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Abstract

Here, we evaluate the performance of a variety of marker selection methods on scRNA-seq
UMI counts data. We test on an assortment of experimental and synthetic data sets that range
in size from several thousand to one million cells. In addition, we propose several performance
measures for evaluating the quality of a set of markers when there is no known ground truth.
According to these metrics, most existing marker selection methods show similar performance
on experimental scRNA-seq data; thus, the speed of the algorithm is the most important consid-
eration for large data sets. With this in mind, we introduce RankCorr, a fast marker selection
method with strong mathematical underpinnings that takes a step towards sensible multi-class
marker selection.

Background

In single cell RNA sequencing (scRNA-seq), mRNA data are collected from individual cells, allowing
for detailed descriptions of specific cell types and states. In recent years, the development of high
throughput microfludic sequencing protocols has allowed for the collection of genetic information
from up to one million individual cells in a single experiment. Additionally, the incorporation of
unique molecular identifier (UMI) technology makes it possible to process these raw sequencing
data into integer valued read counts.

Due to factors that are both biological (e.g. transcriptional bursting) and technical (e.g. 3’ bias
in UMI based sequencing protocols) in nature, scRNA-seq counts data exhibit high variance and
are very sparse (often, approximately 90% of the reads are 0). These characteristics, in combination
with the integer valued quality of the counts and the high dimensionality of the data (often, 20,000
genes show nonzero expression levels in an experiment), make it so that scRNA-seq data does not
match many of the models that underly common data analysis techniques. For this reason, many
specialized tools have been developed to attempt to answer biological questions with scRNA-seq
data.

One such biological question that has generated a significant amount of study (and produced
a multitude of tools) in the scRNA-seq literature is the problem of finding marker genes. Marker
genes are genes that can be used to distinguish the cells in one group apart from all other cells
or from other specific cell types. In the (sc)RNA-seq literature, marker selection is almost always
accomplished via differential expression (see [1], [2], [3], [4], [5] for some examples of methods that
we examine in greater detail in the Methods; see [6] for a survey and evaluation of more methods).
In order to find the genes that are useful for separating two populations of cells, a statistical test is
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applied to each gene in the data set to determine if the distributions of gene expression are different
between the two populations: the genes with the most significance are selected as marker genes.

Marker selection has also received extensive study in the computer science literature, where is
is known as the problem of “feature selection.” There are generally two main classes of feature
selection algorithms: greedy algorithms that select features one-by-one, computing a score at each
step to determine the next marker to select (for example, forward- or backward-stepwise selection,
see Section 3.3 of [7]; mutual information based methods, see e.g. [8]; and other greedy methods
e.g. [9]), and slower algorithms that are based on solving some regularized convex optimization
problem (for example LASSO [10], Elastic Nets [11], and other related methods [12]).

In this work, we evaluate the performance of a diverse set of feature selection methods when
they are applied to a representative sample of different types of UMI counts data sets, both ex-
perimentally generated and synthetic. We consider feature selection algorithms from the computer
science literature along with complex statistical differential expression methods from the scRNA-
seq literature: see the marker selection methods for a detailed list. Unlike the review [6], which
also focuses on comparing differential expression methods for scRNA-seq data, we focus on large
datasets generated by UMI based protocols. We consider data sets of multiple different sizes, data
sets that contain cell differentiation trajectories, and data sets with well-differentiated cell types.
Moreover, we consider cell type classifications that are both biologically motivated as well as cell
clusters that are algorithmically created.

We also propose several metrics that can be used to evaluate the quality of marker set when
a ground truth marker set is unknown. Using these evaluation metrics, there are generally only
small differences between the different marker selection algorithms that are examined here, though
all of the algorithms perform significantly better than random marker selection. Similar results are
observed on synthetic data, where a set of ground truth markers is known. This suggests that fast
and simple marker selection methods should be preferred over high complexity algorithms.

A major setback of many feature selection and differential expression algorithms is that they are
not designed to handle data that contain more than two cell types. Using a differential expression
method, for example, one strategy is to pick a fixed number (e.g. 10) of the statistically most
significant genes for each cell type; there may be overlap in the genes selected for different cell
types. This strategy does not take into account the fact that some cell types are more difficult
to characterize than others, however: one cell type may require more than 10 markers to separate
from the other cells, while a different cell type may be separated with only one marker. Setting a
significance threshold for the statistical test does not solve this problem: a cell type that is easy to
separate from other cells will often exhibit several high significance markers, while a cell type that
is difficult to separate might not exhibit any high significance markers.

In this work we introduce a feature selection algorithm that takes steps to mitigate this issue.
This method, which we call RankCorr, is inspired by the method in [13] and relies on the ranking
the scRNA-seq counts before marker selection. Below, we provide some intuition as to why ranking
scRNA-seq data is a useful strategy for understanding scRNA-seq counts data. The method in
[13] is based on convex optimization (which would generally be quite slow on large data sets); it is
possible to find a quick deterministic solution to this optimization, however, so that RankCorr
runs quickly. RankCorr is able to handle over one million cells in an amount of time that is
competitive with simple statistical methods.

In the remainder of this background section, we introduce mathematical notation that will
appear throughout this manuscript, discuss some of the instinct behind why it might be reasonable
to rank scRNA-seq data, and finish with some mathematical background on feature selection and
some existing feature selection algorithms. The benchmarking of feature selection methods appears
in the Results and Discussion.
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Notation and definitions

Let R denote the set of real numbers, Z denote the set of integers, and N denote the set of natural
numbers.

Consider an scRNA-seq experiment that collects gene expression information from n cells. After
processing, for each cell that is sequenced, a vector x ∈ Rp is obtained: xj represents the number of
copies of a specific mRNA that was observed during the sequencing procedure (and we are assuming
that p different mRNAs were detected during the experiment). When all n cells are sequenced,
this results in n vectors in Rp, which we arrange into a data matrix X ∈ Rn×p. The entry Xi,j

represents the number of counts of gene j in cell i. Note that this is the transpose of the data
matrix that is common in the scRNA-seq literature.

Let [n] = {1, . . . , n}. For a matrix X, let Xi denote column i of X. Given a vector x, let
µ(x) = x̄ denote the average of the elements of x and let σ(x) represent the standard deviation of

the elements in x; that is, σ(x) =
√

1
n

∑n
i=1(xi − µ(x))2. For a vector x ∈ Rp, let S(x) denote the

support of x; that is, S(x) = {i : xi 6= 0} ⊂ [p].

Given a vector x ∈ Rp and a parameter β ∈ R, we define the soft-thresholding operator
Tβ(x) : Rp → Rp by

Tβ(x)j =

{
sign(xj)|xj − β| : |xj | > β
0 : otherwise

(1)

We say that Tβ(x) is a soft-thresholding of the vector x.

We use the notation ‖x‖p to represent the p-norm of the vector x. For example, ‖x‖2 is the
standard Euclidean norm of x and ‖x‖1 =

∑n
i=1 |xi|. The notation ‖x‖0 represents the number of

nonzero elements in x.

Ranking scRNA-seq data

Consider a vector x ∈ Rn. For a given index i with 1 ≤ i ≤ n, let Si(x) = {` ∈ [n] : x` < xi} and
Ei(x) = {` ∈ [n] : x` = xi} (note that i ∈ Ei(x)). Define a transformation Φ: Rn → Rn by

Φ(x)i = |Si(x)|+ |Ei(x)|+ 1

2
. (2)

We refer to Φ as the rank transformation due to the fact that φ(x)i is the index of xi in an
ordered version of x. If multiple elements in x are equal, we assign their rank to be the average of
the ranks that would be assigned to those elements.

In the definition above, the codomain of Φ is given as Rn. From the defining equation (2),
however, we see that each entry of Φ(x) (x ∈ Rn) is either an integer or a half-integer.

Example: Let n = 5, and consider the point x = (17, 17, 4, 308, 17). Then Φ(x) = (3, 3, 1, 5, 3).
This value will be the same as the rank transformation applied to any point in x ∈ R5 with
x3 < x1 = x2 = x5 < x4.

The rank transformation is non-local, non-linear, and highly distorts the geometry of Rn. There
is still much more formal analysis to cover in regards to the connection between the rank transfor-
mation and scRNA-seq data; some of this analysis will appear in an upcoming work [14]. Here we
provide some intuition as to why the rank transformation produces intelligible results on scRNA-seq
UMI counts data.
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scRNA-seq data is very sparse and has a high dynamic range. Thus, when looking at the
expression of a fixed gene g across a population of cells, it is intuitive to separate the cells in which
g is expressed from the cells in which no expression of g is observed. Among the cells in which g is
observed, it is interesting to distinguish between low expression of g and high expression of g. The
actual values of the counts in cells with high expression (say a count of 500 vs a count of 1000) are
often not especially important.

Capturing this idea, methods in the scRNA-seq literature often normalize the counts matrix X
via a log transformation, taking Xij 7→ log(Xij + 1). This is a nonlinear transformation that helps
to reduce the gaps between the largest entries of X while leaving unchanged the entries that were
originally 0 (and preserving much of the gap between “no expression” and “some expression”). With
this in mind, the rank transformation can be considered as a more aggressive log transformation.
Under the rank transformation, the largest count will be brought adjacent to the second-largest -
no gap will be preserved. On the other hand, since there are so many entries that are 0, the gap
between no expression (a count of 0) and some expression will be significantly expanded (in the
equation (2), the set Ei(x) will be large for any i such that xi = 0). See Figure 1 for a visualization
of these ideas on experimental scRNA-seq data.

Stratifying the gene expression in this way intuitively seems useful for determining which genes
are important in identifying cell types: a gene that shows expression in many of the cells of a given
cell type can be used to separate that cell type from all of the others and thus is a useful marker
gene. Thus, by enforcing a large separation between expression and no expression (when compared
to the separation between low expression and high expression), it will be easier to identify markers.
For these reasons, and since the rank transformation has shown promise in other scRNA-seq tools
(for example NODES [15]) we have decided to involve the rank transform in the creation of the
RankCorr marker selection algorithm.

Mathematical development of a marker selection algorithm

Let X ∈ Rn×p be a scRNA-seq count matrix (n cells, p genes). Label the cells with the numbers
in [n]. Given a subset S ⊂ [n] of cells of a specific cell type, define τ ∈ {±1}n such that τi = +1 if
cell i is in the subset corresponding to the cell type (that is, if i is in S) and τi = −1 otherwise. If
there is a vector ω ∈ Rp such that

τ = sign(Xω) (3)

then ω gives us a linear separator between the cells that are in the subtype S and the cells that are
not in S (if cell i is in S, then 〈xi, ω〉 > 0; otherwise, 〈xi, ω〉 < 0). In this case, the nonzero entries
of ω are marker genes for the type S - they are the features that separate the given cell type from
the other cells.

Ideally, we would like to only select a small number of marker genes. To account for this, we
enforce sparsity in ω. This corresponds to seeking a sparse linear separator between the two classes:
we seek as few genes as possible that are “responsible” for the separation between the subset and
the other cells. Unfortunately, it is computationally infeasible to find an optimal sparse separating
hyperplane ω (see [16]).

In [17], the authors present the convex optimization problem (4) that uses X, τ and an input
sparsity parameter s to give a “good” (in a technical sense) approximation ω̂ to the true sparse ω
(assuming that ω exists).

ω̂ = arg min
ω

n∑
i=1

τi〈xi, ω〉

subject to ‖ω‖2 ≤ 1, ‖ω‖1 ≤
√
s

(4)
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The sparsity parameter s controls the size of the set that the approximation ω̂ will be chosen from.
In particular, if a true signal ω has ‖ω‖0 ≤ s, then ω will be in the feasible range of the optimization
when the input sparsity parameter is s or larger. In practice, larger values of s will result in larger
number of features that are selected.

In both [18] and [19], the authors show that the solution ω̂ to (4) is given by a normalized soft
thresholding of the vector

v =

n∑
i=1

τixi, (5)

where xi represents the i-th row of X. That is,

ω̂ = Tβ(v)/‖Tβ(v)‖2, (6)

where β is a parameter that depends on s. Due to this result, it is possible to very quickly find
the solution ω̂ to the optimization (4) (see the Select algorithm in the Methods), making the
approximation ω̂ from (4) an appealing method to use for the recovery of ω when dealing with
large data sets (though other approximation algorithms exist in the literature; e.g. [19], [20], [21]).

The results of [17] (and its extension [22]) depend on the assumption that the rows of X are
independently generated from a (sub-)Gaussian distribution with mean 0 and variance 1. The rows
of an scRNA-seq data matrix X do not look like standard Gaussian vectors and, importantly, do
not have mean 0. In order to apply the results of [17] to sparse biological data, therefore, the
authors of [13] propose standardizing the columns of X before running the optimization (4). That

is, they create Xstd by Xstd
j =

Xj−µ(Xj)
σ(Xj)

and then let ω̂ be the solution generated from Xstd and τ .

Note that, in this case, the vector v from (5) is defined by

vj =
n∑
i=1

τi · (Xij − µ(Xj))

σ(Xj)
. (7)

That is, the j-th entry of the vector v is something that looks a lot like the empirical Pearson
correlation between the vector τ and column Xj (in fact, vj is proportional to this correlation).
Thus, when we soft threshold this vector v from (7), the remaining nonzero entries correspond to
the genes that have the (absolute) largest correlation with the vector of cluster labels τ .

More accurately, the method in [13] uses a quasi-standardization of the matrix X that depends
on two hyperparameters. The specific details are not important here; it is enough to establish
that [13] proposes a feature selection algorithm for sparse biological data that works by solving the
optimization 4 using a quasi-standardized version of X. We refer to this algorithm as Spa for the
remainder of this work; the markers selected by Spa are those that have high correlation with the
cell type labels. As discussed in the introduction, the method that we introduce in this work is
inspired by Spa.

Results and Discussion

RankCorr: A fast feature selection algorithm using the rank transformation

RankCorr, a new method for marker selection based on the rank transformation, is based on the
ideas presented in [13]. It essentially works by applying the rank transformation to the columns
(genes) of the data matrix as well as the vector τ ∈ {±1}n of class labels and then solving the
optimization (4) on the rank transformed data. When compared to the quasi-standardization of
genes presented in [13], RankCorr has the benefit that there are no hyperparameters to tune. In
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addition, all normalization is done via the rank transformation - there are no extra normalization
steps to consider. In experiments, we see that RankCorr runs much more quickly than the method
Spa and generally produces better results. See the Methods for the full details of the algorithm.

In the Methods, we also present a fast algorithm called Select that allows us to quickly jump to
the solution of the optimization (4) without the use of optimization software. We use this algorithm
in our implementations of both Spa and RankCorr. Select is the main reason that RankCorr
is a fast algorithm, as it prevents us from needing a general optimization package. This also means
that our implementation of Spa is faster than it would have appeared in past work, including [13]
(where Spa is introduced).

It can be shown (see the Methods) that RankCorr will select the genes that have the highest
(absolute) Spearman correlation with the vector of class labels. Note that choosing the genes that
have the highest absolute Spearman correlation with the vector τ could be carried out in a greedy
fashion without solving the optimization (4) (similar to a differential expression method) - for this
reason, it is not useful to apply RankCorr to a data set that contains only two cell types. The
sparsity parameter s does not directly control the number of markers that are selected, however:
for example, for a fixed parameter s and fixed data matrix X, changing the vector τ will change
the number of markers that are selected. Thus, fixing s across all clusters allows for nontrival
multi-class marker selection to be carried out in a one-vs-all (OvA) approach.

