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simulation conditions (see Supporting Information). In an effort to find conditions under
which the timing and sharing of demographic changes could be better estimated, and avoid
combinations of parameter values that caused parameter identifiability problems in our initial
analyses, we explored simulations under gamma distributions on times and population sizes
offset from zero, and with recent demographic event times, (V 1–V 5, Table 2). When we
specify an “offset,” we are right-shifting the entire gamma distribution to have a lower limit
of the offset value, rather than zero.
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Table 2. Simulation and analysis conditions for all simulation-based analyses with three demographic comparisons. The distributions
from which parameter values were drawn for simulating data with simcoevolity are given for event times (τ), the relative effective size
of the root (ancestral) population (RNR

e
), and the effective size of the descendant population (ND

e µ), along with the prior distributions
used for these parameters when the simulated data sets were analyzed with ecoevolity. When the latter is represented by a dash,
this means the prior distribution matched the distribution under which the data were simulated. G(· · · ) and E(· · · ) represent gamma
and exponential distributions, respectively, and the parameters of a gamma distribution are given as Goffset(shape,mean = mean).

Simulated distribution Prior distribution

Label τ RNR
e

ND
e µ τ RNR

e
ND

e µ

Validation simulation conditions
V 1 G0.0001(4,mean = 0.002) G0.05(5,mean = 0.25) G0.0001(4,mean = 0.0021) - - -
V 2 G0.0001(4,mean = 0.002) G0.05(5,mean = 0.5) G0.0001(4,mean = 0.0021) - - -
V 3 G0.0001(4,mean = 0.002) G0.05(5,mean = 4) G0.0001(4,mean = 0.0021) - - -
V 4 G0.0001(4,mean = 0.002) G0.05(5,mean = 1) G0.0001(4,mean = 0.0021) - - -
V 5 G0.0001(4,mean = 0.002) G0.05(50,mean = 1) G0.0001(4,mean = 0.0021) - - -

Sensitivity simulation conditions
S1 G0.0001(4,mean = 0.002) G0.05(5,mean = 0.25) G0.0001(4,mean = 0.0021) E(mean = 0.005) E(mean = 2) G(2,mean = 0.002)

S2 G0.0001(4,mean = 0.002) G3.80(5,mean = 4) G0.0001(4,mean = 0.0021) E(mean = 0.005) E(mean = 2) G(2,mean = 0.002)

S3 G0.0001(4,mean = 0.002) G0.05(5,mean = 0.1) G0.0001(4,mean = 0.0021) E(mean = 0.005) E(mean = 2) G(2,mean = 0.002)

S4 G0.0001(4,mean = 0.002) G9.95(5,mean = 10) G0.0001(4,mean = 0.0021) E(mean = 0.005) E(mean = 2) G(2,mean = 0.002)
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For the mutation-scaled effective size of the descendant population (ND
e µ), we used an

offset gamma distribution with a shape of 4, offset of 0.0001, and mean of 0.0021 after
accounting for the offset (Table 2). The mean of this distribution corresponds to an average
number of differences per character between individuals in the population (i.e., nucleotide
diversity) of 0.0084, which is comparable to estimates from genomic data of populations of
zooplankton (Choquet et al., 2019), stickleback fish (Hohenlohe et al., 2010), and humans
(Auton et al., 2015). For the distribution of event times, we used a gamma distribution with
a shape of 4, offset of 0.0001, and a mean of 0.002 (after accounting for the offset; Table 2).
Taken together, this creates a distribution of event times in units of 4Ne generations with
a mean of approximately 0.3. We chose these distributions to try and balance the number
of gene lineages that coalesce after and before the population-size change for the average
gene tree. We used the offset values to avoid very small descendant population sizes and
very recent times of population-size change, because in our preliminary analyses, both of
these conditions caused the timing of events to be essentially nonidentifiable (see Supporting
Information).

We chose five different distributions on the relative effective size of the ancestral popula-
tion (RNR

e
; see Table 2 and left column of Figures 2 and 3), which ranged from having a mean

4-fold population-size increase (V 1) and decrease (V 3), and a “worst-case” scenario where
there was essentially no population-size change in the history of the populations (V 5). We
generated 500 data sets under each of these five conditions (V 1–V 5, Table 2), and analyzed
all of them using priors that matched the generating distributions.

To assess the affect of varying the number of demographic comparisons we repeated the
simulations and analyses under Condition V 1, but with six demographic comparisons rather
than three. Likewise, to assess the affect of varying the number of individuals sampled from
each population, we repeated the simulations and analyses under Condition V 1, but with
20 individuals sampled per population (40 sampled genomes) rather than 10 (20 genomes).

3.1.2 Simulations to assess sensitivity to prior assumptions

In the validation analyses above, the prior distributions used in analyses matched the
true underlying distributions under which the data were generated. While this is an impor-
tant first step when validating a Bayesian method and exploring its behavior under ideal
conditions, this is unrealistic for real-world applications where our priors are always wrong
and usually much more diffuse to express ignorance about the timing of past evolutionary
events and historical effective population sizes. Also, having the priors match the true distri-
butions effectively limits how extreme the simulating distributions can be. For example, the
simulation condition V 1 above, where the distribution on the effective size of the ancestral
population is sharply peaked at 0.25 (i.e., a four-fold population expansion), becomes a very
informative prior distribution when analyzing the simulated data; more informative than is
practical for most empirical applications of the method. Accordingly, we also analyzed data
under conditions where the prior distributions are more diffuse than those under which the
data were simulated. This allows us to (1) see how sensitive the method is to prior misspeci-
fication, (2) determine to what degree the results under conditions like V 1 are influenced by
the sharply informative prior on the ancestral population size, and (3) explore more extreme
simulation conditions of population expansions and contractions (conditions that would be
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unrealistic for a prior distribution).
We used the same distribution on event times and descendant effective population sizes

as for Conditions V 1–V 5 above. For the relative effective size of the ancestral population
(RNR

e
), we chose four distributions under which to simulate data (S1–S4, Table 2) that

are sharply peaked on four-fold and ten-fold population expansions and contractions. We
simulated 500 data sets under each of these four conditions and then analyzed them under
diffuse prior distributions. We chose the prior distributions to reflect realistic amounts of
prior uncertainty about the timing of demographic changes and past and present effective
population sizes when analyzing empirical data. Note, Conditions V 1 and S1 share the
same simulating distributions, which allows us to compare results to determine how much
the strongly informative prior on the ancestral population size affected inference.

For comparison, we also repeated simulations and analyses under Conditions V 1 and S1,
except with three divergence comparisons. For these divergence comparisons, we simulated 10
sampled genomes per population to match the same total number of samples per comparison
(20) as the demographic simulations.

3.1.3 Simulating a mix of divergence and demographic comparisons

To explore how well our method can infer a mix of shared demographic changes and
divergence times, we simulated 500 data sets comprised of 6 comparisons: 3 demographic
comparisons and 3 divergence comparisons. To ensure the same amount of data across com-
parisons, we simulated 20 sampled genomes (10 diploid individuals) from each comparison
(i.e., 10 genomes from each population of each divergence comparison). We used the same
simulation conditions described above for V 2, and specified these same distributions as
priors when analyzing all of the simulated data sets.