The effect of fixing s is complex; refer to upcoming work [14] for a full description of how this
works. In the following, we try to give a bit of intuition. We refer to the norm of the Spearman
rank correlation between a gene and the vector τj ∈ {±1}n of cluster labels for cluster j as a gene’s
score for cluster j.

When fixing the value of s while choosing markers for each cluster, RankCorr will select at
least s markers for each cluster. The RankCorr algorithm will select exactly s markers for cluster
j only if there are exactly s genes tied with the same (absolute) highest score for cluster j, which
will essentially never occur in noisy experimental data. After selecting s markers, the algorithm
will continue to choose more markers for the cluster; the number of markers selected depends on
the gaps between the scores for different genes. If several genes have a similar score for cluster j
and one of them is selected as a marker by the algorithm, it is more likely that they will all be
selected. If, on the other hand, there are large gaps between consecutive scores, then fewer markers
will be selected.

So, if a cluster j can be separated from the other clusters using a small number of marker genes,
we would expect for these marker genes to exhibit high scores for cluster j compared to the rest
of the genes. In this case, RankCorr will select a subset of these high score genes, and maybe a
few more depending on the value of s. Issues can occur if s is selected to be too large, but this is
not a problem that we will address here. On the other hand, if cluster j is hard to separate from
the other cells we would expect it not to exhibit any particularly high scoring genes, and we would
see more of a linear continuum of scores (without any large gaps between scores). In this case,
more genes will be selected. This allows for the researcher to set a baseline number of markers to
select for each cluster, while providing room for RankCorr to select more genes depending on the
distribution of scores for the cluster.

As mentioned above, this discussion was meant to be intuitive and does not formally cover all
of the possible cases. To summarize the main points: in RankCorr, we solve the optimization (4)
for each of the cell types in the data set, using rank transformed UMI counts and the same value of
s for each of the cell types. Thus we may get a different number of markers for each cell type. In
this way, we don’t need to specify the number of markers that we would like to obtain for each cell
type - we will instead select an informative number for each cluster. Please refer to the Methods
or the upcoming work [14] for more information.
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Comparison and benchmarking of marker selection methods in scRNA-seq data

Marker set evaluation metrics

There is currently no definitive ground truth set of markers for any experimental scRNA-seq data
set. Known markers for cell types have usually been determined from bulk samples, and treating
these as ground truth markers neglects the individual cell resolution of single cell sequencing.
Moreover, we would argue that the set of known markers is incomplete and that other genes could
be used as effectively as (or more effectively than) known markers for many cell types. Indeed,
finding new, better markers for rare cell types is one of the coveted promises of single cell sequencing.

Since a goal of marker selection is to discover heretofore unknown markers, we cannot evaluate
the efficacy of a marker selection algorithm by testing to see if the algorithm recovers a set of
previously known markers on experimental scRNA-seq data sets. For this reason, and since our
experimental data sets come with an associated clustering into cell types, we evaluate the quality
of the selected markers by measuring how much information the selected markers provide about
the given clustering.

We examine two general procedures to evaluate how much information a set of selected markers
provides about a given clustering when ground truth markers are not known: a supervised clas-
sification procedure, in which we train a classifier on the data contained in the selected markers
using the ground truth clustering as the target output; and an unsupervised clustering procedure,
where we cluster the cells using the information in the set of markers without any reference to the
ground truth clustering. Different methods (algorithms) have been developed to accomplish each
procedure, and for each method we consider several different performance metrics: a summary of
these marker set metrics is found in rightmost column of Table 1, along with the abbreviations that
we will use to refer to the metrics. It is important to note that these metrics do not capture the full
picture and only represent summary statistical information about the markers that are selected.
See the marker evaluation metrics section for further information, including information about how
the parameters for the Louvain clustering algorithm are selected.

Following Table 1, for each set of markers that we select, we use the markers to classify the cells
twice (using the NCC and the RFC) and to cluster the cells once (using the Louvain clustering
algorithm). For both classifications, we examine three evaluation metrics, and we examine an
additional three evaluation metrics for the clustering. This results in a total of nine metrics for the
evaluation of a set of markers. The three supervised classification metrics (error rate, precision,
and Matthew’s correlation coefficient) generally provide similar information, however. Thus, for
most data, the results from five metrics (NCC classification error, RFC classification error, ARI,
AMI, and FMS) are presented in this manuscript.

We compute each of the metrics using 5-fold cross-validation. Cross-validation is a common
technique from the computer science literature that is designed to reduce overfitting - see Section
7.10 of [7]. This means that we always select markers on 4

5 of the cells and then use those markers
to classify (or cluster) the other 1

5 of the cells. The timing information reported in the following
sections represents the time needed to select markers on one fold.

Summary of marker selection algorithms and experimental data sets

We consider the marker selection methods listed in the leftmost column of Table 2. See the marker
selection methods section for implementation details. We apply these methods to some subset of
the data sets listed in Table 3; see the experimental data for more information. Each data set in
Table 3 comes with a “ground truth” clustering; we use the marker selection methods to determine
markers for the clusters and apply the evaluation metrics from Table 1 to evaluate the quality
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General procedure Methods Metrics

Supervised classification
Nearest centroid classifier (NCC)
Random forests classifier (RFC)

Classification error (1 - accuracy)
Average precision
Matthews correlation coefficient

Unsupervised clustering Louvain clustering
Adjusted rand index (ARI)
Adjusted mutual information (AMI)
Fowlkes-Mallows score (FMS)

Table 1: Evaluation metrics for marker sets on experimental data. The “Average precison” metric is
a weighted average of precision over the clusters. The Matthews correlation coefficient is a summary
statistic that incorporates all information from the confusion matrix. See [23] for more information
about the classification metrics and [24] for more information about the clustering metrics.

of the selected markers. The large number cells in these data sets reflects the fact that modern
scRNA-seq data sets tend to be larger.

A summary of the performance of the methods is included in Table 2. This table notes areas
where the methods perform noticeably better or worse than the majority of the other methods
according to the data that is graphically presented in later sections. It is important to emphasize
that the performances of the different methods are generally quite similar; thus, the annotations
in Table 2 are quite specific and do not cover all possible sizes of marker sets for all metrics. The
configurations that aren’t mentioned (e.g. the classification metrics on the Paul data set) indicate
that the algorithms perform similarly in those regions.

An important note is that the relative speeds of the algorithms are not indicated in Table 2.
Since the algorithms generally exhibit similar performances under the metrics considered in this
work, fast algorithms have a significant advantage over the other algorithms. The fastest methods
are RankCorr, the t-test, and Wilcoxon: see Tables 4, 5, 6, and 7 for this timing information.
It is thus these three methods that show a clear advantage over the other methods for working
with future experimental data. Logistic regression also runs quickly on the smaller data sets, but
does not scale as well as the three methods mentioned above, and significantly slows down on the
larger data sets. In addition, logistic regression shows inconsistent performance, and is often one
of the worst performers when selecting small numbers of markers. All of the other methods are
significantly slower or require large computational resources compared to the size of the data set.

The ZhengFull and 10xMouse data sets do not appear in Table 2. These data sets were too
large for the majority of the methods to handle; thus, data was collected only for the RankCorr,
t-test, logistic regression, and Wilcoxon methods (the fastest methods). We include the 10xMouse
data specifically as a stress test for the methods to see which could handle the largest data sets. It
is impressive that these methods are able to run on such a large data set in a reasonable amount of
time. The ZhengSim data also does not appear in the table, partially due to the aforementioned
speed issues and partially due to the fact that we can examine different evaluation metrics when
we know a ground truth set of markers.

The marker selection methods perform well on the well-clustered Zeisel data set

The Zeisel data set contains 9 clusters that are generally well separated (since neuronal cells are
usually fully differentiated). Thus, we expect that both the classification metrics and the clustering
metrics should be quite good for all methods. The Zeisel data set, in some ways, acts as a biological
verification of the marker selection methods.

The time and computational resources required for the marker selection methods on Zeisel
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Method Zeisel Paul ZhengFilt

RankCorr
Class: Good, < 100 markers
Clust: Good, < 200 markers

Clust: FMS good, < 100 markers
Good, > 100 markers

Class: Good, < 120 markers
Clust: Poor, > 200 markers

t-test
Class: Good always
Clust: Good, > 200 markers

Clust: FMS good, < 100 markers
Good, > 100 markers

Class: Good, < 120 markers
Clust: Good, > 50 markers

Wilcoxon Clust: Good, > 200 markers
Class: Poor, many markers
Clust: AMI good, < 100 markers

Good, > 100 markers

Class: Poor, > 50 markers
Clust: Good, > 50 markers

edgeR
edgeRdet

Class: Poor, < 50 markers
Class: edgeR poor, < 80 markers
Clust: edgeR good, > 100 markers

only run edgeR
Class: Poor, < 50 markers

Good, > 100 markers
Clust: Good, ∼ 20 markers

MAST
MASTdet

Class: Good, < 100 markers
Clust: Good, < 50 markers

Good, > 200 markers

Clust: MAST good, > 100 markers
MASTdet poor, > 100 markers

only run MAST
Class: Good, < 120 markers

scVI
Class: Poor always
Clust: Good, between 100 and 200

Clust: Poor always
Class Poor always

Did not run;
requires too much RAM

Elastic Nets
Class: Poor, < 50 markers
Clust: Good, between 100 and 200

Class: Poor, < 80 markers
Good, between 100 and 400

Clust: Poor, > 100 markers

Did not run;
too slow

Log. Reg.
Class: Poor for < 50 markers

Good, > 150 markers
Clust: Poor always

Class: Good, between 80 and 250
Clust: Poor, > 100 markers

Class: Poor, < 150 markers
Clust: Poor always

Table 2: Performance summary of marker selection methods tested in this paper. All designations
of “good” performance and “poor” performance are compared to the other methods and are based
on observations of graphs presented in later sections of this work. “Class” refers to the supervised
classification metrics and “Clust” refers to the unsupervised clustering metrics. We also test the
SCDE and D3E methods; we find that they are too slow to run on the Paul data set (the smallest
data set considered in this work), however. The Spa method does not show any particular highlights
and is thus excluded from this table as well.

Data set cells non-zero genes

Zeisel 3005 4999
Paul 2730 3451

ZhengFilt 68579 5000
ZhengFull 68579 20387
10xMouse 1.3 million 24015
ZhengSim 5000 varies

Table 3: Data sets considered in this work. See experimental data for more information. Zheng-
Filt contains a subset of the data in ZhengFull. ZhengSim is a collection of simulated data sets
created with the Splatter R package; see the generating synthetic data section in the Methods for
more information.
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are shown in Table 4. The t-test, Wilcoxson, logistic regression, and RankCorr methods all run
quickly and require few resources. The MAST algorithms, the edgeR algorithms, elastic nets, and
Spa all take a significant amount of time on this small data set. scVI runs quite quickly, but
requires steep computational resources (a GPU and 8GB of RAM for a small data set). All of the
marker selection methods perform quite well on the Zeisel data set; thus, the faster methods are
preferable here.

Method Timing Resources

t-test 2 seconds 1 CPU, 1 GB RAM

Wilcoxson 2 seconds 1 CPU, 1 GB RAM

edgeR
Default 25 min
edgeRdet 45 min

2 CPUs, 4.5GB RAM

MAST
Default 25 min
MASTdet 30 min

2 CPUs, 2.25GB RAM

scVI
Training: 1 min, 20 sec
Getting stats: 15 sec
Bayes factors: 2 min, 10 sec

1 GPU, 2 CPUs, 8GB RAM

Elastic Nets 1 hour 6 CPUs, 2 GB RAM

Log. Reg. 2 seconds 2 CPU, 2 GB RAM

RankCorr 10 seconds 1 CPUs, 1 GB RAM

Spa 2 minutes 10 CPU, 10 GB RAM

Table 4: Timing and computation resources required on the Zeisel data set. Times are reported
to compute the markers for one fold and are approximate.

Supervised classification

The classification error rate (1 - accuracy) of the nearest centroid and random forests classifiers
on the Zeisel data set are presented in Figure 2. As expected, the error rates are very low: it
requires only 100 markers (an average of 11 markers per cluster) to reach an error rate lower than
5% for most methods using the random forests classifier. Related to the high accuracy, the average
precisions are also very high and the precision curves do not provide new information. The same
is true of the Matthews correlation coefficient curves. Thus, both the precision and Matthews
correlation curves are not presented here: they can be found in Additional File 1, Figures 1 and
2 (for the NCC and RFC data respectively). Selecting random markers produced poor results,
so those curves are also omitted from the plots displayed here; the marker selection methods all
perform better than random on the Zeisel data set. See Additional File 1, Figures 1 and 2 for
random marker selection data.

Examining the performance of the NCC (Figures 2(a) and 2(b)), we see that the t-test, RankCorr,
and the MAST methods are the best methods when selecting small numbers of markers (an average
of 2-3 markers per cluster; less than 30 total markers selected). In this same domain, both edgeR al-
gorithms, as well as logistic regression, elastic nets, and scVI all perform the worst, with error rates
of around 15% or higher. The error rates of both the logistic regression and elastic nets methods
quickly drop: when selecting about 30 to 100 total markers, the best methods are RankCorr, the
t-test, logistic regression, Wilcoxon, and elastic nets. Only a small number of markers were selected
by elastic nets on the Zeisel data set; thus, the elastic nets curve ends before the others. As higher
numbers of markers are selected, the RankCorr method moves a bit (up to 3%) away from the
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best methods, but then catches up with the best methods for very large numbers of markers. The
t-test and logistic regression are consistently the highest performing, while both edgeR methods
and scVI are consistently the lowest performing, with scVI slightly besting the edgeR methods.

For the RFC (Figures 2(c) and 2(d)), apart from scVI, all of the methods show very similar
performance after 150 markers have been selected. scVI stands out from the other methods as
the worst across for all levels of selected markers. Selecting less than 30 total markers, the elastic
nets, edgeR, and edgeRdet methods also show worse performance than the other methods; the
other methods are generally within 1.5% of each other in this domain. The two edgeR methods
remain slightly worse than the other methods until about 120 total markers are selected, though
edgeR always performs better than scVI according to the RFC (this behavior is flipped from the
NCC). RankCorr is always within 1% of the best method. Importantly, when only examining
approximately 2 markers per cluster, RankCorr produces a low error rate.

Based on these plots, the most pertinent conclusion is that most of the methods tested here
produce markers that provide a significant amount of information about the ground truth clustering
associated with the Zeisel data set. It is notable that the two edgeR algorithms, scVI, elastic nets,
and (to a certain extent) logistic regression methods perform significantly worse than the other
methods when selecting small numbers of markers according to these classification metrics (though
it is tough to say that any of the methods perform poorly, since all error rates are quite low). On
the other hand, the RankCorr and t-test methods, along with the two MAST algorithms, are
probably the best choices for selecting small numbers of markers on the Zeisel data set according
to these data. Both of the edgeR algorithms and scVI generally perform suboptimally on the
Zeisel data set overall. It is tough to say that any method is best for large numbers of markers,
though the t-test and logistic regression methods look best for the NCC.

Most importantly, these data suggest that when examining a data set that is well clustered,
it is useful to examine several marker selection algorithms to get different perspectives on which
genes are most important. This provides an advantage for marker selection algorithms that can
run using only small amounts of resources.

Unsupervised clustering

The ARI, AMI, and FM scores, reported in Figure 3, are high for all methods, as expected. The
three plots show similar characteristics, so we analyze them together here. All of the methods per-
form much better than random marker selection: see Additional File 1, Figure 3 for the performance
of random marker selection under the unsupervised clustering metrics.

When less than 50 markers are selected (about 5 unique markers per cluster), the elastic nets,
MAST, MASTdet, and RankCorr methods perform significantly better than the other methods,
with scores often about 0.05 to 0.1 higher than the other methods in this range. As seen in the
classification metrics, the two edgeR algorithms, logistic regression, and scVI perform poorly in
this range. Unlike the classification metrics, the t-test shows low ARI and FM scores for less than
50 markers selected as well.

Then, when between 50 and 150 total markers are selected, the RankCorr, Elastic Nets, and
scVI methods perform at the highest levels. All of the other methods exhibit similar performance
in this regime, though the edgeR methods continue to show the worst performance. The t-test
and Wilcoxon methods produce low scores when 50 total markers are selected but steadily im-
prove through this range until they rival the (optimal) performance of scVI and RankCorr when
approximately 150 total markers are selected.

At around 200 markers selected, the methods split into two groups that are separated by about
0.03 to 0.05 depending on the score. The lower performing band consists of the RankCorr, scVI,
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edgeR, and edgeRdet methods, while the higher performing band consists of the Wilcoxon, t-test,
MAST, and MASTdet methods. Elastic Nets selects less than 200 markers on this data set, so it is
not present in either of these bands. Logistic regression falls into the lower group on the AMI curve
but performs significantly worse than all of the other methods in the ARI and FM score plots. Spa
starts in the lower group and moves into the upper group when around 300 to 350 total markers are
selected; it is thus possible that a small number of genes are responsible for the separation between
the methods here.

It is noteworthy that logistic regression method is one of the worst methods when large numbers
of markers are selected. In the supervised classification trials, the logistic regression method was
one of the top performers when selecting large numbers of markers, so this is a striking change.
When no information about the ground truth clustering is provided, the performance of logistic
regression method on the Zeisel data sets drops considerably. On the other hand, any gaps between
the scVI curve and the other curves are eliminated in this unsupervised clustering trial. In fact,
when between 100 and 200 markers are selected, the scVI method exhibits the highest ARI and
FM score of any of the methods. This is also a reversal from the classification metrics, where scVI
was consistently one of the worst methods.

Interestingly, both the RankCorr and scVI methods hit a peak performance when selecting
between 50 and 200 markers, then their performance decreases as more markers are selected. On
both the ARI and FM score curves, the optimal scores for RankCorr and scVI are as high as
the top scores for any of the other methods, even though both RankCorr and scVI move into
the lower performing group as more markers are selected. The other two methods in the lower
performing group, edgeR and edgeRdet, consistently show some of the worst performance for all
sizes of selected marker sets. It is thus unclear what causes this overfitting.

Again, all of the marker selection methods perform well on the Zeisel data set. The separation
of performance between the methods for high levels of markers selected, and the fact that Spa
quickly jumps between the two bands suggests that there are some important markers that are not
selected by all of the methods. This further emphasizes that researchers should compare the results
of multiple marker selection algorithms on their data sets, so fast marker selection algorithms are
better.

Discussion

RankCorr is the only method that shows high performance for small numbers of markers in both
the clustering and classification metrics. Most researchers will be looking for small numbers of
markers for their data sets; thus RankCorr stands out as a promising method on the Zeisel data
set. Note also that RankCorr clearly outperforms Spa in the clustering metrics and is competitive
with Spa in the classification metrics: RankCorr is both faster than Spa and selects a generally
more informative set of markers than Spa on the Zeisel data set. Therefore, the performance on
the Zeisel data set is evidence for the fact that RankCorr is a progression of Spa for sparse
UMI counts scRNA-seq data.

For large numbers of markers on the Zeisel data set, the t-test stands out, since it is in
the top performing band in the clustering metric plots and one of the best methods for the NCC
classification metric plots. Examining the other statistical and machine learning methods: Wilcoxon
also generally does quite well on the Zeisel data set - it never stands out as one of the best methods,
but it also consistently stays relevant. Logistic regression is inconsistent, as it mostly shows poor
performance for small numbers of markers selected. For large numbers of markers selected, it shows
optimal performance under the supervised classification metrics and poor performance under the
unsupervised clustering metrics. Elastic nets shows good performance for between 50 and 100 total
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markers selected using all metrics, but inconsistent performance for less than 50 markers selected.

The other marker selection methods are designed for (sc)RNA-seq data and show a variety
of performance levels. The two edgeR methods are consistently some on the lowest performing
for the Zeisel data set. On the other hand, the two MAST methods are generally some of the
better performers, consistently exhibiting good scores when lower numbers of markers are selected
and landing in the top tier of methods for large numbers of markers selected under the clustering
metrics. Like edgeR, scVI generally shows worse performance than the other methods, except
that it tied for the best method for low numbers of markers selected under the clustering metrics.
The main issue with these methods, however, is that they all require significantly higher resources
(either time or computational) than other methods that exhibit higher scores.

Marker selection algorithms struggle with the cell types defined along the cell
differentiation trajectory in the Paul data set

The Paul data set consists of bone marrow cells and contains 19 clusters (some of which are very
small). Since the clusters lie along a cell differentiation trajectory, it is reasonable that it would
be difficult to separate the clusters or to accurately reproduce the clustering. The Paul data set
thus represents an adversarial example for these marker selection algorithms, and we expect the
methods to show significantly lower scores than the ones that were produced on the Zeisel data
set.

The time and computational resources required for the marker selection methods on Paul are
shown in Table 5. As Paul is a data set that is similarly sized to Zeisel, the timing information
is similar. In particular, the t-test, Wilcoxson, logistic regression, and RankCorr methods all run
quickly and require few resources. The other algorithms all either take a significant amount of time
on this small data set or require high computational resources. We additionally implemented the
D3E method on Paul: it took 25 minutes using 10 CPUs to compute the markers for one cluster
(vs all of the others) in one fold. This means that it would take about 21 hours on 10 cores to
compute the data for the entirety of the Paul data set. Paul is meant as a small example of the
types of data sets that we are focused on in this work and D3E would be too slow to run on larger
data sets. We thus did not run all of the computations required for D3E on Paul and excluded it
from further analysis. See Section the marker selection methods for more details. All of the marker
selection methods perform quite similarly on the Paul data set; thus, as with the Zeisel data set,
the faster methods are preferable.

Supervised classification

Figure 4 shows the performance of marker selection algorithms on the Paul data set as evaluated
by the supervised classification metrics. Due to the cell differentiation trajectory in the data set,
it is not surprising to see relatively high clustering error rates: the rates are always larger than
30% for the NCC and reach a minimum of around 27% with the RFC. Since there are 19 clusters,
this is still much better then classifying the cells at random. In addition, selecting markers at
random produces high error rates: the minimum error rates when selecting less than random 550
markers are around 40% for the NCC and around 48% for the RFC. Thus, although the error rates
produced by the marker selection algorithms are quite high, they are significantly lower than the
error produced by random marker selection. For the sake of clarity, Figure 4 does not contain
the curves corresponding to random marker selection: see Additional File 1, Figures 4 and 5 for
classification error rate figures that include the random markers.

Similar to results on the Zeisel data set, the precision and Matthews correlation coefficient
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Method Timing Resources

t-test 2 seconds 1 CPU, 1 GB RAM

Wilcoxson 3 seconds 1 CPU, 1 GB RAM

edgeR
Default: 40 min
edgeRdet: 1 hour 5 min

Default: 1 CPU, 6 GB RAM
edgeRdet: 1 CPU, 5 GB RAM

MAST
Default: 35 min
MASTdet: 40 min

1 CPU, 2 GB RAM

scVI
Training: 1 min, 20 sec
Getting stats: 10 sec
Bayes factors: 2 min, 50 sec

1 GPU, 2 CPUs, 8GB RAM

D3E 25 min for one cluster* 10 CPUs, 2GB RAM

Elastic Nets 55 minutes 2 CPUs, 1 GB RAM

Log. Reg. 10 seconds 1 CPU, 1 GB RAM

RankCorr 10 seconds 1 CPU, 1 GB RAM

Spa 1.5 minutes 10 CPUs, 5.5 GB RAM

Table 5: Timing and computation resources required on the Paul data set. Apart from D3E, times
are reported to compute the markers for one fold and are approximate. The reported time for D3E
is for one cluster. There are 19 clusters in the Paul dataset, and we would need to collect markers
for all 19 clusters in each of the 5 folds to perform the full cross validation analysis.

curves do not provide extra information; indeed, it is difficult to distinguish several of the precision
and Matthews correlation plots from the classification error rate plots. See Additional File 1,
Figures 4 and 5 to view these plots.

We start with a couple of general observations. First, scVI produces significantly higher error
rates than the other methods using both the NCC and the RFC. For this reason, in the discussions
for the remainder of this section, we will generally ignore scVI and focus on analyzing the other
methods. scVI does not perform well on the Paul data set. Secondly, as we increase the number of
markers, all of the methods appear to converge to similar performance levels - this is also reasonable,
since we will approach the baseline error rate obtained by classifying based on all of the genes as
we increase the number of markers.

Next we consider the performance of the methods when classified by the NCC. When selecting
less than 80 total markers (an average of approximately 4 markers per clusters), the methods other
than elastic nets and edgeR perform quite similarly, with a maximum difference of about 2.5%
between those curves (mostly, all of these curves are within 1% of each other). See Figure 4(b).
Elastic nets performs worse than edgeR which performs significantly worse than the group of other
methods, and all of the error rates are decreasing quickly in this region.

The t-test shows the smallest error rate when a very small number of markers (an average of
2 markers per cluster) are selected, but, again, it is not much better than the other methods. It
appears that the t-test gets relatively worse than the other methods as more markers are selected,
until it is nearly as bad as scVI when around 400 unique markers are selected. On the other hand,
when approximately 80 total markers are selected, the edgeRdet and MASTdet methods show a
small spike in error rate. From this point, the edgeRdet and MASTdet error rates continually
decrease until they are some of the best methods when around 500 unique markers are selected.

The error rates of the remaining methods (other than edgeRdet and MASTdet) meet at around
80 to 100 total markers selected and then mostly appear to fall into one band. Two methods,
logistic regression and elastic nets, show a lower classification error rate for intermediate numbers
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of markers: logistic regression appears to perform optimally when we are looking for about 80-250
total markers (250 markers translates into an average of around 13 unique markers per cluster, and
is obtained when we select 25 marker per cluster using logistic regression). On the other hand,
elastic nets overcomes its poor start to perform well for between 100 and 400 total markers (this
corresponds to selecting between 6 markers per cluster and 55 markers per cluster for the elastic
net metod due to duplicates). RankCorr performs well when selecting any number of markers,
with a difference of less than 3% from the best method at any point along this curve. Since the
nearest centroid classifier is quite heuristic, this is overall a small difference.

When we use the random forest classifier (see Figure 4(c)), there is a variety of different per-
formances when less than 80 total markers are selected. Elastic nets performs the worst in this
range. EdgeR is better than elastic nets but still worse than the other methods. The Wilcoxon,
t-test, and logistic regression methods show the best performance in this regime. All of the other
methods (RankCorr, MAST, MASTdet, edgeRdet, and Spa) show nearly identical performance
that is slightly worse than logistic regression. The difference in error rate between the methods in
this middle band and the best method is at most 4% and decreases as more markers are selected.

All of the methods then show similar performance when around 100 total markers are selected.
Interestingly, the methods appear to perform the best when approximately 100-125 total markers
are selected. This suggests some level of overfitting might occur that was not visible in the NCC
data.

When more than 140 total markers are selected, all of the methods fall into one group. Many of
the curves show high variance without exhibiting clear monotonic behavior; however, the general
trend is that the curves are increasing in this range. The the classification error rate of the RFC
shows significant variance between classification attempts using the same set of markers; see the
discussion about supervised classification in the Methods. Thus, the differences between many of
the methods in Figure 4(c) could mostly be due to noise. If anything, it appears that RankCorr,
edgeR, and edgeRdet tend to outperform the other methods as the number of markers increases;
Wilcoxon and the t-test again appear to perform the worst (this trend is more pronounced in the
RFC precision curve, see Figure 5(c) in Additional File 1) and are joined by logistic regression,
MAST, and elastic net when approximately 350 total markers are selected. The maximum difference
between the curves in this range is only 3%, however. Therefore, the only definitive conclusion that
can be drawn is that all of the methods perform comparably on the Paul data set with respect to
the RFC classification metric as larger numbers of markers are selected.

Based on these data, it is difficult to conclude that any method is optimal on the Paul data set.
According to the NCC, the methods other than scVI are nearly identical when selecting less than
80 total markers, with logistic regression and the t-test outperforming the other methods when
100-400 total markers selected. On the other hand, the RFC shows that Wilcoxon, the t-test, and
logistic regression outperform the other methods when selecting less than 80 markers, with little
to no differences between the methods for large numbers of markers selected. These two pictures
do not support one another.

On the other hand, there several methods that consistently perform worse on the Paul data
set than the majority of the other methods. scVI consistently performs poorly for all amounts of
selected markers, while both elastic nets and edgeR show suboptimal performance when less than
80 total markers are selected. Both the NCC and the RFC metrics also suggest that Wilcoxon tends
to perform slightly worse than the other methods for large amounts of selected markers. Other than
these few exceptions, all of the marker selection methods tested show similar performance under
the classification metrics on the Paul data set. This provides further support for the notion that
faster, lighter marker selection methods should be preferred over the others, as similar information
is obtained from all methods.
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A corollary of this is that, on the Paul data set, the RankCorr method performs comparably
to the other methods by the measures that are considered here. It does indeed generally outperform
the other methods that have been specifically designed for RNA-seq data.

Unsupervised clustering

The dependence of the ARI, AMI, and FM scores on the number of markers selected is plotted for
the different marker selection algorithms in Figure 5. There are several features that are common
to all three of these plots.

First of all, the values of the scores are all in low to medium ranges for all marker selection
algorithms (recall that larger ARI, AMI, and FM scores indicate stronger agreement between the
ground truth clustering and the unsupervised clustering; see the Methods). This was expected to
some extent, as it should intuitively be difficult to reproduce a clustering that has been assigned
along a continuous path. Again, choosing markers randomly performs noticeably worse than all of
the marker selection methods and thus the data corresponding to random markers is not plotted
in Figure 5 for the sake of clarity. See Additional File 1, Figure 6 for these data.

The ARI values are especially low on the Paul data set, and the methods consistently produce
lower ARI values than AMI values. This is a change from the Zeisel data set, where the ARI
scores were higher than the AMI scores (and the FMSs were the highest of all). The aspects of the
data sets that change the relative ordering of the metrics are unclear; it must be the data sets that
influence this change, however, since the change persists across the marker selection algorithms.