3.1.4 Simulating linked sites

Our model assumes each character is effectively unlinked. To assess the effect of vio-
lating this assumption, we simulated data sets comprising 5000 100-base-pair loci (500,000
total characters). All 100 characters from each locus evolved along the same gene tree that
is independent (conditional on the population history) from all other loci. The distribu-
tions on parameters were the same as the conditions described for V 1 above. These same
distributions were used as priors when analyzing the simulated data sets.

3.2 Empirical application to stickleback data

3.2.1 Assembly of loci

We assembled the publicly available RADseq data collected by Hohenlohe et al. (2010)
from five populations of threespine sticklebacks (Gasterosteus aculeatus) from south-central
Alaska. After downloading the reads mapped to the stickleback genome by Hohenlohe et al.
(2010) from Dryad (doi:10.5061/dryad.b6vh6), we assembled reference guided alignments of
loci in Stacks v1.48 Catchen et al. (2013) with a minimum read depth of 3 identical reads
per locus within each individual and the bounded single-nucleotide polymorphism (SNP)
model with error bounds between 0.001 and 0.01. To maximize the number of loci and
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minimize paralogy, we assembled each population separately; because ecoevolity models
each population separately (Figure 1), the characters do not need to be orthologous across
populations, only within them.

3.2.2 Inferring shared demographic changes with ecoevolity

When analyzing the stickleback data with ecoevolity, we used a value for the concen-
tration parameter of the Dirichlet process that corresponds to a mean number of three events
(α = 2.22543). We used the following prior distributions on the timing of events and effec-
tive sizes of populations: τ ∼ Exponential(mean = 0.001), RNR

e
∼ Exponential(mean = 1),

and ND
e ∼ Gamma(shape = 2,mean = 0.002). To assess the sensitivity of the results

to these prior assumptions, we also analyzed the data under two additional priors on the
concentration parameter, event times, and relative effective population size of the ancestral
population:

• α = 13 (half of prior probability on 5 events)

• α = 0.3725 (half of prior probability on 1 event)

• τ ∼ Exponential(mean = 0.0005)

• τ ∼ Exponential(mean = 0.01)

• RNR
e
∼ Exponential(mean = 0.5)

• RNR
e
∼ Exponential(mean = 0.1)

For each prior setting, we ran 10 MCMC chains for 150,000 generations, sampling every
100 generations; we did this using all the sites in the assembled stickleback loci and only
variable sites (i.e., SNPs). To assess convergence and mixing of the chains, we calculated
the PSRF (Brooks and Gelman, 1998) and ESS (Gong and Flegal, 2016) of all continuous
parameters and the log likelihood using the pyco-sumchains tool of pycoevolity (Version
0.1.2 Commit 89d90a1). We also visually inspected the sampled log likelihood and parameter
values over generations with the program Tracer (Version 1.6; Rambaut et al., 2014). The
MCMC chains for all analyses converged almost immediately; we conservatively removed
the first 101 samples from each chain, resulting in 14,000 samples from the posterior (1400
samples from 10 chains) for each analysis.

4 Results & Discussion

4.1 Analyses of simulated data

Despite our attempt to capture a mix of favorable and challenging parameter values in
our initial simulation conditions (Table S1), estimates of the timing and sharing of demo-
graphic events were quite poor across all the simulation conditions we initially explored (see
Supporting Information; Figures S1–S4). Even after we tried selecting simulation conditions
that are more favorable for identifying the event times, estimates of the timing and sharing
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of demographic events remain quite poor (Figures 2 and 3). Under the recent (but not too
recent) 4-fold population-size increase (on average) scenario, we do see better estimates of
the times of demographic change (V 1; top row of Figure 2), but the ability to identify the
correct number of events and the assignment of the populations to those events remains
quite poor; the correct model is preferred only 57% of the time, and the median posterior
probability of the correct model is only 0.42 (top row of Figure 3). Under the most extreme
population retraction scenario (V 3; 4-fold, on average), the correct model is preferred only
40% of the time, and the median posterior probability of the correct model is only 0.26
(middle row of Figure 3). Estimates are especially poor when using only variable characters
(second versus third column of Figures 2 and 3), so we focus on the results using all char-
acters. We also see worse estimates of population sizes when excluding invariant characters
(Figures S5 and S6).

Under the “worst-case” scenario of little population-size change (V 5; bottom row of
Figures 2 and 3), our method is unable to identify the timing or model of demographic change.
As expected, under these conditions our method returns the prior on the timing of events
(bottom row of Figure 2) and always prefers either a model with a single, shared demographic
event (model "000") or independent demographic changes (model "012"; bottom row of
Figure 3). This is expected behavior, because there is essentially no information in the
data about the timing of demographic changes, and a Dirichlet process with a mean of
two demographic events, puts approximately 0.24 of the prior probability on the models
with one and three events, and 0.515 prior probability on the three models with two events
(approximately 0.17 each). Thus, with little information, the method samples from the prior
distribution on the timing of events, and randomly prefers one of the two models with larger
(and equal) prior probability.

Doubling the number of individuals sampled per population to 20 had very little affect on
the results (Figure S7). Likewise, doubling the number of demographic comparisons to six
had no affect on the accuracy or precision of estimating the timing of demographic changes
or effective population sizes (Rows 1, 3, and 4 of Figure S8 and Figure S9). The ability
to infer the correct number of demographic events, and assignment of populations to the
events (T ), is much worse when there are six comparisons (Row 2 of Figure S8), which is not
surprising given that the number of possible assignments of populations to events is 203 for
six comparisons, compared to only five for three comparisons (Bell, 1934). We also see that
the accuracy and precision of estimates of the timing of a demographic change event do not
increase with the number of populations that share the event (Figure S9). This makes sense
for two reasons: (1) it is difficult to correctly identify the sharing of demographic events
among populations (Row 2 of Figure S8), and (2) Oaks (2019) and Oaks et al. (2019b)
showed that the amount of information about the timing of events plateaus quickly as the
number of characters increases. Thus, given 500,000 characters from each population, little
information is to be gained about the timing of the demographic change, even if the method
can correctly identify that several populations shared the same event.

The 95% credible intervals of all the parameters cover the true value approximately 95%
of the time (Figures 2, S5, and S6). Given that our priors match the underlying distributions
that generated the data, this coverage behavior is expected, and is an important validation
of our implementation of the model and corresponding MCMC algorithms. The average
run time of ecoevolity was approximately 21 and 42 minutes when analyzing three and
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Figure 2. The accuracy and precision of time estimates of demographic changes (in units of expected subsitutions
per site) when data were simulated and analyzed under the same distributions (Table 2). The left column of plots
shows the gamma distribution from which the relative size of the ancestral population was drawn; this was
also used as the prior when each simulated data set was analyzed. The center and right column of plots show
true versus estimated values when using all characters (center) or only variable characters (right). Each plotted
circle and associated error bars represent the posterior mean and 95% credible interval. Estimates for which the
potential-scale reduction factor was greater than 1.2 (Brooks and Gelman, 1998) are highlighted in orange. Each
plot consists of 1500 estimates—500 simulated data sets, each with three demographic comparisons. For each
plot, the root-mean-square error (RMSE) and the proportion of estimates for which the 95% credible interval
contained the true value—p(t ∈ CI)—is given. We generated the plots using matplotlib Version 2.0.0 (Hunter,
2007).
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Figure 3. The performance of estimating the model of demographic changes when data were simulated and
analyzed under the same distributions (Table 2). The left column of plots shows the gamma distribution from
which the relative size of the ancestral population was drawn; this was also used as the prior when each simulated
data set was analyzed. The center and right column of plots show true versus estimated models when using all
characters (center) or only variable characters (right). Each plot shows the results of the analyses of 500 simulated
data sets, each with three demographic comparisons; the number of data sets that fall within each possible cell of
true versus estimated model is shown, and cells with more data sets are shaded darker. Each model is represented
along the plot axes by three integers that indicate the event category of each comparison (e.g., 011 represents the
model in which the second and third comparison share the same event time that is distinct from the first). The
estimates are based on the model with the maximum a posteriori probability (MAP). For each plot, the proportion
of data sets for which the MAP model matched the true model—p(T̂ = T )—is shown in the upper left corner,

and the median posterior probability of the correct model across all data sets— ˜p(T |D)—is shown in the upper
right corner. We generated the plots using matplotlib Version 2.0.0 (Hunter, 2007).
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six demographic comparisons, respectively. Analyses were run on a variety of hardware
configurations, but most were run on 2.3GHz Intel Xeon CPU processors (E5-2650 v3).