Another observation is that, in all of these plots, the majority of the methods (apart from scVI)
produce similar values of the ARI, AMI, and FM scores when less than 100 markers are selected.
As more markers are selected, the methods tend to split up. In all three plots, the Wilcoxon,
t-test, MAST, edgeR and RankCorr methods tend to perform better than the other methods
and provide the upper edge of the set of curves. On the other hand, the scVI, logistic regression,
elastic nets, and MASTdet curves tend to be the worst performers by these metrics. The edgeRdet
curve and the Spa curve generally stay in the middle between the two sets of curves discussed
above. Although this stratification is consistent across the three scores, there is almost always
less than a 0.05 score difference between the best and the worst scores - that is, all of the marker
selection methods exhibit similar performance. Note that the value of k was chosen to optimize the
RankCorr method (see the Louvain parameter selection discussion in the Methods) and thus it
is not entirely surprising that RankCorr appears near the top.

The final note is that, on the ARI and FM curves, scVI performs comparably to the other
methods when between 200 and 500 total markers are selected - unlike the supervised classification
metrics, there is no gap (or only a small gap) between the performance of scVI and the performance
of the other methods in this domain. This is a significant change from the classification metrics,
where scVI was always much worse than all of the other methods.

There are also several observations that are unique to the different metrics in Figure 5. For the
ARI scores (Figure 5(a)), although the methods (other than scVI) show similar performance when
less than 100 total markers are selected, the two general groups discussed above also persist for small
numbers of markers. That is, the Wilcoxon, MAST, and t-test methods perform slightly better
than the other methods in this regime. The maximum difference between any of the scores (other
than logistic regression) is around 0.03; i.e. the curves are more tightly grouped in this domain.
Moreover, when more than 300 total markers are selected, the Wilcoxon and t-test methods appear
to pull slightly ahead of all of the other methods according to the ARI values.

On the AMI plot (Figure 5(b)), the Wilcoxon method outperforms all of the other methods
when less than 100 markers are selected, and produces a high AMI score even when selecting two
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markers per cluster. As more markers are selected, the grouping discussed above is less clear, with
the methods separating from each other. The general order of performance is maintained, however.

Finally, on the FM score plot (Figure 5(c)), there is more of a separation between the methods
when less than 100 markers are selected. The RankCorr and t-test methods perform the best
in this range, and both methods actually exhibit local maxes when around 60 total markers are
selected. The edgeRdet also exhibits this peak, but does not start out as strongly as RankCorr
and the t-test. As more markers are selected, scVI comes close to the lower performing band of
methods, but it peels away and moves towards the performance of random marker selection as we
select more than 600 markers (see Additional File 1, Figure 6(d))).

The unsupervised clustering metrics provide a more consistent stratification of the marker selec-
tion methods that are tested here. The RankCorr, Wilcoxon, t-test, MAST, and edgeR methods
are often the top performing methods when selecting many different total numbers of markers.
RankCorr, the t-test, and Wilcoxon deserve recognition for their higher performance when se-
lecting small numbers of markers according to the AMI and FM scores. That said, there is not a
massive separation between any of the methods (apart from scVI), as with the classification metrics.

Discussion

As mentioned in the discussion of the supervised classification metrics, the most appropriate con-
clusion that can be drawn from these data is that most of the marker selection methods show
similar levels of performance on the Paul data set. One method, scVI, stands out with worse
performance than the other methods. All of the scores produced by all of the methods on the Paul
data set are significantly worse than the metrics on the Zeisel data set; however, the methods
perform considerably better than random marker selection. The notion of distinct cell types does
not fit well with a cell differentiation trajectory; the poor score levels reflect the necessity to come
up with a better mathematical description of a trajectory for the purposes of marker selection.

Although elastic nets and edgeR show poor performance for low numbers of markers selected
according to the classification metrics, this is not observed in the clustering metrics. Moreover,
edgeR is one of the better methods according to the clustering metrics. In a similar fashion,
Wilcoxon is one of the better methods for selecting a large number of markers according to the
clustering metrics, but it tends to be one of the worst methods for selecting a large number of
markers according to the classification metrics.

These disparities emphasize the notion that the evaluation metrics considered in this work do
not capture the full “usefulness” of a set of markers and simply present different ways of looking
at the data. Designing a metric for benchmarking marker selection algorithms is itself a difficult
task, and the optimal metric to consider could depend on the data set in question (as we see with
the change in the relative orders of the AMI, ARI and FMS plots between the Paul and Zeisel
data sets).

The RankCorr algorithm is one of only three methods that always performs nearly optimally
under every metric examined here; the others are the t-test and MAST. In addition, RankCorr al-
ways performs well when selecting small numbers of markers, and shows exceptional performance in
this regime under the Fowlkes-Mallows clustering metric. Combined with the facts that RankCorr
is fast to run and requires low computational resources, this shows that RankCorr is a worthwhile
marker selection method to add to computational toolboxes to use alongside other fast methods.
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Results on the ZhengFull and ZhengFilt data sets

The data set in [25] that we examine contains data from over 68 thousand PBMCs; this is more
than 30 times the number of cells in either the Paul or Zeisel data sets. These data are more
representative of the sizes of the data sets that we are interested in working with. We mostly focus
on ZhengFilt, a version of the data set that includes only the information from the top 5000 most
variable genes. We also consider the performance of the fastest algorithms (RankCorr, logistic
regression, Wilcoxon, and the t-test) on ZhengFull, the data set containing all of the genes, to
check for any differences. The ground truth clustering that we consider is a labeling obtained by
correlation with bulk profiles (biologically motivated “bulk labels”). There are 11 cell types in this
clustering. See the section describing the data sets (in the ??) for more information.

The Zheng data sets consist of PBMCs; therefore, there are some distinct clusters (e.g. B cells),
as well as some clusters that are highly overlapping (e.g. different types of T cells). There are not
any specific cell differentiation trajectories (that we are aware of), but the overlapping clusters
provide a similar challenge for the marker selection methods. Thus, we expect to see performance
between that of Paul and Zeisel.

The timings of the methods on ZhengFilt are in Table 6. The gap between the slow methods
and the fast methods has increased considerably, and it would not be computationally feasible to run
MAST and edgeR on data sets that are much larger. Certainly, running MAST and edgeR would
not be possible on a personal machine. The timings of the methods on the ZhengFull data set
are shown in Table 7. Even though the data set contains over 27 thousand genes, it is still possible
to run the fast methods on a personal computer. Here we begin to see that logistic regression
scales worse than the other methods, and it is already becoming slow and computationally heavy
on “only” 68 thousand cells.

Method Timing Resources

t-test 15 seconds 1 CPU, 4 GB RAM

Wilcoxson 30 seconds 1 CPU, 8 GB RAM

Log. Reg. 10 minutes 3 CPUs, 8 GB RAM

edgeR 16 hours 1 CPU, 80 GB RAM

MAST 10 hours 1 CPU, 30 GB RAM

RankCorr 2 minutes 1 CPU, 8 GB RAM

Table 6: Timing and computation resources required on the ZhengFilt data set. Times are
reported to compute the markers for one fold and are approximate. The Logistic Regression method
did not converge on every cluster in some of the folds. The memory requirements for these data
are overestimates.

Method Timing Resources

t-test 2.5 minutes 1 CPU, 8 GB RAM

Wilcoxson 3 minutes 1 CPU, 8 GB RAM

Log. Reg. 30 minutes 4 CPU, 8 GB RAM

RankCorr 12 minutes 2 CPUs, 8 GB RAM

Table 7: Timing and computation resources required on the ZhengFull data set. Times are
reported to compute the markers for one fold and are approximate. The Logistic Regression method
did not converge on every fold. The memory requirements for these data are overestimates.
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Supervised classification

As in previous data sets the Matthews correlation coefficient curves provide very similar information
to the classification error curves and thus they can be found in Additional File 1, Figures 7-10.
Unlike the previous data sets, the precision curves are slightly different in some occasions, and thus
they are presented here. We start by reporting the classification metrics using the NCC.

Figure 6 focuses on the performance of the methods when the NCC is used for classification.
Overall, the classification error rates for these data are quite high, and don’t level off (to a mini-
mum value of approximately 40%) until around 200 markers are selected; this corresponds to an
average of around 18 unique markers per cluster. For very small numbers of markers selected, the
classification error rates are quite high (around 55%), and these error rates drop relatively slowly
until approximately 200 markers are selected (note that this is still significantly better than random
classification on 11 classes). The methods generally perform at approximately the same level on
the ZhengFilt data set, though edgeR and logistic regression both show a spike in error rate with
about 50 markers are selected. On ZhengFull, the logistic regression method shows the lowest
error rates when large numbers of markers are selected, clearly outperforming the other methods.

The precision of these methods is significantly higher than the accuracy. Although the values of
precision start low for small numbers of markers selected, they increase quite rapidly until they level
off when about 100-150 total markers are selected. In this case, the Wilcoxon method consistently
shows the lowest (worst) precision. RankCorr and logistic regression generally compete for the
best performance on ZhengFull, and edgeR shows the highest precision on ZhengFilt when
more than 50 markers are selected. Strangely, edgeR starts with very low precision and decreases
in precision for a bit before spiking again when around 50 markers are selected. This fits with the
error rate curve.

Neither the classification accuracy nor the precision changes by very much when we filter from
the full gene set (Figures 6(c) and 6(d)) to the 5000 most variable genes (Figures 6(a) and 6(b)). In
general, this filtering very slightly increases both the accuracy and precision of the t-test, Wilcoxon,
and RankCorr methods, while it worsens the performance of the Logistic Regression method.
This suggests that enough marker genes are kept by this variable gene filtering process to maintain
accurate marker selection.

We examine the performance of the classification metrics using the RFC in Figure 7. The error
rates using the RFC are decreased significantly compared to the NCC, and level off to approximately
22% when large numbers of markers are selected. The error again does not completely level off
until around 200 total markers are selected, but there is a steeper initial descent: the RankCorr
and t-test methods reach an error rate of slightly less than 25% when 55 total markers are selected
(an average of 5 markers per cluster) on both the ZhengFull and ZhengFilt data sets, and
MAST performs similarly on ZhengFilt. Overall performance is similar between ZhengFull
and ZhengFilt, again showing that enough markers are maintained by the variable gene filtering.

On ZhengFilt, the RankCorr, t-test, and MAST methods outperform the other methods in
terms of error rate when less than 120 total markers are selected. Wilcoxon starts off with a very
low error rate when around 2 markers are selected per cluster, but it does not improve with the
other methods, and it shows the highest error rates and lowest precisions when more than 150 total
markers are selected (an average of 14 unique markers per cluster). edgeR starts with a relatively
high error rate and low precision, and improves more slowly than the top algorithms, catching up
to the best methods when around 120 total markers are selected. Logistic regression is the worst
performer when small numbers of markers are selected. It shows an error rate that is 12% to 15%
higher than the RankCorr, MAST, Wilcoxon, and the t-test when selecting 25-30 unique markers
(an average of 2-3 markers per cluster).
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When more than 150 total markers are selected, Wilcoxon stands out as the method with the
poorest performance. The other methods, however, perform very similarly in this range. EdgeR
shows the lowest error rates and highest precisions when more than 200 total markers are selected,
but the improvement is only 1% to 2% at most.

On ZhengFull, similar patterns are visible, and the advantage shown by logistic regression on
ZhengFull under the NCC has disappeared. In particular, RankCorr and the t-test consistently
show the lowest error rates and highest precisions. Logistic regression starts poorly but catches up
to RankCorr when around 120 total markers are selected. On the other hand, Wilcoxon shows
poor performance when more than 100 total markers are selected; this trend is more pronounced
than on ZhengFilt.

These RFC results are close to our expectations. The steep initial descent in error rates could
appear as the large groups of cells are separated from each other (e.g. B cells from T cells) and
the slower improvement from 100 to 200 of total markers selected could be the methods fine-tuning
the more difficult clusters (e.g. Regulatory T from Helper T). The error rates are between those
observed in Paul and Ziesel. On the other hand, the error rates for the NCC classifier are much
higher than expected. We thus consider the results using the RFC as more informative than the
results using the NCC on the ZhengFilt data set.

Unsupervised clustering

We focus on the ZhengFilt data set for the clustering metrics. This is due to the fact that the
classification metrics are changed only slightly between ZhengFilt and ZhengFull as well as the
fact that Louvain clustering on the large Zheng data set is itself time and resource intensive.

The clustering metrics on the ZhengFilt data set are presented in Figure 8. All three scores
are generally quite low, though they are again mostly much higher than random marker selection.
The performance of random marker selection can be found in Additional File 1, Figure 11. Several
patterns are present in all three plots.

First, all of the methods start very low scores when small numbers of markers are selected; the
ARI values for most methods are between 0.1 and 0.17 when around 20 total markers are selected.
The Wilcoxon and t-test methods produce scores that increase rapidly until 50 total markers are
selected, then their scores level off. These two methods consistently produce the highest scores,
with Wilcoxon the best overall. On the other hand, the scores for logistic regression don’t improve
significantly until around 75 total markers are selected and then remain low (either worst or second
worst) for high numbers of selected markers. The edgeR, MAST, and RankCorr methods perform
similarly to each other when between 50 and 100 total markers are selected, and produce values
that are above logistic regression but below Wilcoxon in this range. The three methods then split
up, with MAST doing better than edgeR which does better than RankCorr. The scores for the
RankCorr method decrease after about 100 total markers are selected until the RankCorr curve
meets up with the logistic regression curve. EdgeR always starts with the highest scores for small
numbers of total markers selected, but its scores decrease until about 50 total markers are selected,
where it meets up with the MAST and RankCorr curves.

Discussion

Apart from the t-test, the methods show inconsistent performance when comparing the clustering
metrics to the classification methods. It is possible that changing the number of nearest neighbours
considered in the Louvain clustering would produce more consistent data. Although the clustering
metrics did not appear to change significantly when altering the number of nearest neighbours
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on the previous data sets (see the Louvain parameter selection information in the Methods), the
ZhengFilt data set is much larger than those previous data sets; the larger number of cells
may necessitate the use of information from more nearest neighbors to recreate the full clustering
structure.

It is also possible that the bulk labels that are used for the ground truth are difficult to reproduce
through the Louvain algorithm. We generated a clustering that visually looked like the bulk labels
via the Louvain algorithm (see Figure 19); the ARI, AMI, and FMS values for the generated
louvain clustering compared to the bulk labels are in the ranges produced by the Wilcoxon and t-
test methods (not larger than the scores here). In addition, the top ARI and AMI scores (produced
by the Wilcoxon and the t-test methods) are comparable to (or only slightly better than) the scores
on the Paul data set (Figure 5). This runs counter to our expectations: the Paul data set contains
a cell differentiation trajectory, with no real clusters that are easy to separate out, while the Zheng
data sets contain several clusters that are well separated. It is possible that the bulk labels produce
clusters that are more mixed than it appears in a UMAP plot.

In any case, the disparity between the different types of scores emphasizes the fact that the
classification and clustering metrics provide different ways of looking at the information contained
in a selected set of markers. Methods that perform well according to both types of metrics should
be preferred.

That said, the t-test produces the overall best results on the ZhengFilt data set. It performs
well under the classification metrics, especially for small numbers of total markers selected. In
addition, it is one of the best methods under the clustering metrics, where it is competitive with
the Wilcoxon method.

Other methods of note are logistic regression, edgeR, and Wilcoxon. Logistic regression appears
to be the best method on the ZhengFull data set using the NCC; however, according to the RFC,
logistic regression performs quite poorly on ZhengFull when a small number of markers are
selected. Since the error rates are overall quite similar between the ZhengFull and ZhengFilt
data sets, but the running times of the methods are significantly faster on ZhengFilt, it seems
worthwhile to select the most variable genes before marker selection, and logistic regression is
never optimal on ZhengFilt according to the classification metrics. Combining this with the poor
performance in the clustering metrics, logistic regression is not a recommended method for the
Zheng data sets.

The edgeR method exhibits the top performance on the ZhengFilt data set after more than
50-100 unique markers are selected according to the classification metrics. The classification metrics
show edgeR as one of the worst methods when choosing less than 50 unique markers, however. This
is in direct contradiction to the clustering metrics, where edgeR is always the best method for the
smallest (∼ 20) total numbers of markers selected, and it then shows performance in the middle of
the other methods as larger numbers of markers are selected. Since many researchers are interested
in selecting smaller numbers of markers, edgeR’s advantages according to the classification metrics
are somewhat irrelevant. Thus, edgeR can not be particularly recommended on ZhengFilt either.

Likewise, Wilcoxon consistently shows the worst performance according to the classification
metrics as larger numbers of markers are selected (though it does quite well when selecting around
2 markers per cluster, or around 20 unique markers). On the other hand, it is the best method
according to all of the clustering metrics except when selecting a very small number of markers. It
is thus also difficult to recommend Wilcoxon, despite it’s dominant performance according to the
clustering metrics.

The other two methods, RankCorr and MAST, show good performance on the ZhengFilt
data set under the classification metrics, and are generally competitive with the t-test, especially
when selecting smaller numbers of markers. They both show middling performance under the
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Method Timing Resources

t-test 2 hours 1 CPU, 80 GB RAM

Wilcoxon 5 hours 30 minutes 1 CPU, 80 GB RAM

Log. Reg. 10 hours 30 minutes 8 CPU, 80 GB RAM

RankCorr 2 hours 10 CPUs, 80 GB RAM

Table 8: Timing and computation resources required on the 10xMouse data set. Times are
reported to compute the markers for one fold and are approximate. Logistic regression did not
converge for some clusters.

clustering metrics, however. Unlike logistic regression, wilcoxon, and edgeR, there are no areas
where they perform especially poorly. They are still outperformed by the t-test according to the
clustering metrics, however.

Marker selection on the 1 million cell 10xMouse data set

Here, we consider the 10xMouse data set which consists of 1.3 million mouse neurons generated
using 10x protocols [26]. The “ground truth” clustering that we examine in this case was algo-
rithmically generated without any biological verification or interpretation (see the section about
data sets in the Methods). We include this data set as a stress test for the methods and therefore
we do not perform any variable gene selection before running the marker selection algorithms (to
keep the data set as large as possible). We also only consider the four fastest and lightest methods
(RankCorr, the t-test, Wilcoxon, and logistic regression) as these are the only methods consid-
ered in this work that could possibly produce results in a reasonable amount of time on this data
set.

Table 8 contains the timing information for the methods on the data set. Logistic regression
is by far the slowest method, and it is difficult to call the time and resources required by logistic
regression “reasonable.” It is not clear that logistic regression could be used on any larger data sets
(when they appear), while the other three methods could be used quite easily. RankCorr is the
second slowest, but it quite easy to parallelize, and the total required CPU time is only around
four times that required by Wilcoxon.

Figure 9 shows the classification error of the four methods on the 10xMouse data set using the
NCC. There are 39 clusters in the “ground truth” clustering that we examine here - thus, the error
rates produced by all of the methods are much lower than the error rate expected from random
classification. In Figure 9, we see that the logistic regression method performs the best overall,
and that RankCorr consistently shows the highest error rate. The largest difference between the
RankCorr curve and the logistic regression curve is only around 3%, however. In addition, as
mentioned above, logistic regression is the slowest method by far on this data set - extra accuracy
is not worth much if the method is not able to finish running.

Due the fact that a biologically motivated/interpreted clustering may be quite different from the
clustering used here, and considering that the classification error rate is not necessarily an accurate
indication of the relative performance of methods that show similar error rates (see the following
section about synthetic data), it is only possible to conclude that all four methods examined
here show similar performance on the 10xMouse dataset. The RankCorr method produces
interpretable markers, runs in a competitive amount of time, and takes a step towards selecting a
smart set of markers for each cluster (rather than the same number of markers per cluster).

As with previous data sets, the precision and Matthews correlation coefficient curves do not
provide extra information; they can be found in Additional File 1, Figure 12. Moreover, the
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implementation of the RFC in scikit-learn was quite slow on the large 10xMouse data set, and
thus we do not compare the methods via the RFC. From the smaller data sets, we might expect
that the random forest classifier produces curves that are shaped similarly to the ones in Figure 9
but are shifted down to a lower error rate. This is indeed what we see for the RankCorr method:
a comparison of the RFC and the NCC is shown in Figure 10. Each point on the RFC curve in
Figure 10 took over 3 hours on 10 CPU cores to generate; the largest point took over 15 hours. The
Louvain clustering method was also too slow to compute any clustering error rates for the markers
selected here. This is a situation where the marker selection algorithms are faster than almost all
of the evaluation metrics (emphasizing the continued need for good marker set evaluation metrics
along).

Comparison of marker selection methods on synthetic data

We have evaluated several of the marker selection algorithms on some synthetic data sets that are
designed to look like experimental scRNA-seq data. The data are generated using the Splatter
R package [27]; see the synthetic data generation section of the Methods for specifics. In short,
we use cells from the data set consisting of purified (CD19+) B cells that is introduced in [25] to
estimate the simulation parameters. We generate 20 different simulated data sets from the CD19+
B cells. Each data set consists of 5000 cells that are split into two groups; 10% of the genes are
differentially expressed. We also examine the effects of filtering down to the 5000 most variable
genes: in 10 samples, we filter before simulating (and simulate 5000 genes); in the other 10 samples,
we simulate without filtering (and simulate as many nonzero genes as there were in the input data,
usually around 20000 genes). From each data set that was simulated without filtering, we produce
another data set by filtering down to the 5000 most variable genes. This results in a total of 30
data sets; Figure 11 summarizes this design.

Since the differentially expressed genes are chosen at random by Splatter, many of the genes
that are labeled as “differentially expressed” in the output data have low expression levels (often
they are expressed in less than 10 cells). Thus, here we report the precision, true and false positive
rates (TPR and FPR), and classification error rates for the marker selection algorithms. We do
not consider the recall since we do not (in general) want marker selection methods to be selecting
genes with very low expression levels - and, in fact, these genes are usually not selected as markers
by any of the methods that we test here. The values of precision, TPR, and FPR are computed
without cross-validation, since each entire set (of genes) in each data set is test data - there is no
training to be done. The classification error rate is still computed with 5-fold cross-validation.

Since the speed of a marker selection algorithm has been observed as an important factor for
use on actual data, we focus here only on the fastest methods: RankCorr, the t-test, Wilcoxon,
and logistic regression.

Simulated data illuminates the precise performance characteristics of marker selection
methods

In Figure 12, we examine the precision of the marker selection algorithms for the first 400 unique
genes selected. Apart from the t-test curves, each curve represents the average across all 10 simu-
lated data sets that are relevant to the curve. There were issues with selecting stable sets of genes
using the t-test in one of the trials in each simulation condition (due to tied t-test scores); thus,
the t-test precision, TPR, and FPR curves each represent the average of the 9 data sets that are
relevant to the curve.

Precision is an important metric for marker selection - it is desirable for the algorithms to select

23

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 23, 2019. ; https://doi.org/10.1101/679761doi: bioRxiv preprint 

https://doi.org/10.1101/679761


genes that actually separate the two data sets (rather than genes that are statistically identical
across the two populations). Thus, it is promising to see that RankCorr produces the highest
precision in marker selection across all of the simulation methods. The t-test is consistently second,
the Wilcoxon method is consistently third, and logistic regression consistently exhibits the lowest
precision.

In Figure 12, we see that the methods generally start off with high precision that decreases as
more markers are selected (each data set contains more than 400 differentially expressed genes).
In both of the filtered simulation conditions, all of the methods get close to a precision of 0.1
(indicating random gene selection) when 400 markers are selected, and all of the curves are still
decreasing at this point. There are around 2000 differentially expressed genes in the un-filtered
simulation condition, so the fact that the precision drops significantly when selecting up to 400
markers indicates proportionally similar behavior to the filtered data sets.

The ROC curves in Figure 13 also show similar behavior: the curves increase (above the main
diagonal) quite rapidly for a short period of time, but then remain close to the diagonal overall.
These ROC curves are somewhat expected: in the simulations that come from all of the genes,
many of the “differentially expressed” genes show low levels of expression. Thus, we would expect
that the methods end up close to the diagonal as intermediate to large numbers of total markers
are selected (since finding these low expression markers should be close to random selection). The
filtered data sets could have solved this problem; however, the filtering method used here preserves
the relative proportions of low- and high- expression genes and (possibly for this reason) do not
affect the ROC curves very much.

The ROC curves never get very far above the diagonal, however, and the precision curves (for
the filtered conditions) are already quite low when only 400 markers are selected. This cannot only
be explained by low expression markers. One explanation for these extra difficulties could be the
differential expression parameters used in the Splat simulation. With these default parameters, the
gene mean for some of the “differentially expressed” genes are only slightly different between the
two clusters. Thus, although the simulation parameters may show that these genes are differentially
expressed, detecting the differential expression by any method will be very difficult. In any case,
these genes would not be good markers for real world examples, as it would be very difficult to tell
two clusters apart based on the expression levels of these types of genes without collecting a lot of
data.

In any case, it appears that the methods are able to easily identify a small set of differentially
expressed genes but then rapidly start to have difficulties as more genes are selected. It would
probably be worthwhile to come up with a more precise definition of a marker gene (versus a
differentially expressed gene) in order to eliminate the types of problems discussed here. At the
very least, it seems that a marker gene should be associated in some way with a measure of how
useful of a marker it is (again, a differentially expressed gene that shows low expression is not a
particularly useful marker). These types of definitions are saved for future work. The important
point for this work is that the RankCorr method consistently shows the highest value of TPR

Potential issues with simulated data are revealed through marker algorithm perfor-
mance

From comparing Figures 12(a-c) across the simulation conditions, we see that the highest precision
for each of the marker selection methods is obtained by using all genes for simulation, without
any filtering. This is somewhat reasonable, since there are approximately four to five times more
differentially expressed genes in the data sets generated from the unfiltered original data than in the
simulations generated from filtered data - even though many of the differentially expressed genes
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show low levels of expression, we still are drawing from a much larger pool.

It is tougher to explain why filtering after simulating produces lower precision scores than not
filtering at all. Since the t-test (for example) works by choosing genes based on a p-value score,
and the genetic information is not changed by the filtering process (p-values would be the same in
both the unfiltered and filtered after simulation data sets), it must be the case that many of the
differentially expressed genes are removed from the data set when we filter after simulation. The
highly variable genes selected by the filtering method used here (see the Methods) are not required
to have high expression; thus, there is no obvious reason that many differentially expressed genes
should be filtered out.

Simulating scRNA-seq data is itself a difficult task, and the filtering process is quite heuristic,
so it is unclear where the issues arise along the pipeline. At the very least, it is clear that this gene
filtering process does not commute with the simulation process, since filtering before simulation
shows higher precision than filtering after simulation. There is still more work to be done in fully
understanding how the filtering process impacts real scRNA-seq and how to accurately simulate
scRNA-seq data.

The classification error rate is an informative but coarse metric

Finally, we examine the classification error rate in Figure 14. It is interesting to note that the
classification error rate is quite high: with only two clusters, we are still misclassifying a minimum
of around 10% of cells. This suggests that the simulated data are not well separated - the differential
expression introduced by the Splat method is not strong enough to easily separate the two clusters.
Moreover, apart from the curves corresponding to the Logistic Regression method, all of the curves
look to be fairly constant after a small number of markers have been selected (approximately 50
for the simulations based on all genes and approximately 30 for the simulations based on filtered
data). This further supports the discussion from the above sections - only a small portion of the
differentially expressed genes provide useful information about the given clustering, and these are
the genes that are chosen first.

Note that the methods that show higher precision in Figure 12 also generally show a lower
classification error in Figure 14. On the other hand, logistic regression shows poor precision levels on
the filtered data sets and also appears significantly worse than the other methods in the classification
error rate curves. Thus, according to these experiments, the classification error rate seems to be
a coarse but reasonable measure of how well a set of markers describes the data set. In this
example, if one methods performs worse than another method according to the classification error
rate curves (Figure 14), then the same relationship holds in the precision curves (Figure 12). Some
large differences in precision are eliminated in the classification error rate curves, however, and thus
the classification error rate should always be considered with a grain of salt.

Conclusions

Across a wide variety of data sets (large and small; datasets containing cell differentiation trajec-
tories; datasets with well separated clusters; biologically defined clusters; algorithmically defined
clusters) and looking at many different performance metrics, it is tough to conclusively say that
any of the methods tested here selects better markers than any of the others. Indeed, the marker
selection method that was “best” depended on the data set that was being examined as well as the
evaluation metric in question. Even then, the difference in performance between the best marker
selection algorithm and the worst was often quite small.
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Thus, the major factors that differentiate the methods examined in this work are the computa-
tional resources (both physical and temporal) that the methods require. Since the algorithms show
similar overall quality, researchers should prefer marker selection methods that are fast and light.

In addition to this, as technology advances, the trend is towards the generation of larger and
larger data sets. High throughput sequencing protocols are becoming more efficient and cheaper,
and other statistical and computational methods are improved when many samples are collected.
Through imputation and smoothing methods, a detailed description of the transciptome space can
be revealed even when low amounts of reads are collected in individual cells. Thus, the speed of a
marker selection algorithm will only become more important.

The RankCorr, Wilcoxon, t-test, and logistic regression methods run the fastest of all of
the methods considered in this work. They run considerably faster and/or lighter than any of
the complex statistical methods that have been designed specifically for scRNA-seq data. Logistic
regression does not scale well with the size of the data set, however, and it requires an amount of
resources that is not competitive with the other three methods on the largest data sets. Moreover,
logistic regression exhibits poor performance on several of the data sets considered in this work,
especially when selecting small numbers of markers. Thus, as a general guideline, RankCorr,
Wilcoxon, and the t-test are the optimal marker selection algorithms to consider for the analysis
of large, sparse UMI counts data. This recommendation is further bolstered by the fact that these
three algorithms tend to perform well in the experiments that we have considered here, especially
when selecting lower numbers of markers.

The RankCorr algorithm, introduced in this work, is the slowest of the three recommended
algorithms. Despite this, it provides added interpretability in the multi-class marker selection
scenario. Specifically, RankCorr attempts to select an informative number of markers for each
cluster (rather than just a fixed number for each cluster), generally selecting more markers for
clusters that we are less certain about. This would prove useful when investigating the selected
markers for individual clusters after selecting a full set of markers for the data. The work of
properly selecting sets of markers in a multi-class scenario has not been completed, however, and
RankCorr only proposes one step. Nonetheless, as a fast and efficient marker selection algorithm,
RankCorr is a useful tool to add into computational toolboxes.