4.1.1 Sensitivity to prior assumptions

Above, we observe the best estimates of the timing and sharing of demographic events
under the narrowest distribution on the relative effective size of the ancestral population
(V 1; top row of Figures 2 and 3), which was used to both simulate the data and as the prior
when those data were analyzed. Thus, the improved behavior could be due to this narrow
prior distribution that is unrealistically informative for most empirical studies, for which
there is usually little a priori information about past population sizes. When we analyze
data under more realistic, diffuse priors, estimates of the timing and sharing of demographic
events deteriorate, whereas estimates of the timing and sharing of divergence events remain
robust (Figures 4 and 5). Specifically, the precision of time estimates of demographic changes
decreases substantially under the diffuse priors (top two rows of Figure 4), whereas the
precision of the divergence-time estimates is high and largely unchanged under the diffuse
priors (bottom two rows of Figure 4). We see the same patterns in the estimates of population
sizes (Figures S10 and S11).

Furthermore, under the diffuse priors, the probability of inferring the correct model of
demographic events decreases from 0.57 to 0.434 when all characters are used, and from
0.36 to 0.284 when only variable characters are used (top two rows of Figure 5). The
median posterior probability of the correct model also decreases from 0.422 to 0.292 when
all characters are used, and from 0.231 to 0.178 when only variable characters are used (top
two rows of Figure 5). Most importantly, we see a strong bias toward underestimating the
number of events under the more realistic diffuse priors (top two rows of Figure 5). In
comparison, the inference of shared divergence times is much more accurate, precise, and
robust to the diffuse priors (bottom two rows of Figure 5). When all characters are used,
under both the correct and diffuse priors, the correct divergence model is preferred over 91%
of the time, and the median posterior probability of the correct model is over 0.93.

Results are very similar whether the distribution on the ancestral population size is
peaked around a four-fold population expansion or contraction (Conditions S1 and S2;
top two rows of Figures 6, 7, S12, and S13). Likewise, even when population expansions
and contractions are 10-fold, the ability to infer the timing and sharing of these events
remains poor (Conditions S3 and S4; bottom two rows of Figures 6 and 7). This is not
surprising when reflecting on the first principles of this inference problem. While it may
seem intuitive that more dramatic changes in the rate of coalescence should be easier to
detect, such large changes will cause fewer lineages to coalesce after (in the case of a dramatic
population expansion) or before (in the case of a dramatic population contraction) the change
in population size. This reduces the information about the rate of coalescence on one side
of the demographic change and thus the magnitude and timing of the change in effective
population size. Thus, the gain in information in the data is expected to plateau (and
even decrease, as we see under the most severe bottleneck Condition S4 in Figure 7) as the
magnitude of the change in effective population size increases.
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Figure 4. The accuracy and precision of time estimates of demographic changes (top two rows)
versus divergences (bottom two rows) when the priors are correct (first and third rows) versus
when the priors are diffuse (second and fourth rows). Time is measured in units of expected
subsitutions per site. The first and second columns of plots show the distribution on the relative
effective size of the ancestral population for simulating the data (Column 1) and for the prior
when analyzing the simulated data (Column 2). The third and fourth columns of plots show
true versus estimated values when using all characters (Column 3) or only variable characters
(Column 4). Each plotted circle and associated error bars represent the posterior mean and 95%
credible interval. Estimates for which the potential-scale reduction factor was greater than 1.2
(Brooks and Gelman, 1998) are highlighted in orange. Each plot consists of 1500 estimates—
500 simulated data sets, each with three demographic comparisons (Rows 1–2) or divergence
comparisons (Rows 3–4). For each plot, the root-mean-square error (RMSE) and the proportion
of estimates for which the 95% credible interval contained the true value—p(t ∈ CI)—is given.
The first row of plots are repeated from Figure 2 for comparison. We generated the plots using
matplotlib Version 2.0.0 (Hunter, 2007).
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Figure 5. The performance of estimating the model of demographic changes (top two rows)
versus model of divergences (bottom two rows) when the priors are correct (first and third rows)
versus when the priors are diffuse (second and fourth rows). The first and second columns of
plots show the distribution on the relative effective size of the ancestral population for simulating
the data (Column 1) and for the prior when analyzing the simulated data (Column 2). The
third and fourth columns of plots show true versus estimated models when using all characters
(Column 3) or only variable characters (Column 4). Each plot shows the results of the analyses
of 500 simulated data sets, each with three demographic comparisons (Rows 1–2) or divergence
comparisons (Rows 3–4); the number of data sets that fall within each possible cell of true
versus estimated model is shown, and cells with more data sets are shaded darker. Each model
is represented along the plot axes by three integers that indicate the event category of each
comparison (e.g., 011 represents the model in which the second and third comparison share the
same event time that is distinct from the first). The estimates are based on the model with the
maximum a posteriori probability (MAP). For each plot, the proportion of data sets for which
the MAP model matched the true model—p(T̂ = T )—is shown in the upper left corner, and

the median posterior probability of the correct model across all data sets— ˜p(T |D)—is shown in
the upper right corner. The first row of plots are repeated from Figure 3 for comparison. We
generated the plots using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure 6. The accuracy and precision of time estimates of demographic changes when the prior
distributions are diffuse (Conditions S1–S4; Table 2). Time is measured in units of expected
subsitutions per site. The first column of plots shows the distribution on the relative effective
size of the ancestral population under which the data were simulated, and the second and third
columns of plots show true versus estimated values when using all characters (Column 2) or
only variable characters (Column 3). Each plotted circle and associated error bars represent
the posterior mean and 95% credible interval. Estimates for which the potential-scale reduction
factor was greater than 1.2 (Brooks and Gelman, 1998) are highlighted in orange. Each plot
consists of 1500 estimates—500 simulated data sets, each with three demographic comparisons.
For each plot, the root-mean-square error (RMSE) and the proportion of estimates for which the
95% credible interval contained the true value—p(t ∈ CI)—is given. The first row of plots are
repeated from Figure 4 for comparison. We generated the plots using matplotlib Version 2.0.0
(Hunter, 2007).

22

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 19, 2020. ; https://doi.org/10.1101/679878doi: bioRxiv preprint 

https://doi.org/10.1101/679878
http://creativecommons.org/licenses/by/4.0/


Distribution on
relative size of

ancestral population

All sites analyzed Only variable sites
analyzed

S1

D
en

sit
y

0 1 2 3 4

0

1

2

3

4

5

M
A
P

m
od

el
S2

0 1 2 3 4

0

1

2

3

4

5

S3

0.0 2.5 5.0 7.5 10.0

0

5

10

15

20

S4

0.0 2.5 5.0 7.5 10.0

0

5

10

15

20

Relative population size True model
Figure 7. The performance of estimating the model of demographic changes when the prior distributions are
diffuse (Conditions S1–S4; Table 2). The first column of plots shows the distribution on the relative effective size
of the ancestral population under which the data were simulated, and the second and third columns of plots show
true versus estimated models when using all characters (Column 2) or only variable characters (Column 3). Each
plot consists of 1500 estimates—500 simulated data sets, each with three demographic comparisons; the number
of data sets that fall within each possible cell of true versus estimated model is shown, and cells with more data
sets are shaded darker. Each model is represented along the plot axes by three integers that indicate the event
category of each comparison (e.g., 011 represents the model in which the second and third comparison share the
same event time that is distinct from the first). The estimates are based on the model with the maximum a
posteriori probability (MAP). For each plot, the proportion of data sets for which the MAP model matched the
true model—p(T̂ = T )—is shown in the upper left corner, and the median posterior probability of the correct

model across all data sets— ˜p(T |D)—is shown in the upper right corner. The first row of plots are repeated from
Figure 4 for comparison. We generated the plots using matplotlib Version 2.0.0 (Hunter, 2007).
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4.1.2 Inferring a mix of shared divergences and demographic changes

When demographic and divergence comparisons are analyzed separately, the performance
of estimating the timing and sharing of demographic changes and divergences is dramatically
different, with the latter being much more accurate and precise than the former (e.g., see
Figures 4 and 5). One might hope that if we analyze a mix of demographic and divergence
comparisons, the informativeness of the divergence times can help “anchor” and improve
the estimates of shared demographic changes. However, our results from simulating data
sets comprising a mix of three demographic and three divergence comparisons rule out this
possibility. When analyzing a mix of demographic and divergence comparisons, the ability
to infer the timing and sharing of demographic changes remains poor, whereas estimates of
shared divergences remain accurate and precise (Figure 8). The estimates of the timing and
sharing of demographic events are nearly identical to when we simulated and analyzed only
three demographic comparisons under the same distributions on event times and population
sizes (Condition V 2; compare left column of Figure 8 to the second row of Figures 2 and
3). The same is true for the estimates of population sizes (Figure S14). Thus, there does
not appear to be any mechanism by which the more informative divergence-time estimates
“rescue” the estimates of the timing and sharing of the demographic changes.

4.1.3 The effect of linked sites

Most reduced-representation genomic datasets are comprised of loci of contiguous, linked
nucleotides. Thus, when using the method presented here that assumes each character is
effectively unlinked, one either has to violate this assumption, or discard all but (at most) one
site per locus. Given that all the results above indicate better estimates when all characters
are used (compared to using only variable characters), we simulated linked sites to determine
which strategy is better: analyzing all linked sites and violating the assumption of unlinked
characters, or discarding all but (at most) one variable character per locus.

The results are almost identical to when all the sites were unlinked (compare first row
of Figures 2 and 3 to the top two rows of Figure S15, and the first row of Figures S5 and
S6 to the bottom two rows of Figure S15). Thus, violating the assumption of unlinked
sites has little affect on the estimation of the timing and sharing of demographic changes
or the effective population sizes. This is consistent with the findings of Oaks (2019) and
Oaks et al. (2019b) that linked sites had little impact on the estimation of shared divergence
times. These results suggest that analyzing all of the sites in loci assembled from reduced-
representation genomic libraries (e.g., sequence-capture or RADseq loci) is a better strategy
than excluding sites to avoid violating the assumption of unlinked characters.

4.2 Reassessing the co-expansion of stickleback populations

Using an ABC analog to the model of shared demographic changes developed here, Xue
and Hickerson (2015) found very strong support (0.99 posterior probability) that five popula-
tions of threespine sticklebacks (Gasterosteus aculeatus) from south-central Alaska recently
co-expanded. This inference was based on the publicly available RADseq data collected by
Hohenlohe et al. (2010). We re-assembled and analyzed these data under our full-likelihood
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Figure 8. Results of analyses of 500 data sets simulated with six comparisons comprising a mix
of three populations that experienced a demographic change and three pairs of populations that
diverged. The performance of estimating the timing (top row) and sharing (bottom row) of
events are shown separately for the three populations that experienced a demographic change
(left column) and the three pairs of populations that diverged (right column). The plots of the
demographic comparisons (left column) are comparable to the second column of Figures 2 and
3; the same priors on event times and ancestral population size were used. Time estimates for
which the potential-scale reduction factor was greater than 1.2 (Brooks and Gelman, 1998) are
highlighted in orange. We generated the plots using matplotlib Version 2.0.0 (Hunter, 2007).
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Bayesian framework, both using all sites from assembled loci and only variable sites (i.e.,
SNPs).

Stacks produced a concatenated alignment with 2,115,588, 2,166,215, 2,081,863, 2,059,650,
and 2,237,438 total sites, of which 118,462, 89,968, 97,557, 139,058, and 103,271 were vari-
able for the Bear Paw Lake, Boot Lake, Mud Lake, Rabbit Slough, and Resurrection Bay
stickleback populations respectively. When analyzing all sites from the assembled stickle-
back RADseq data, we find strong support for five independent population expansions (no
shared demographic events; Figure 9). In sharp contrast, when analyzing only SNPs, we find
support for a single, shared, extremely recent population expansion (Figure 9). These results
are relatively robust to a broad range of prior assumptions (Figures S16–24). The support
for a single, shared event is consistent with the results from our simulations using diffuse
priors and only including SNPs, which showed consistent, spurious support for a single event
(Row 2 of Figure 5 and Figure 7).
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Figure 9. Estimates of the number (Row 1), timing (Row 2), and magnitude (Row 3) of de-
mographic events across five stickleback populations, when using all sites (left column) or only
variable sites (right column). We used an exponentially distributed prior with a mean of 0.001 on
event times, an exponentially distributed prior with a mean of 1 on the relative ancestral effective
population size, and a gamma-distributed prior (shape = 2,mean = 0.002) on the descendant
population sizes. For the number of events (Row 1), the light and dark bars represent the prior
and posterior probabilities, respectively. Time (Row 2) is in units of expected subsitutions per site.
For the violin plots, each plotted circle and associated error bars represent the posterior mean and
95% credible interval. Bar graphs were generated with ggplot2 Version 2.2.1 (Wickham, 2009);
violin plots were generated with matplotlib Version 2.0.0 (Hunter, 2007).
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When using only SNPs, estimates of the timing of the single, shared demographic event
from the stickleback data are essentially at the minimum of zero (Figure 9), suggesting
that there is little information about the timing of any demographic changes in the SNP
data alone. This is consistent with results of Xue and Hickerson (2015) where the single,
shared event was also estimated to have occurred at the minimum (1000 generations) of their
uniform prior on the timing of demographic changes. In light of our simulation results, the
support for a single event based solely on SNPs, seen here and in Xue and Hickerson (2015),
is likely caused by a combination of (1) misspecified priors, and (2) the lack of information
about demographic history when invariant characters are discarded. By saying the priors
were misspecified, we mean that the prior distributions do not match the true distributions
underlying the generation of the data, not that the priors were poorly chosen. Our estimates
using all of the sites in the stickleback RADseq loci should be the most accurate, according
to our results from simulated data. However, the unifying theme from our simulations is
that all estimates of shared demographic events tend to be poor and should be treated with
a lot of skepticism.