RankCorr also involves taking a rank transform of scRNA-seq counts data. The rank trans-
formation has other uses in scRNA-seq; it is thus useful to understand the further properties of the
rank transformation. These properties will be explored in upcoming work.

The difficulties of benchmarking and the importance of simulated data

Benchmarking marker selection algorithms on scRNA-seq data is inherently a difficult task. The
lack of a ground truth set of markers requires for us to devise performance evaluation metrics that
will illuminate the information contained in a selected set of genes. We have examined several
natural evaluation metrics in this work; these metrics sometimes produce conflicting results, how-
ever. Our experiments herein make it clear that these metrics provide different ways to view the
information contained in a set of genes rather than capturing the full picture provided by of a set
of markers.

Having a ground truth set of markers available makes the evaluation of marker selection al-
gorithms much more explicit. In the analysis on synthetic data here, for example, it becomes
apparent that the methods rapidly select a set of markers that provide a lot of information about
the clustering, then essentially start picking things by chance. This type of behavior can only be
revealed by a study with a known ground truth.

On the other hand, simulating scRNA-seq data is itself a difficult problem. The simulated data
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that we consider in this work behaves strangely when we filter it by selecting highly variable genes.
In particular, the filtering process seems to remove many of the useful differentially expressed
genes in the simulated data. This type of behavior was not observed in the experimental data,
where working only on high variance genes had little impact on the marker set evaluation metrics.
Better simulation methods, and mathematical results formalizing the quality of simulated data, are
extremely important future projects.

Finally, in the way that data processing pipelines are currently set up, researchers will often
be forced to select markers without the knowledge of a ground truth set of markers. Thus, it may
be valuable to consider metrics such as the ones devised in this work when performing marker
selection. Combining the values of several of the metrics may help to aid researchers in deciding
when they have selected enough markers to adequately describe their cell types (so that they are
not considering genes that were chosen at random), for example. The question of how to stop
selecting markers is another important consideration for future work.

The relationship between marker selection and the process of defining cell types

The marker selection framework considered in this work is quite narrow. It is focused on discrete
cell types, and (as shown in the Paul data set) does not handle trajectory patterns very well.
Moreover, we assume that the genetic information that we supply to a marker selection algorithm
consists of cells that are already partitioned into cell types. This is consistent the data processing
pipeline that many researchers currently follow (cluster the scRNA-seq data with an algorithm,
then find markers for the clusters that are produced); it seems more reasonable to allow for marker
selection to help guide the process of finding cell types, however.

For example, future marker selection methods could find markers that are useful for identifying
certain regions of the transcriptome space (in an unsupervised or semi-supervised manner). This
would allow for clarity along a cell differentiation pathway - at any point on the trajectory, a
researcher could see which of the selected markers identify that area, and to what degree. Thus,
cell types (or differentiation pathways) could be suggested based on marker genes. These cell types
might themselves reveal more informative markers, creating an iterative process: let the markers
guide the clustering and vice versa. Such a method is known as an “embedded” feature selection
method in the computer science literature.

Methods

Details of the RankCorr algorithm

A fast algorithm for solving the optimization (4)

Algorithm Select finds the support of the solution to the optimization (4) given a measurement
matrix A ∈ Rn×p, a vector τ ∈ Rn, and a sparsity parameter s. It runs as follows:

1. Let v =
∑n

i=1 τiai where ai is the i-th row of A.

2. Sort v from highest to lowest and let β = v1 = ‖v‖∞.

3. Iteratively compute the values ξj = ‖Tvj (v)‖1/‖Tvj (v)‖2 starting at j = 1. If Tvj (v) is the
zero vector, move on to the next value of j. Stop computing when ξj <

√
s.

4. Return the vector Tvj−1(v). The support of this returned vector is the support of the solution
to (4).
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The algorithm relies on the fact that the solution ω̂ to (4) is given by a normalized soft-
thresholding of a specific vector v; see Equations (1) and (6). For s > 1, note that the set
{x ∈ Rp : ‖x‖1 ≤

√
s, ‖x‖2 ≤ 1} will look essentially like the set {x ∈ Rp : ‖x‖1 ≤

√
s} with the

corners chopped off and rounded. Thus, we start by creating ṽ, a non-zero soft-thresholding of v
that has as few nonzero entries as possible (in the usual case, v has a unique largest entry, and thus
ṽ will have one nonzero entry so that it is pointing along one of the coordinate axes). We then
soft-threshold v by smaller and smaller values so that ṽ gains more non-zero coordinates and thus
points further away from a coordinate axis. We stop when we find the point at which the 1-sphere
{x : ‖x‖1 =

√
s} intersects the 2-sphere {x : ‖x‖ = 1}; the support of this vector are the features

that we are interested in selecting.
There is also an even faster algorithm for solving a problem that is equivalent to (4) presented

in [19]. This algorithm does not easily generalize to the multi-class problem in an interpretable
way, however; see the upcoming work [14] for some discussions of these ideas.

Applying Select to rank transformed data

This section contains an algorithm RankBin for using Select along with the rank transformation.
The inputs are a UMI counts matrix X ∈ Rn×p, a vector τ ∈ {±1}n, and a sparsity parameter s.
Note that this is still a binary marker selection method, since the entries of τ are either +1 or −1.
The extension to the multi-class case is handled in a one-vs-all manner and is explicitly described
in the next section.

RankBin works as follows:

1. Construct the matrix Xstd in the following manner: for all 1 ≤ ` ≤ p, let

Xstd
` =

Φ(X`)− µ(Φ(x`))

σ(Φ(X`))
.

2. Let τ c = Φ(τ)− µ(Φ(τ)).

3. Return Select(Xstd, τ c, s)

In the construction of Xstd, the columns of the data matrix X are standardized after they
are rank transformed to more closely match the hypotheses of the theoretical results in [22]. In
particular, the rows of the rank transformed and standardized data matrix Xstd come from a
bounded - and thus sub-Gaussian - distribution with mean 0 and variance 1 (the rows are not
independent, however).

Moreover, motivated by the work in [13] and [18], the vector τ is replaced with Φ(τ)− µ(Φ(τ))
in RankBin. That is, the rank transformation is applied both to the data matrix X and the
class indicator τ . In this case, the vector v that we soft threshold when we call Select (see 5 in
Background) has entries given by

vj =
n∑
i=1

(Φ(τ)i − µ(Φ(τ)))
Φ(Xj)i − µ(Φ(Xj))

σ(Φ(Xj))
. (8)

That is, entry j of v is (proportional to) the Spearman rank correlation between gene j and
the vector τ . Thus, RankBin will select the genes that have the highest (absolute) Spearman
correlation with the vector of class labels (compared to the method proposed in [13] that essentially
selects the genes with the highest absolute Pearson corrlation with the vector τ - see (7)).

It is possible to show that replacing τ with Φ(τ) has no effect on the markers that are selected
by the algorithm and thus the theoretical guarantees from [22] still apply. Algorithm RankBin is
written with Φ(τ) instead of τ to emphasize the connection with the Spearman rank correlation.
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RankCorr: Multi-class marker selection

RankCorr works by fixing a parameter s and applying RankBin each of the cell types in the
data set. Specifically, fix a sparsity parameter s; this parameter will be the same for all of the cell
types. For cell type j, construct the vectorτ j with τ ji = 1 if cell i is in cell type j and τ ji = −1
otherwise. Then run RankBin on the data matrix X, τj , and the fixed sparsity parameter s to get
the markers for cell type j. This will usually result in a different (informative) number of markers
selected for each cell type.

When evaluating RankCorr in this work, we take the union of all the markers selected for
each cluster to get a set of markers that will represent all of the given cell types. This step is to
allow for easier collection of benchmarking statistics - we would like to capture how well a selected
set of markers informs us about an entire clustering. In practice, the sets of markers could be kept
separate to give information about individual cell types. Note that there could still be duplicate
markers in these sets - here, we do not address the problem of merging these sets in a smart way.

Marker evaluation methods for experimental data

Below, we discuss two general procedures for the evaluation of a set of markers: supervised classifi-
cation (that incorporates the given ground truth clustering as prior information) and unsupervised
clustering (that does not). Both are discussed in more detail below.

Assuming that the data set contains k clusters, the result obtained by either classifying or
clustering the data is a vector of predicted cell type labels ŷ ∈ Zn. We would like to compare
this to the “ground truth” cluster label vector y ∈ [k]n. The full information about the similarity
between y and ŷ can be presented in terms of a confusion matrix; this is unwieldy when many such
comparisons are required, however. For this reason, many summary statistics have been developed
in the machine learning literature for the classification [23] and clustering [24] settings. We choose
to examine several of these metrics in this work; the full list is summarized in Table 1.

Cross validation

In order to avoid overfitting, we perform all marker selection, classification, and clustering using
5-fold cross validation. Cross validation is commonly used in the computer science literature, as it
allows for all of the data to be considered in test sets (we never test directly on the data that we
trained with) - see Section 7.10 of [7]. See Figure 15 for a summary of this procedure.

Specifically, we split the cells into five groups (called “folds”). For each fold, we combine the
other four folds into one data set, find the markers on the dataset containing four folds, and train
the classifier using the selected markers on the dataset containing four folds as the training data.
We then apply the trained classifier to the initial fold and perform clustering on the initial fold
using the markers that were selected on the other four folds. In this way, the initial fold is “test
data” for the classifier/clustering metrics.

Repeating this process for all five folds creates a classification for the entire data set. On
the other hand, we get a separate clustering for each fold, and these clustering solutions may be
incompatible (they may contain different numbers of clusters, for example). See the section on
clustering evaluation metrics for how we reconcile this.

Supervised classification

In order to incorporate information about the ground truth clustering into an evaluation metric, we
train a multi-class classifier on the scRNA-Seq data using the cluster labels as the target output.
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In order to evaluate the selected marker genes, we train the classifier using only the marker genes
as the input data. When applied to a vector of counts (e.g. the counts of the markers in a cell),
the classifier outputs a prediction of which cluster the vector belongs to.

Training a classifier. Given y ∈ Nn, a vector of cluster labels; X ∈ Rn×p, a scRNA-seq counts
matrix; S = {s1, . . . , s`} ⊂ [p], a set of markers; we train a classifier Class in the following manner:

1. Normalize X.

2. Form a matrix Ξ ∈ Rn×|S| from X by ignoring coordinates that aren’t in S (i.e. Ξi = Xsi).

3. Train the classifier Class with Ξ as the input vectors and y as the target labels.

4. Return h : R|S| → N, the classification function output by Class.train(Ξ, y).

In line 1 of this training procedure, we normalize the matrix X. It is possible to use any normal-
ization for this step; for the purposes of our analysis we use a log normalization procedure that is
commonly found in the scRNA-seq literature. Specifically, we perform a library-size normalization
so that the sum of the entires in each row of X is 10, 000 and follow this by taking the base 2
logarithm of (1 plus) each entry of X to create a “log normalized” counts matrix.

Library size normalization was introduced in [28] to account for differences in capture efficiency
between cells and taking a logarithm has it roots in bulk RNA-seq where it is used to attenuate
technical variance (see [29]). Since log normalization of this type is often applied when clustering
scRNA-seq counts data in a data processing pipeline, we apply log normalization when attempting
to recover the information in the given clusters. It is important to note that the marker selection
algorithms that we examine in this work do not assume that the input counts data are normalized
(apart from when noted in their descriptions).

Classification evaluation metrics. We select markers and classify the cells using 5-fold cross-
validation; see Figure 15. Once we have classified all cells in the data set, we examine how well
the vector of classification labels matches the vector of ground truth cluster labels. Since we are
in a classification framework, we use multi-class classification evaluation metrics for this purpose.
In particular, we examine the classification error (1- accuracy) and precision of the classification
compared to the known ground truth. For precision in a multi-class setting, we compute the
precision for each class (as in a binary classification setting) and then take a weighted average of
the per-class precision values, weighted by the class sizes. Finally, we also examine the Matthews
correlation coefficient, which is a summary statistic that incorporates information about the entire
confusion matrix. See [23] for more information about these statistics.

In all of the tests that we perform in this work, the precision and Matthews correlation coefficient
curves look subjectively similar (though the actual values of the statistics do differ), while the
classification error appears very similar to the other curves except it is flipped upside down. It is
not clear why these summary statistics look as similar as they do.

Classifiers. We examine two classifiers to evaluate the marker sets (so that we are computing
two classifications for each selected set of markers, and looking at all three metrics for both classi-
fications).

The first is a simple (and fast) nearest centroids method that uses information about the
original clustering to determine the locations of the cluster centroids. We refer to this as the
Nearest Centroids Classifier (NCC). See the end of this section for a full description of the NCC. In
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the second, we use the Random Forest Classifier (RFC) that is implemented in the python package
scikit-learn ([30]), version 0.20.0, with nestimators = 100. The summary statistics of the
classifications produced when using the RFC are always better (more optimal) than the statistics
that are produced when using the NCC. The overall shape of the curves produced using the RFC
mostly mirror the curves produced using the NCC as well. The RFC is too slow to run on the
largest data sets that we examine for testing. Since the RFC and NFC curves look similar for the
smaller data sets, we are not concerned that we are missing information here.

Also note that, even with nestimators = 100, there is a significant amount of variability in the
classification results obtained through the RFC. That is, running the RFC multiple times with the
same set of markers will produce different classification results. See Figure 16 for a visualization of
the differences in error rate that can be obtained when running the RFC twice on the same sets of
markers (this example is created using the Paul data set; see the discussion of experimental data
sets).

The nearest centroids classifier (NCC). The NearestCentroids.train method takes as
input Ξ ∈ Rn×`, an scRNA-seq counts matrix; and y ∈ Nn, a vector of cluster labels. It runs in the
following way:

1. Let S(y) = {i ∈ N : i ∈ y} be the unique entires of y.

2. For each k ∈ S(y), let Ck = {i : yi = k}.

3. For each k ∈ S(y), let ck = 1
|Ck|

∑
i∈Ck

ξi, where ξi is the i-th row of Ξ.

4. Let h : [n]→ N be defined by h(j) = arg mink ‖ξj − ck‖2 (using Euclidean distance). Return
h, the classification function.

Unsupervised clustering

Another natural way to measure the information in a selected set of markers is to cluster the data
using only the selected coordinates in an unsupervised manner and compare this new clustering to
the original clustering. Clustering scRNA-seq is itself a complicated problem that has inspired a
great deal of study; here we restrict ourselves to Louvain clustering as implemented in the scanpy

(version 1.3.7) package. Louvain clustering was introduced for use with scRNA-seq experiments
in [31] and it is currently the recommended method for clustering scRNA-seq data in several
commonly-used software packages including scanpy [32] and Seurat [33].

The clustering procedure. Louvain clustering on scRNA-seq data requires the input of X ∈
Rn×p, a scRNA-seq counts matrix; S = {s1, . . . , s`} ⊂ [p], a set of markers; r, a resolution parameter
for Louvain clustering; and k, the number of nearest neighbors to consider in Louvain clustering.
It proceeds as follows:

1. Normalize X

2. Form a matrix Ξ ∈ Rn×|S| from X by ignoring coordinates that aren’t in S (i.e. Ξi = Xsi).

3. For each cell i, find the k nearest neighbors to i according to Euclidean distance between the
rows of Ξ.

4. Run Louvain clustering with resolution r on Ξ using the nearest neighbor data calculated in
the previous step.
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5. Let h : [n]→ N be a function that specifies the clustering. That is, h(i) = j means that cell i
was placed into cluster j. Return h.

In line 1, we normalize the counts matrix X. As in the case of the supervised classification
metrics, we apply log-normalization for this step. Also note that we do not perform any dimen-
sionality reduction (e.g. PCA) before finding the nearest neighbors or performing the clustering.
This is due to the fact that we projected the data onto the selected markers. These markers are
meant to capture the important dimensions in the data - they are the features that have the most
information about the clustering according to a marker selection algorithm. Thus, we work in the
space spanned by these markers without performing any additional dimensionality reduction.

Clustering evaluation metrics. The unsupervised clustering is compared to the ground truth
clustering using three metrics from the machine learning literature: the Adjusted Rand Index
(ARI), Adjusted Mutual Information (AMI), and the Fowlkes-Mallows score (FMS). All three of
these scores attempt to capture the amount of similarity between two groupings of one data set (e.g.
the unsupervised clustering produced using a selected marker set and the ground truth clustering).
They are also normalized scores: values near zero indicate that the cluster labels are close to
random, while positive values indicate better performance. All of the scores have a maximum
value of +1. Moreover, all three of these metrics do not make any assumption about the number
of clusters: the unsupervised clustering can have a different number of clusters from the ground
truth clustering and these indices can still be computed. See [24] for more information about these
metrics.

We again use 5-fold cross-validation to compute the cluster performance markers discussed
above. Note that the clustering solutions for the different folds may be incompatible: for example,
the number of clusters in the Louvain cluster solution for the first fold may be different from the
number of clusters in the Louvain cluster solution for the second fold, and there may be no obvious
way to relate the clusters in the first fold to the clusters in the second fold. For this reason, we
compute the clustering performance metrics separately on each fold, comparing the Louvain cluster
solution to the ground truth clustering restricted to the fold. The scores that we report are averaged
over all of the folds (and when we optimize over the resolution parameter r, discussed below, we
find the optimal value of the average over the folds).

Note that some of the fine structure from the ground truth clustering may not be maintained in
a specific fold and thus it is impossible to capture this structure when performing Louvain clustering
on the fold. This means that the actual values of these metrics are not particularly informative - it
is more useful to compare the different methods along a metric. In addition, in all of the Louvain
clusterings for a specific data set, we fix the the value of k, the number of nearest neighbours that
we consider. Thus, small differences between the scores are not particularly informative, as they
could disappear if k was selected perfectly for each method. Nonetheless, it is useful to get an
idea as to how well the markers selected by different algorithms could be used in an unsupervised
manner to recover a given clustering.

Choice of Louvain clustering parameters. Louvain clustering requires the input of a number
k of nearest neighbors and a resolution parameter r. It would be ideal to optimize both k and r
for each set of markers on each data set for each clustering comparison metric; then we would be
comparing the “optimal” performances of the marker selection algorithms under each metric. This
is not computationally realistic for all of the data sets in consideration here.

Empirically, on the Paul and Zeisel data sets, we observed that all three of the clustering
metrics are robust to changes in the value of k as long as k is chosen to be large enough (see
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Figures 17 and 18). On the other hand, changing the resolution parameter altered the metrics
by large amounts, and different marker sets required different resolution parameters to obtain the
optimal performance. Thus, for each dataset, we fix k. Then, for each of the three metrics and
each set of markers, we optimize over r (we examine a grid from r = 0.1 to r = 3.0 with a step size
of 0.1). This allows us to compute nearly optimal values for each metric and each set of selected
markers. Importantly, the resolution parameter is not selected to optimize the performance of any
one marker selection algorithm - the resolution is optimized for each marker selection algorithm
separately.

For a given dataset, the fixed value of k is obtained by a rough optimization strategy. On
Zeisel and Paul, we optimize over both k and r (r varying from r = 0.1 to r = 3.0 with a step
size of 0.1 and k varying from 15 to 30 with a step size of 5), using the RankCorr algorithm and
varying the number of markers selected to get a decent picture of the entire parameter space. The
value of k is chosen to be the one that subjectively appears to optimize the performance of the
majority of the metrics (see Figures 17 and 18).

On the Zeisel dataset, it appears that k = 15 nearest neighbors does not capture quite enough
of the cluster structure, while k = 30 nearest neighbors results in lower scores than k = 25. We
thus fix k at 25 for the unsupervised clustering evaluation on the Zeisel data set. See Figure 17 for
the data that was used for this determination.

For the Paul data set, we observed that changing the number of nearest neighbors used in the
Louvain clustering has little effect on the ARI, AMI, or FM scores. It appeared that the scores
were slightly improved for k = 30 when small numbers of markers were selected, thus we fixed k at
30 for the Paul data set. See Figure 18.

The ZhengFull and ZhengSim data sets are large, and thus we focus on the ZhengSim data
set when considering the unsupervised clustering metric. To estimate a value of k, the fixed number
of nearest neighbours that we use for all of the clusterings, we computed a Louvain clustering that
looks quite similar to the bulk labels in a UMAP plot. This clustering used 25 nearest neighbors
(and used the top 50 PCs); thus we fix k at 25 for the Zheng data sets. See Figure 19 to see a
comparison of the bulk labels and the generated Louvain clustering in UMAP space. Note that we
still optimize over the resolution parameters separately for each method.

Experimental data sets

We examine four publicly available experimental scRNA-seq data sets in this work. We focus on
data sets that have been clustered, with clusters that have been biologically verified in some way. In
addition, we mostly examine data sets that were collected using microfluidic protocols (Drop-seq,
10X) with UMIs. This is due to the fact that these protocols tend to collect a smaller number of
reads in a larger number of cells (producing large amounts of sparse data). These data sets are
summarized in Table 3. We discuss them further below. See the statement on data availabilty for
how to obtain these data.

Zeisel. We work with one well-known reference fluidigm data sets. This is Zeisel, a data set
consisting of mouse neuron cells that was introduced in [34]. Neuron cells are generally well-
differentiated, and thus this data set contains distinct clusters that should be quite easy to separate.
In [34], the authors have additionally used in-depth analysis with known markers to painstakingly
label each cluster as a specific cell type. This labeling is the closest to an actual ground truth
clustering of a dataset in the scRNA-seq literature - this fact makes Zeisel a valuable data set for
our benchmarking purposes.
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For our ground truth clustering, we consider only the nine major classes that the authors define
in [34]. In addition, we pre-process the data set by selecting the top 5000 most variable genes, using
the cell ranger flavor of the filter genes dispersion function in the scanpy python package
after library size normalization. We perform this pre-processing to speed up the marker selection
process for the slower methods.

Paul. The smallest data set that we examine is Paul, a data set consisting of 2730 mouse bone
marrow cells that was introduced in [35] and collected using the MARS-seq protocol. As opposed
to Zeisel, bone marrow cells consist of progenitor cells that are in the process of differentiating.
Thus, there are no well-defined cell types in the Paul data - the data appear in a continuous
trajectory. The authors of Paul define discrete cell types along this trajectory based on known
markers, however.

Zheng data sets. We perform an analysis of the data set introduced in [25] that consists of
around 68 thousand human PBMCs from a single donor. These data were collected using 10x
protocols; we refer to this full data set as ZhengFull. The cells were clustered (using k-means),
and the clusters were assigned biological types based on known markers. The authors of [25] then
took more cells (from the same donor) and isolated a set cells of each cell type that they found in
their clustering of ZhengFull. They then sequenced the cells from the individual types. Finally,
they used these pure samples to cluster the ZhengFull data set again: each cell is assigned
to the type whose (bulk) profile correlates most strongly with the cell’s profile. We treat these
bulk labels as the ground truth clustering for our experiments in this work. They can be found
on the scanpy usage GitHub repository at https://github.com/theislab/scanpy_usage/blob/
master/170503_zheng17/data/zheng17_bulk_lables.txt (we use commit 54607f0).

We additionally generate a data set ZhengFilt from ZhengFull by restricting to the top 5000
most variable genes. We select the 5000 most variable genes by performing a library size normaliza-
tion on the ZhengFull data set and then using the cell ranger flavor of the filter genes dispersion

function in the scanpy python package (see the data availabilty disclosure for more information
about the scripts used to pre-process the data). We would like to see if restricting to highly variable
genes hampers the marker selection process, or if the markers are mostly counted as highly variable
genes.

1.3 million mouse neurons. Finally, we examine 10xMouse, a data set consisting of 1.3 million
mouse neurons generated using 10x protocols [26]. As noted above, neurons are well-differentiated
into cell types, so this data set should contain well-separated clusters. The “ground truth” clustering
that we consider for this data set is a graph-based (Louvain) clustering performed on the full
10xMouse dataset by the team behind scanpy. It can be found from the scanpy usage GitHub
repository (https://github.com/theislab/scanpy_usage/tree/master/170522_visualizing_
one_million_cells; we consider commit ba6eb85) As far as we know, this clustering has not been
verified in any biological manner.

Marker selection methods

A summary of the full set of marker selection methods that we consider in this work are found in
Table 9 (a summary of the performance characteristics of the methods can be found in Table 2).
We discuss the precise implementation details below.
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Method Language Package Version Ref

t-test Python 3.7 scanpy 1.3.7; see text
Wilcoxon Python 3.7 scanpy 1.3.7; see text

edgeR R (3.5.0) via Python edgeR via rpy2 v2.9.4 3.24.1 [5]
MAST R (3.5.0) via Python MAST via rpy2 v2.9.4 1.8.1 [2]

scVI Python 3.7 Source from GitHub 0.2.4 [4]
SCDE R (3.4.1) SCDE 2.6.0 [3]

D3E Python 2.7 and 3.5 Source on GitHub Commit efe21d1 [1]

Elastic Nets Python 3.7 scikit-learn [30] 0.20.0 [11]
Log. Reg. Python 3.7 scanpy 1.3.7; see text [36]

RankCorr Python 3.7 custom implementation
Spa Python 3.7 custom implementation [13]

Table 9: Differential expression methods tested in this paper. The top block consists of general
statistical tests. The second block consists of methods that were designed specifically for scRNA-seq
data. The third block consists of standard machine learning methods; Log. Reg. stands for Logistic
Regression. The final block are the methods that are presented in this work; implementations of
these methods can be found in the repository linked in the data availabilty disclosure.

Wilcoxon and the t-test. The t-test and Wilcoxon rank sum methods are general statistical
methods that aren’t specifically designed for RNA-seq data, but they are still often used for the
purposes of differential expression testing in the scRNA-seq literature. We use the Python scanpy

package implementation to find Wilcoxson rank sum and t-test p-values with some editing to the
file rank genes groups.py to fix several bugs (that are now fixed in the main release). See the
data availability disclosure for how to find this file.

We use the version of the t-test in scanpy that overestimates the variance of the data. Both
of these methods produce a score for each gene: when choosing the markers for the clusters, we
use the absolute value of this score (so we would chose markers that have a large negative score as
well). This is for more direct comparison to the RankCorr method in which we choose markers
by the absolute value of their coefficients. Finally, both of these methods correct the p-values that
they produce using Benjamini-Hochberg correction.

edgeR and MAST. The methods edgeR, MAST, and SCDE were originally implemented in R.
In order to run them with our existing framework, we use the rpy2 (version 2.9.4) python package
to access the methods through python.

Based on the results and scripts from [6], edgeR was run using the quasi-likelihood approach
(QLF method) on the un-normalized scRNA-seq counts matrix X. For MAST, the data matrix X
was normalized: the rows of X were scaled so that each row summed to 1 million (to approximate
something that looks like “transcripts per millon”) to create a scaled matrix Xs and then each
entry Xs

ij of Xs was replaced by log(Xs
ij + 1).

Again following [6], we ran both edgeR and MAST in two ways. In the first way, we only
consider the cluster label when fitting the statistical model; in the second way, we additionally
include the fraction of genes that are detected in each cell (“detection rate”) as a covariate. In the
rest of this paper, we refer to edgeR and MAST run the second way by edgeRdet and MASTdet
respectively. According to the benchmarks considered in [6], edgeR (MAST) performs differently
from edgeRdet (MASTdet).
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scVI. scVI is implemented in python and utilizes GPUs for faster training of their model. Al-
though the authors provide evidence that their code can handle a data set with one million cells
(they test on the 10xMouse data set from [4]), scVI requires steep computational resources -
around 75 GB of RAM to go with one core and one GPU. We have currently been unable to obtain
this large amount of memory attached to a GPU, so we have been unable to reproduce their results
here. One issue is that this method does not work with sparse data structures (or it makes them
dense after loading them); thus, it has been computationally infeasible for us to run scVI on the
larger data sets like 10xMouse

Another issue with scVI is that the differential expression methods included in the package are
somewhat difficult to use (from a computational perspective). As far as we can tell, requesting
information about differentially expressed genes from scVI produces a matrix of size larger than
(10 · n) × p, where n is number of cells and p is the number of genes in the original data set (we
were unable to precisely determine how the size of the matrix is computed). Even restricting to the
top 3000 variable genes in the 10xMouse data set, this model matrix would require around 250
GB of memory to load into storage - in addition to the storage required for the 10xMouse dataset
itself. Thus, although it may be possible to train the model on the 10xMouse data set, it will be
nearly impossible with our computational resources to actually acquire the differential expression
information from the trained model.

(An example of the extreme memory used by scVI: the Zeisel dataset takes approximately 5
MB to store in a dense format. The matrix produced during the differential expression computation
method requires 4.1 GB. The actual computation of the Bayes factors - the generalization of a p-
value produced by scVI - requires a peak of 15-16GB of memory during processing.)

SCDE. The SCDE package was too slow to be used on the real data sets: in testing, it was taking
approximately one minute per cell to fit the model (on one core). Since we are performing 5-fold
cross-validation, we would need to fit the model approximately 5 times. On one of the smaller data
sets (Paul or Zeisel), this would require approximately 250 hours of computer time; it would be
infeasible to train on the larger data sets. Since we are specifically developing methods for use with
the large data sets that are appearing more often, we have excluded SCDE from our final analysis.

D3E. D3E is also implemented in python, but it has no support for sparse data structures; thus,
running on the 10xMouse data set would require a very large amount of memory. Although the
method allows for splitting the data into smaller segments (to allow for parallel computation), the
full data set needs to be loaded into memory when initializing the process. In addition, when
running on the Paul data set using the faster method-of-moments mode, D3E took about 25
minutes running on 10 cores (about 4 hours and 10 minutes total CPU time) to find markers for
one cluster (vs the rest of the population). Since we need the p-values for all (∼ 20) clusters for
all 5 folds, this method would require approximately 40 hours on 10 cores. Although this is faster
than SCDE, this would still be infeasible on the larger data sets, and thus we exclude D3E from
our final analysis as well.