4.3 Biological realism of our model of shared demographic changes

The model of shared population-size changes we present above, and used in previous re-
search (Chan et al., 2014; Xue and Hickerson, 2015; Gehara et al., 2017; Xue and Hickerson,
2015), is quite unrealistic in number of ways. Modeling the demographic history of a popu-
lation with a single, instantaneous change in population size does not reflect the continuous
and complex demographic changes most populations of organisms experience through time.
However, this simple model is correct in our simulated data, and yet our method struggles
to accurately infer the timing and sharing of these single, dramatic, instantaneous changes
in effective population size. Incorporating more demographic realism into the model will
introduce more variation and thus make the inference problem even more difficult. Thus,
until inference of shared events under overly simplistic demographic models can be improved,
it does not seem wise to introduce more complexity.

Also, we expect most processes that cause shared divergences and/or demographic changes
across species will affect multiple species with some amount of temporal variation. Thus,
our model of simultaneous evolutionary events that affect multiple species at the same in-
stant is not biologically plausible. If this lack of realism is problematic, it should cause
the method to overestimate the number of events by misidentifying the temporal variation
among species affected by the same process as being the result of multiple events. However,
what we see here (e.g., Figure 7) and what has been shown previously (Oaks et al., 2013,
2014; Oaks, 2014, 2019; Oaks et al., 2019b) is the opposite; even when we model shared
events as simultaneous, methods tend to underestimate (and almost never overestimate) the
number of events. We do see overestimates when there is little information in the data and
the posterior largely reflects the prior (e.g., bottom two rows of Figure 3). However, this is
only true when the prior distributions match the true underlying distributions that generated
the data, and these overestimates would be easy to identify in practice by testing for prior
sensitivity and noticing that the posterior probabilities of event models are similar to the
prior probabilities (i.e., small Bayes factors). Furthermore, Oaks et al. (2019b) showed that
even with millions of bases of genomic data from pairs of gecko populations, ecoevolity was
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only able to detect differences in divergence times between comparisons greater than several
thousand years. Thus, it seems unlikely that over-estimating the number of events among
taxa (i.e., estimating temporal independence of comparisons that shared the same historical
process) is a real problem for these types of inferences.

Previous researchers (Overcast et al., 2017; Gehara et al., 2017; Xue and Hickerson, 2017)
have attempted to introduce realism into these comparative models by allowing temporal
variation among species affected by the same event, by assuming that processes of diversifi-
cation and demographic change are temporally overdispersed. However, allowing temporal
variation within events will only increase the tendency of these methods to underestimate
the number of events (i.e., the within-event temporal variation makes it “easier” to assign
comparisons to the same event). More fundamentally, it seems odd to assume a priori that
processes that cause shared evolutionary responses would be somehow conveniently stag-
gered over evolutionary timescales (overdispersed); this seems like something we would want
to estimate from the data.

4.4 Comparison to previous models of shared demographic changes

Our method is the first that we know of that is generalized to infer an arbitrary mix
of shared times of divergence and changes in population size. However, if we focus only on
changes in population size, the models underlying the ABC methods of Chan et al. (2014),
Xue and Hickerson (2015), and Gehara et al. (2017) share many similarities with the model
we introduced above. These models, like ours, allow the effective population sizes before
and after the time of the demographic change to vary (2N free parameters), however, they
assume all populations experienced an expansion. The models of Chan et al. (2014), Xue
and Hickerson (2015), and Gehara et al. (2017) also assume there was at most one shared
demographic event; each comparison can either be assigned to this event or have an indepen-
dent time of demographic change. Xue and Hickerson (2017) relaxed these constraints by
allowing population contractions and expansions and allowing any number of demographic
events and assignments of populations to those events, like we do here. All previous ap-
proaches, like ours, model variation in gene trees using the coalescent. They also assume
an infinite-sites model of character evolution along gene trees, whereas our approach uses a
finite-sites model. Gehara et al. (2017) and Xue and Hickerson (2017) allow the investigator
to assume that the processes that cause demographic changes are temporally overdispersed
(i.e., separated in time by “buffers”). We do not explore this temporal staggering of events
here because this is a pattern we would like to infer from data rather than impose a pri-
ori. Furthermore, creating temporal “buffers” around events will exacerbate the tendency to
over-cluster comparisons (i.e., underestimate the number of events).

The biggest difference between previous approaches and ours is how the data are used.
Chan et al. (2014) and Gehara et al. (2017) reduce aligned sequences into a set of population
genetic summary statistics. Xue and Hickerson (2015) and Xue and Hickerson (2017) reduce
SNPs into a site-frequency spectrum (SFS) that is aggregated across the populations being
compared. Both of these approaches to summarizing the data result in information about the
model being lost (i.e., the summary statistics used for inference are insufficient). By using
the mathematical work of Bryant et al. (2012), our method is able to calculate the likelihood
of the population histories of the comparisons directly from the counts of character patterns
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from each population, while integrating over all possible gene trees under a coalescent model
and all possible mutational histories along those gene trees under a finite-sites model of
character evolution. Not only does this allow our approach to leverage all of the information
in the data, but it does so efficiently; when analyzing four divergence comparisons, Oaks
(2019) found this approach requires approximately 9340 times less computing time than using
ABC. Also, calculating the likelihood of the model from each character pattern naturally
accommodates missing data (Oaks, 2019). In contrast, there is no straightforward way of
accounting for missing data when summarizing genetic data into SFS and other population
genetic summary statistics (Hahn, 2018).

5 Conclusions
There is a narrow temporal window within which we can reasonably estimate the time of

a demographic change. The width of this window is determined by how deep in the past the
change occurred relative to the effective size of the population (i.e., in coalescent units). If
too old or recent, there are too few coalescence events before or after the demographic change,
respectively, to provide information about the effective size of the population. When we are
careful to simulate data within this window, and the change in population size is large enough,
we can estimate the time of the demographic changes reasonably well (e.g., see the top row of
Figure 2). However, even under these favorable conditions, the ability to correctly infer the
shared timing of demographic events among populations is quite limited (Figure 3). When
only variable characters are analyzed (i.e., SNPs), estimates of the timing and sharing of
demographic changes are consistently bad; we see this across all the conditions we simulated.
Most alarmingly, when the priors are more diffuse than the distributions that generated the
data, as will be true in most empirical applications, there is a strong bias toward estimating
too few demographic events (i.e., over-clustering comparisons to demographic events; Row
2 of Figure 5), especially when only variable characters are analyzed. These results help
explain the stark contrast we see in our results from the stickleback RADseq data when
including versus excluding constant sites (Figure 9). These findings are in sharp contrast
to estimating shared divergence times, which is much more accurate, precise, and robust to
prior assumptions (Figures 4, 5 and 8; Oaks, 2019; Oaks et al., 2019b).

Given the poor estimates of co-demographic changes, even when all the information in the
data are leveraged by a full-likelihood method, any inference of shared demographic changes
should be treated with caution. However, there are potential ways that estimates of shared
demographic events could be improved. For example, as discussed by Myers et al. (2008),
modelling loci of contiguous, linked sites could help extract more information about past
demographic changes. Longer loci can contain much more information about the lengths of
branches in the gene tree, which are critically informative about the size of the population
through time. This is evidenced by the extensive literature on powerful “skyline plot” and
“phylodynamic” methods (Pybus et al., 2000; Strimmer and Pybus, 2001; Opgen-Rhein et al.,
2005; Drummond et al., 2005; Heled and Drummond, 2008; Minin et al., 2008; Ho and
Shapiro, 2011; Palacios and Minin, 2013, 2012; Stadler et al., 2013; Gill et al., 2013; Palacios
et al., 2014; Lan et al., 2015; Karcher et al., 2016, 2017; Faulkner et al., 2018; Karcher et al.,
2019). Obviously, the length of loci will be constrained by recombination. Nonetheless, with
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loci from across the genome, each with more information about the gene tree they evolved
along (Speidel et al., 2019), perhaps more information can be captured about temporally
clustered changes in the rate of coalescence across populations.

Another potential source of information could be captured by modelling recombination
along large regions of chromosomes. By approximating the full coalescent process, many
methods have been developed to model recombination in a computationally feasible manner
(McVean and Cardin, 2005; Marjoram and Wall, 2006; Chen et al., 2009; Li and Durbin,
2011; Sheehan et al., 2013; Schiffels and Durbin, 2014; Rasmussen et al., 2014; Palacios et al.,
2015). This could potentially leverage additional information from genomic data about the
linkage patterns among sites along chromosomes.

The inference of shared evolutionary events could also stand to benefit from information
about past environmental conditions, life history data about the taxa, and ecological data
about how they interact. Modeling ecological aspects of the taxa and historical environmental
conditions could provide important information about which comparisons are most likely to
respond to environmental changes and when, and which taxa are likely to interact and
influence each other’s demographic trajectories. While collecting these types of data and
modelling these sorts of dynamics is challenging, approximate approaches can help to lead
the way (He et al., 2013; Massatti and Knowles, 2016; Bemmels et al., 2016; Knowles and
Massatti, 2017; Papadopoulou and Knowles, 2016). All of the these avenues are worth
pursuing given the myriad historical processes that predict patterns of temporally clustered
demographic changes across species.
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1 Methods

1.1 Initial simulation conditions

We initially simulated data under distributions we hoped comprised a mix of conditions
that were favorable and challenging for estimating the timing and sharing of demographic
changes. For these initial conditions, we simulated data sets with three populations that
underwent a demographic change, under five different distributions on the relative effective
size of the ancestral population (RNR

e
; see Table S1 and left column of Figures S1 and S2),

which ranged from having a mean 4-fold population-size increase (PV 1) to a 2-fold decrease
(PV 3) and a “worst-case” scenario where there was essentially no population-size change in
the history of the populations (PV 5).

Table S1. Simulation and analysis conditions for preliminary validation analyses. The distributions
from which parameter values were drawn for simulating data with simcoevolity are given for
event times (τ), the relative effective size of the root (ancestral) population (RNR

e
), and the

effective size of the descendant population (ND
e µ), along with the prior distributions used for

these parameters when the simulated data sets were analyzed with ecoevolity. When the latter
is represented by a dash, this means the prior distribution matched the distribution under which
the data were simulated. G(· · · ) and E(· · · ) represent gamma and exponential distributions,
respectively, and the first number provided for the gamma distributions is the shape parameter.

Simulated distribution Prior distribution

Label τ RNR
e

ND
e µ τ RNR

e
ND

e µ

Preliminary validation simulation conditions
PV 1 E(mean = 0.01) G(10,mean = 0.25) G(5,mean = 0.002) - - -
PV 2 E(mean = 0.01) G(10,mean = 0.5) G(5,mean = 0.002) - - -
PV 3 E(mean = 0.01) G(10,mean = 2) G(5,mean = 0.002) - - -
PV 4 E(mean = 0.01) G(10,mean = 1) G(5,mean = 0.002) - - -
PV 5 E(mean = 0.01) G(100,mean = 1) G(5,mean = 0.002) - - -

For the mutation-scaled effective size of the descendant populations (ND
e µ; i.e., the pop-

ulation size after the demographic change), we used a gamma distribution with a shape of
5 and mean of 0.002 (Table S1). The timing of the demographic events was exponentially
distributed with a mean of 0.01 substitutions per site. Taken together, the mean of the
distribution on event times in units of 4Ne generations is approximately 1.56. We chose
this distribution in order to span times of demographic change from very recent (i.e., most
gene lineages coalesce before the change) to old (i.e., most gene lineages coalesce after the
change), which we assumed would include conditions under which the method performed
both well and poorly. The assignment of the population-size change of the three simulated
populations to 1, 2, or 3 demographic events was controlled by a Dirichlet process with a
mean number of two events across the three populations. We generated 500 data sets under
each of these five simulation conditions, all of which were analyzed using the same simulated
distributions as priors.
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2 Results
Despite our attempt to capture a mix of favorable and challenging parameter values,

estimates of the timing (Figure S1) and sharing (Figure S2) of demographic events were
quite poor across all the simulation conditions we initially explored. Under the “worst-case”
scenario of very little population-size change (bottom row of Figures S1 and S2), our method
is unable to identify the timing or model of demographic change. Under these conditions, our
method returns the prior on the timing of events (bottom row of Figure S1) and almost always
prefers either a model with a single, shared demographic event (model "000") or independent
demographic changes (model "012"; bottom row of Figure S2). This behavior is expected,
because there is very little information in the data about the timing of demographic changes,
and a Dirichlet process with a mean of 2.0 demographic events, puts approximately 0.24 of
the prior probability on the models with one and three events, and 0.515 prior probability
on the three models with two events (approximately 0.17 each). As a result, with little
information, the method samples from the prior distribution on the timing of events, and
prefers one of the two models with the largest (and equal) prior probability.

Under considerable changes in population size, the method only fared moderately better
at estimating the timing of demographic events (top three rows of Figure S1). The ability to
identify the model improved under these conditions, but the frequency at which the correct
model was preferred only exceeded 50% for the large population expansions (top two rows
of Figure S2). The median posterior support for the correct model was very small (less
than 0.58) under all conditions. Under all simulation conditions, estimates of the timing
and sharing of demographic events are better when using all characters, rather than only
variable characters (second versus third column of Figures S1 and S2). Likewise, we see
better estimates of effective population sizes when using the invariant characters (Figures
S3 and S4).

We observed numerical problems when the time of the demographic change was either
very recent or old relative to the effective size of the population following the change (ND

e ;
the descendant population). In such cases, either very few or almost all of the sampled
gene copies coalesce after the demographic change, providing almost no information about
the magnitude or timing of the population-size change. In these cases, the data are well-
explained by a constant population size, which can be achieved by the model in three ways:
(1) an expansion time of zero and an ancestral population size that matched the true pop-
ulation size, (2) an old expansion and a descendant population size that matched the true
population size, or (3) an intermediate expansion time and both the ancestral and descen-
dant sizes matched the true size. The true population size being matched in these modelling
conditions is that of the descendant or ancestral population if the expansion was old or re-
cent, respectively. This caused MCMC chains to converge to different regions of parameter
space (highlighted in orange in Figure S1).
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Figure S1. The accuracy and precision of time estimates of demographic changes (in units of expected sub-
situtions per site) when data were simulated and analyzed under the same distributions we initially explored
(Table S1). The left column of plots shows the gamma distribution from which the relative size of the ancestral
population was drawn; this was also used as the prior when each simulated data set was analyzed. The center
and right column of plots show true versus estimated values when using all characters (center) or only variable
characters (right). Each plotted circle and associated error bars represent the posterior mean and 95% credible
interval. Estimates for which the potential-scale reduction factor was greater than 1.2 (Brooks and Gelman,
1998) are highlighted in orange. Each plot consists of 1500 estimates—500 simulated data sets, each with three
demographic comparisons. For each plot, the root-mean-square error (RMSE) and the proportion of estimates for
which the 95% credible interval contained the true value—p(t ∈ CI)—is given. We generated the plots using
matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S2. The performance of estimating the model of demographic changes when data were simulated and
analyzed under the same distributions we initially explored (Table S1). The left column of plots shows the gamma
distribution from which the relative size of the ancestral population was drawn; this was also used as the prior when
each simulated data set was analyzed. The center and right column of plots show true versus estimated models
when using all characters (center) or only variable characters (right). Each plot shows the results of the analyses of
500 simulated data sets, each with three demographic comparisons; the number of data sets that fall within each
possible cell of true versus estimated model is shown, and cells with more data sets are shaded darker. Each model
is represented along the plot axes by three integers that indicate the event category of each comparison (e.g., 011
represents the model in which the second and third comparison share the same event time that is distinct from
the first). The estimates are based on the model with the maximum a posteriori probability (MAP). For each
plot, the proportion of data sets for which the MAP model matched the true model—p(T̂ = T )—is shown in

the upper left corner, and the median posterior probability of the correct model across all data sets— ˜p(T |D)—is
shown in the upper right corner. We generated the plots using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S3. The accuracy and precision of estimates of the effective size (scaled by the mutation rate) of the
population before a demographic change (“ancestral” population) when data were simulated and analyzed under
the same distributions we initially explored (Table S1). The left column of plots shows the gamma distribution from
which the relative size of the ancestral population was drawn; this was also used as the prior when each simulated
data set was analyzed. The center and right column of plots show true versus estimated values when using all
characters (center) or only variable characters (right). Each plotted circle and associated error bars represent the
posterior mean and 95% credible interval. Estimates for which the potential-scale reduction factor was greater than
1.2 (Brooks and Gelman, 1998) are highlighted in orange. Each plot consists of 1500 estimates—500 simulated
data sets, each with three demographic comparisons. For each plot, the root-mean-square error (RMSE) and the
proportion of estimates for which the 95% credible interval contained the true value—p(Neµ ∈ CI)—is given.
We generated the plots using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S4. The accuracy and precision of estimates of the effective size (scaled by the mutation rate) of the
population after a demographic change (“descendant” population) when data were simulated and analyzed under
the same distributions we initially explored (Table S1). The left column of plots shows the gamma distribution from
which the relative size of the ancestral population was drawn; this was also used as the prior when each simulated
data set was analyzed. The center and right column of plots show true versus estimated values when using all
characters (center) or only variable characters (right). Each plotted circle and associated error bars represent the
posterior mean and 95% credible interval. Estimates for which the potential-scale reduction factor was greater than
1.2 (Brooks and Gelman, 1998) are highlighted in orange. Each plot consists of 1500 estimates—500 simulated
data sets, each with three demographic comparisons. For each plot, the root-mean-square error (RMSE) and the
proportion of estimates for which the 95% credible interval contained the true value—p(Neµ ∈ CI)—is given.
We generated the plots using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S5. The accuracy and precision of estimates of the effective size (scaled by the mutation rate) of the
population before a demographic change (“ancestral” population) when data were simulated and analyzed under
the same distributions (Table 2). The left column of plots shows the gamma distribution from which the relative
size of the ancestral population was drawn; this was also used as the prior when each simulated data set was
analyzed. The center and right column of plots show true versus estimated values when using all characters
(center) or only variable characters (right). Each plotted circle and associated error bars represent the posterior
mean and 95% credible interval. Estimates for which the potential-scale reduction factor was greater than 1.2
(Brooks and Gelman, 1998) are highlighted in orange. Each plot consists of 1500 estimates—500 simulated data
sets, each with three demographic comparisons. For each plot, the root-mean-square error (RMSE) and the
proportion of estimates for which the 95% credible interval contained the true value—p(Neµ ∈ CI)—is given.
We generated the plots using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S6. The accuracy and precision of estimates of the effective size (scaled by the mutation rate) of the
population after a demographic change (“descendant” population) when data were simulated and analyzed under
the same distributions (Table 2). The left column of plots shows the gamma distribution from which the relative
size of the ancestral population was drawn; this was also used as the prior when each simulated data set was
analyzed. The center and right column of plots show true versus estimated values when using all characters
(center) or only variable characters (right). Each plotted circle and associated error bars represent the posterior
mean and 95% credible interval. Estimates for which the potential-scale reduction factor was greater than 1.2
(Brooks and Gelman, 1998) are highlighted in orange. Each plot consists of 1500 estimates—500 simulated data
sets, each with three demographic comparisons. For each plot, the root-mean-square error (RMSE) and the
proportion of estimates for which the 95% credible interval contained the true value—p(Neµ ∈ CI)—is given.
We generated the plots using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S7. Estimates of the timing (Row 1), and sharing (Row 2) of demographic events, ancestral
population size (Row 4), and descendant population size (Row 5) when 20 (Columns 1 and 3)
versus 40 genomes (Columns 2 and 4) are sampled from each population. Each column plots
the results from 500 data sets simulated under Condition V 1 (Table 2). Estimates for which the
potential-scale reduction factor was greater than 1.2 (Brooks and Gelman, 1998) are highlighted
in orange. We generated the plots using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S8. Estimates of the timing (Row 1), and sharing (Row 2) of demographic events, ancestral
population size (Row 4), and descendant population size (Row 5) when three (Columns 1 and
3) versus six (Columns 2 and 4) demographic comparisons are analyzed. Each column plots the
results from 500 data sets simulated under Condition V 1 (Table 2). Estimates for which the
potential-scale reduction factor was greater than 1.2 (Brooks and Gelman, 1998) are highlighted
in orange. We generated the plots using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S9. Sharing a demographic change event with more populations does not increase accuracy
(as measured by absolute error; Row 1) or precision (as measured by the width of the 95% credible
interval; Row 2), regardless of whether all sites (Column 1) or only variable sites (Column 2)
are analyzed. Each plot shows the results from 500 data sets simulated under Condition V 1
(Table 2) with six demographic comparisons. We generated the plots using matplotlib Version
2.0.0 (Hunter, 2007).
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Figure S10. The accuracy and precision of estimates of the effective size (scaled by the mutation
rate) of the ancestral population of demographic comparisons (top two rows) versus divergence
comparisons (bottom two rows) when the priors are correct (first and third rows) versus when
the priors are diffuse (second and fourth rows). The first and second columns of plots show
the distribution on the relative effective size of the ancestral population for simulating the data
(Column 1) and for the prior when analyzing the simulated data (Column 2). The third and
fourth columns of plots show true versus estimated values when using all characters (Column 3)
or only variable characters (Column 4). Each plotted circle and associated error bars represent the
posterior mean and 95% credible interval. Estimates for which the potential-scale reduction factor
was greater than 1.2 (Brooks and Gelman, 1998) are highlighted in orange. Each plot comprises
500 simulated data sets, each with three demographic comparisons (Rows 1–2) or divergence
comparisons (Rows 3–4). For each plot, the root-mean-square error (RMSE) and the proportion
of estimates for which the 95% credible interval contained the true value—p(Neµ ∈ CI)—is
given. The first row of plots are repeated from Figure S5 for comparison. We generated the
plots using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S11. The accuracy and precision of estimates of the effective size (scaled by the mutation
rate) of the descendant population(s) of demographic comparisons (top two rows) versus diver-
gence comparisons (bottom two rows) when the priors are correct (first and third rows) versus
when the priors are diffuse (second and fourth rows). The first and second columns of plots show
the distribution on the relative effective size of the ancestral population for simulating the data
(Column 1) and for the prior when analyzing the simulated data (Column 2). The third and
fourth columns of plots show true versus estimated values when using all characters (Column 3)
or only variable characters (Column 4). Each plotted circle and associated error bars represent the
posterior mean and 95% credible interval. Estimates for which the potential-scale reduction factor
was greater than 1.2 (Brooks and Gelman, 1998) are highlighted in orange. Each plot comprises
500 simulated data sets, each with three demographic comparisons (Rows 1–2) or divergence
comparisons (Rows 3–4). For each plot, the root-mean-square error (RMSE) and the proportion
of estimates for which the 95% credible interval contained the true value—p(Neµ ∈ CI)—is
given. The first row of plots are repeated from Figure S6 for comparison. We generated the
plots using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S12. The accuracy and precision of estimates of the effective size of the population
before the demographic change (i.e., ancestral population) when the prior distributions are diffuse
(Conditions S1–S4; Table 2). The first column of plots shows the distribution on the relative
effective size of the ancestral population under which the data were simulated, and the second
and third columns of plots show true versus estimated values when using all characters (Column
2) or only variable characters (Column 3). Each plotted circle and associated error bars represent
the posterior mean and 95% credible interval. Estimates for which the potential-scale reduction
factor was greater than 1.2 (Brooks and Gelman, 1998) are highlighted in orange. Each plot
comprises 500 simulated data sets, each with three demographic comparisons. For each plot,
the root-mean-square error (RMSE) and the proportion of estimates for which the 95% credible
interval contained the true value—p(Neµ ∈ CI)—is given. The first row of plots are repeated
from Figure S10 for comparison. We generated the plots using matplotlib Version 2.0.0 (Hunter,
2007).
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Figure S13. The accuracy and precision of estimates of the effective size of the population after
the demographic change (i.e., descendant population) when the prior distributions are diffuse
(Conditions S1–S4; Table 2). The first column of plots shows the distribution on the relative
effective size of the ancestral population under which the data were simulated, and the second
and third columns of plots show true versus estimated values when using all characters (Column
2) or only variable characters (Column 3). Each plotted circle and associated error bars represent
the posterior mean and 95% credible interval. Estimates for which the potential-scale reduction
factor was greater than 1.2 (Brooks and Gelman, 1998) are highlighted in orange. Each plot
comprises 500 simulated data sets, each with three demographic comparisons. For each plot,
the root-mean-square error (RMSE) and the proportion of estimates for which the 95% credible
interval contained the true value—p(Neµ ∈ CI)—is given. The first row of plots are repeated
from Figure S11 for comparison. We generated the plots using matplotlib Version 2.0.0 (Hunter,
2007).
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Figure S14. Results of analyses of 500 data sets simulated with six comparisons comprising a
mix of three populations that experienced a demographic change and three pairs of populations
that diverged. The performance of estimating the timing of events (Row 1), sharing of events
(Rows 2–3), ancestral population size (Row 4), and descendant population size (Row 5) are
shown separately for the three populations that experienced a demographic change (Columns 1
and 2) and the three pairs of populations that diverged (Columns 3 and 4). The plots of the
demographic comparisons (Columns 1 and 2) are comparable to the second column of Figures 2,
3, S5, and S6; the same priors on event times and ancestral population size were used. Estimates
for which the potential-scale reduction factor was greater than 1.2 (Brooks and Gelman, 1998)
are highlighted in orange. We generated the plots using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S15. Estimates of the timing (Row 1), and sharing (Row 2) of demographic events, ancestral population
size (Row 4), and descendant population size (Row 5) when using all characters (left column) or only unlinked
variable characters (right column) from data sets simulated with 5000 loci of 100 linked bases from three demo-
graphic comparisons. The plots are comparable to the first row of Figures 2, 3, S5, and S6; the only difference
is the linkage of characters into loci. Estimates for which the potential-scale reduction factor was greater than
1.2 (Brooks and Gelman, 1998) are highlighted in orange. Each plot shows the results from 500 simulated data
sets, each with three demographic comparisons. We generated the plots using matplotlib Version 2.0.0 (Hunter,
2007). 18
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Figure S16. The prior (light bars) and posterior (dark bars) probabilities of the number of
demographic events across five stickleback populations when all of the sites (left column) or only
variable sites (right column) of the RADseq alignments are analyzed. Each row shows results
under a different prior on the concentration parameter of the dirichlet process. We generated the
plots with ggplot2 Version 2.2.1 (Wickham, 2009).
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Figure S17. Estimates of the time of a change in population size across five stickleback popu-
lations when all of the sites (left column) or only variable sites (right column) of the RADseq
alignments are analyzed. Each row shows results under a different prior on the concentration pa-
rameter of the dirichlet process. We generated the plots using matplotlib Version 2.0.0 (Hunter,
2007).
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Figure S18. Estimates of the effective population size before (“ancestor”) and after a demographic
change across five stickleback populations when all of the sites (left column) or only variable sites
(right column) of the RADseq alignments are analyzed. Each row shows results under a different
prior on the concentration parameter of the dirichlet process. We generated the plots using
matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S19. The prior (light bars) and posterior (dark bars) probabilities of the number of
demographic events across five stickleback populations when all of the sites (left column) or only
variable sites (right column) of the RADseq alignments are analyzed. Each row shows results
under a different prior on the timing of the change in population size. We generated the plots
with ggplot2 Version 2.2.1 (Wickham, 2009).
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Figure S20. Estimates of the time of a change in population size across five stickleback popu-
lations when all of the sites (left column) or only variable sites (right column) of the RADseq
alignments are analyzed. Each row shows results under a different prior on the timing of the
change in population size. We generated the plots using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S21. Estimates of the effective population size before (“ancestor”) and after a demographic
change across five stickleback populations when all of the sites (left column) or only variable sites
(right column) of the RADseq alignments are analyzed. Each row shows results under a different
prior on the timing of the change in population size. We generated the plots using matplotlib
Version 2.0.0 (Hunter, 2007).
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Figure S22. The prior (light bars) and posterior (dark bars) probabilities of the number of
demographic events across five stickleback populations when all of the sites (left column) or only
variable sites (right column) of the RADseq alignments are analyzed. Each row shows results
under a different prior on the relative effective size of the ancestral population. We generated
the plots with ggplot2 Version 2.2.1 (Wickham, 2009).
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Figure S23. Estimates of the time of a change in population size across five stickleback popu-
lations when all of the sites (left column) or only variable sites (right column) of the RADseq
alignments are analyzed. Each row shows results under a different prior on the relative effective
size of the ancestral population. We generated the plots using matplotlib Version 2.0.0 (Hunter,
2007).
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Figure S24. Estimates of the effective population size before (“ancestor”) and after a demographic
change across five stickleback populations when all of the sites (left column) or only variable sites
(right column) of the RADseq alignments are analyzed. Each row shows results under a different
prior on the relative effective size of the ancestral population. We generated the plots using
matplotlib Version 2.0.0 (Hunter, 2007).
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