Elastic nets. The Spa method introduced in [17] is essentially an L1- and L2- regularized SVM
without an offset (i.e. it finds a sparse separating hyperplane that assumed to pass though the
origin, the instinct for this is given near Equation (3) in the background information). Thus, we
also compare the performance of RankCorr to that of the Elastic Nets version of LASSO: a
least squares method with both L1 and L2 regularization. Elastic Nets has the two regularization
parameters that need to be tweaked in order to find the optimal set of features; this requires
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extra cross-validation and therefore we are only able to run on the smaller Paul and Zeisel data
sets. Although the sklearn package contains a method for finding the regularization parameters by
cross-validation, it still takes a significant manual effort in order to find a range of the regularization
parameters that capture the full possible behavior of the system but will also allow for the objective
function to converge (in a reasonable number of iterations) the majority of the time. The timing
information presented in Tables 5 and 4 only represents the run time of the method, and does not
take into account this (time consuming) process of manipulating the data.

Another feature to note about the cross-validated elastic nets method is that it is (intentionally)
a sparse method. Thus, scores are only generated for a small number of genes in each cluster -
the genes that are specifically deemed “markers” for that cluster. It is not possible to compare
the relative utilities of the genes that are not considered markers - each of those genes are given a
score of 0. Thus, beyond a certain number of genes, it is not possible to get any more information
from the markers selected by the elastic nets method. (You cannot, for example, request a “bad”
marker in order to combine it with the information from other “good” markers).

Logistic regression. In a similar fashion to the method proposed here, logistic regression was
proposed as a method for marker selection in [36]. In this, a regression is performed on each gene
using the cluster label as the response variable. This is translated into a p-value via a likelihood
ratio using the null model of logistic regression on the gene. This has been incorporated into the
scanpy package, and thus we are able to run it on sparse data. We again have made some updates
to the file rank genes groups.py in the scanpy package to fix some slight errors; see the data
availability disclosure for where to find this edited file.

Spa. We also examine the performance of the method Spa introduced in [13] and analyzed further
in [18]. As discussed in the background information, Spa was the original inspiration for this work,
and also selects markers based on a sparsity parameter s. Spa also has two hyperparameters that
we are required to optimize over, and this causes Spa to take considerably longer than RankCorr
to run for a fixed value of s. Moreover, since we are in a situation with no known ground truth,
it is unclear what metric we would like to optimize when selecting these hyperparameters. For the
current evaluation, we have minimized the classification error rate using the NCC (see information
about the marker set evaluation metrics), but it is not clear that this would be the best metric
to optimize in general. We choose the NCC classifier since the RFC exhibits a significant amount
of variance - thus, optimizing the classification error rate according to the RFC classifier would
produce an unstable set of markers (performing the optimization again would result in a different
set of markers). We choose to optimize the supervised classification error (rather than one of the
unsupervised clustering metrics) for the sake of speed - optimizing a slower evaluation metric would
increase the time needed for the Spa marker selection method.

Another inconvenience of the Spa method is that the hyperparamters affect the number of
markers that are selected for a fixed value of s. This makes the number of markers selected by
Spa method more inconsistent and unpredictable. For example, it has occurred that the “optimal”
(in terms of minimizing the classification error rate using the NCC, as discussed above) choice
of hyperparameters for sparsity parameters s1 > s2 has resulted in a smaller number of markers
selected for s1 than the “optimal” choice of hyperparameters for s2. That is, increasing s can lead
to selecting smaller numbers of markers.

RankCorr. The final method in the comparison is RankCorr, the method introduced in this
paper. It is important to note that the implementation of RankCorr that we use here has not
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been fully optimized. Note that the major step (2) of the Select algorithm (see the details of
RankCorr) essentially consists of computing the dot product of each column of a data matrix with
the cluster labels τ . The only other time consuming portion of Algorithm Select is computing the
`2 norm of a vector. These types of linear algebraic computation have fast implementations that
are accessible from python (e.g. numba). We have not yet optimized the method to take advantage
of all possible speed ups since RankCorr runs quickly enough in our trials.

Random marker selection. Finally, as a sanity check, we choose markers uniformly at random
(the same number of markers for each cluster).

Generating marker sets of different sizes from algorithms other than RankCorr

We wish to examine the relationship between the number of markers selected and the marker
set performance metrics. In addition, for a fixed data set, we need to select markers for a given
clustering - not just markers for a single cluster. Here we describe how we select a specific number
of markers and how we merge lists of markers for individual clusters to make a marker list for the
entire clustering.

For a differential expression method, we proceed in a one-vs-all fashion: letting C denote the
number of clusters in the given clustering, we use the differential expression methods to find C
vectors of p-values; the i-th vector corresponds to the comparison between cluster i and all of the
other cells. For the sake of simplicity, we then include an equal number of markers for each cluster
to create a set of markers for the clustering.

For example, we consider the classification error rate when the marker list consists of the three
genes with the smallest p-values from each cluster (with duplicates removed). As mentioned in
the introduction, this is a vast oversimplification of a tough problem - how to merge these lists of
p-values in an optimal way, making sure that we have good representation of each cluster - but it
allows for us to quickly and easily compare the methods that we present here. (Note that we would
probably want to choose more markers for a cluster for which all p-values were large - we probably
need more coordinates to distinguish this cluster from all of the others, even if those coordinates
are not extremely informative. Thus, setting a p-value threshold could potentially perform worse
than the method outlined here, as we may not select any markers for a certain cluster with a
thresholding method.) The process of merging lists of p-values is left for future work.

For the elastic nets method, which selects one list of markers as optimal (without giving a
score for all of the markers), we apply a similar strategy to approximate selecting a small number
of markers. In particular, we choose an equal number of markers with the highest score for each
cluster until we run out of markers to select. For example, when attempting to select 20 markers
per cluster, we may include the top 20 markers for one cluster and all 18 of the markers that are
selected for a different cluster.

Generating synthetic data based on scRNA-seq data

In order to generate synthetic data that is made to look like an experimental droplet-based scRNA-
seq data set, we use the Splat method from the R Splatter package (version 1.6.1) [27] in R version
3.5.0. The Splat method essentially works by selecting mean gene expression levels from a gamma
distribution (with some “high expression outliers” included). Then, using these gene expression
means, the actual counts for each cell are sampled from a modified Poisson distribution. Dropout
can be added by randomly setting some of the counts to 0 at the end of the simulation process,
though genes with higher average expression levels will experience less dropout. The required
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parameters for simulating counts in this way can be estimated from true experimental data using
the Splatter package.

We use a samples from the data set consisting of purified (CD19+) B cells that is introduced in
[25] in order to estimate the Splat simulation parameters. In [25], the authors analyzed this dataset
and saw only one cluster, suggesting that it consists mostly of one cell type. We have also combined
it with the full ZhengFull dataset from [25] (see the descriptions of the experimental data sets)
and observed good overlap with the cluster that the authors identified as B cells in ZhengFull
when looking at a two dimensional UMAP visualization. This overlap appears in Figure 20. (The
isolated cytotoxic T cell data set from [25] did not overlap with the T cells in the original data set
ZhengSim as well, so we only considered the B cells.)

Some testing with Splatter showed that including dropout in the Splat simulation resulted in
a simulated data set with a higher fraction of entries that are 0 than the original dataset. On
the other hand, not including dropout resulted in similar fractions of entries that are 0 in the
simulated and original datasets. Taking into account the fact that the Splat dropout randomly sets
entries to 0 regardless of the size of those entries (a practice that we would argue is an unrealistic
representation of actual dropout), we do not include additional dropout in our Splat simulations.

In the Splat method, differential expression is simulated by generating a multiplicative factor
for each gene that is applied to the gene mean before the cell counts are created - a factor of 1 means
that the gene is not differentially expressed. These multiplicative factors come from a lognormal
distribution with location 0.1 and scale 0.4 - the default values in the Splatter package. We have
not attempted to tweak these default parameters in this work. Using the default parameters, many
of the “differentially expressed” genes have a differential expression multiplier that is between 0.9
and 1.1; for these genes, the gene mean is barely different between the two clusters. This creates a
significant number of differentially expressed genes that are difficult to detect. See the simulated
data results for further discussion.

For differential expression, we ask for Spatter to simulate two groups with 10% of the genes
differentially expressed between the two groups: 10% of the genes in the first group are differentially
expressed (i.e. have a differential expression multiplier not equal to 1), and none of the genes in
the second group are differentially expressed. In this way, all differentially expressed genes can be
considered to be marker genes for the first group - there are no overlaps between markers for the
first and second groups. The direction of differential expression is randomly determined for each
gene.

We use Splatter to generate 20 different simulated data sets from the CD19+ B cells dataset.
See Figure 11 for a diagramme of the set-up. For all 20 simulated data sets, we simulate 5000
cells and the same number of genes that we input. The first 10 data sets are created by using
the full (unfiltered) information from 10 random samples of 5000 cells from the B cell data set.
This procedure results in sparse input data set of 5000 cells and about 20000 genes (the number
of nonzero genes depends on the subsample). The output from this simulation is also very sparse.
Since the differentially expressed genes are chosen at random, this means that many of the genes
that are labeled as differentially expressed in the output data show low expression levels (often they
are expressed in less than 10 cells).

To attempt avoid the issue of extreme low expression levels in the majority of the “differentially
expressed” genes, we filter the genes of the simulated data via the method introduced in [37]:
namely, place the genes in 20 bins based on their mean expression levels and select the genes with
the highest dispersion from each bin. Using this method, we select the top 5000 most variable genes
from the simulated data and we then use only genes these for marker selection. In the figures, we
report these data under the heading “filtering after simulation.”

In order to explore this further, the second 10 simulated data sets are created by using only
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the top 5000 most variable genes in the original data as the input to Splatter. In this way, we are
forcing the differentially expressed genes to look like genes that were originally highly variable.
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The experimental data sets analysed during the current study are publicly available. They can be
found in the following locations:

• Zeisel is found on the website of the authors of [34]: http://linnarssonlab.org/cortex/.
The data are also available on the GEO (GSE60361).

• Paul is found in the scanpy python package - we consider the version obtained by calling
the scanpy.api.datasets.paul15() function. The clustering is included in the resulting
Anndata object under the heading paul15 clusters. The data are also available on the
GEO (GSE72857).

• ZhengFull and ZhengFilt are (subsets) of the data sets introduced in [25]. The full data set
can be found on the 10x website (https://support.10xgenomics.com/single-cell-gene-expression/
datasets/1.1.0/fresh_68k_pbmc_donor_a) as well as on the SRA (SRP073767). The bi-
ologically motivated bulk labels can be found on the scanpy usage GitHub repository at
https://github.com/theislab/scanpy_usage/blob/master/170503_zheng17/data/zheng17_

bulk_lables.txt (we use commit 54607f0).

• 10xMouse is available for download on the 10x website (https://support.10xgenomics.
com/single-cell-gene-expression/datasets/1.3.0/1M_neurons. The clustering anal-
ysed in this manuscript can be found on the scanpy usage GitHub repository (https://
github.com/theislab/scanpy_usage/tree/master/170522_visualizing_one_million_cells;
we consider commit ba6eb85)

The synthetic data analysed in this manuscript is based on the CD19+ B cell data set from [25].
It can be found on the 10x website at https://support.10xgenomics.com/single-cell-gene-expression/
datasets/1.1.0/b_cells. The synthetic data sets themselves are available from the author on
request.
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plementations of Spa and RankCorr.
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Figure 1: Counts of gene PRTN3 in bone marrow cells in the Paul data set (See the Methods).
Each point represents a cell; the horizontal axis shows the number of reads and the vertical axis
counts the number of cells with a fixed number of reads. No library size or cell size normalization
has been carried out in these pictures in order to facilitate a comparison of the methods depicted
herein. Note that the tail of the log transformed data is subjectively longer, while the gap between
zero counts and nonzero counts appears larger in the rank transformed data

.
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Figure 2: Error rate of both the nearest centroids classifier (NCC; (a) and (b)) and the random
forests classifier (RFC; (c) and (d)) on the Zeisel data set. Figure (b) (respectively (d)) is a detailed
image of the error rate of the different methods using the NCC (respectively RFC) when smaller
numbers of markers are selected.
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Figure 3: Clustering performance metrics vs total number of markers selected for marker selection
methods on the Zeisel data set. The ARI score is shown in (a), the AMI score is shown in (b),
and the Fowlkes-Mallows score is shown in (c). The clustering is carried out using 5-fold cross
validation and scores are averaged across folds.
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Figure 4: Error rates of both the nearest centroids classifier (NCC; (a) and (b)) and the random
forests classifier (RFC; (c) and (d)) on the Paul data set. Figure (b) (respectively (d)) is a detailed
image of the error rate of the different methods using the NCC (respectively RFC) when smaller
numbers of markers are selected. Figure (b) details up to 220 total markers to make clear how
similar the methods perform for when small numbers of markers are selected. Figure (d) examines
up to 350 total markers to detail the performance of the methods when small numbers of markers
are selected as well as get an idea for the increasing behavior and noisy nature of the curves.
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Figure 5: Clustering performance metrics vs total number of markers selected for marker selection
methods on the Paul data set. The ARI score is shown in (a), the AMI score is shown in (b),
and the Fowlkes-Mallows score is shown in (c). The clustering is carried out using 5-fold cross
validation and scores are averaged across folds.
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Figure 6: Accuracy and precision of the nearest centroids classifier on the Zheng data sets using the
bulk labels. The top row correspond to the ZhengFilt data set and the bottom row corresponds
to the ZhengFull data set.
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Figure 7: Accuracy and precision of the random forests classifier on the Zheng data sets using the
bulk labels. The top row correspond to the ZhengFilt data set and the bottom row corresponds
to the ZhengFull data set.
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Figure 8: Clustering metrics on the ZhengFilt data set.
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Figure 9: Classification error rate under the NCC vs number of markers on the full 10xMouse
data set.
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Figure 10: A comparison of the nearest centroid classifier (NCC) and the random forest classifier
(RFC) using the RankCorr method on the 10xMouse data set
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Figure 11: Set up of the simulated data. We consider 3 conditions. On the left side of this
diagramme, we produce 10 data sets from using all genes in simulation, and 10 more from filtering
after simulation (these data sets containing a subset of the information from the “all genes used for
simulation” data sets). On the right hand side, we produce 10 data sets by filtering genes before
simulation.
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(c) Filtered genes used for simulation
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Figure 12: Precision of the marker selection methods versus the number of markers selected for
the first 500 markers selected. Each sub-figure corresponds to a simulation method and the four
lines correspond to the different marker selection algorithms. The RankCorr method consistently
shows the highest precision across all three simulation methods.
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Figure 13: ROC curves. Each sub-figure corresponds to a simulation method and the four lines
correspond to the different marker selection algorithms. The solid (purple) line is the diagonal
TPR = FPR.
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Figure 14: Clustering error rates using the Random Forest classifier for the first 500 markers chosen
by each method. The sub-figures correspond to different simulation conditions. The RankCorr
algorithm consistently produces the smallest values of the clustering error rate.
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Figure 15: A visual description of 5 fold cross-validation
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Figure 16: The classification accuracy under the RFC on the Paul data set (see Methods) run twice
with the same markers used for each point. Significant variation is observed in the classification
accuracy over the two classification attempts. Differences of nearly 2% are observed between the
two curves.
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Figure 17: Effect of changing the number of nearest neighbors on the ARI, AMI, and FM scores for
the Zeisel data set using RankCorr to select markers. Clustering was performed with Louvain
and the scores were optimized over the resolution. It appears that 15 nearest neighbors is too few,
while 30 nearest neighbors is too many.
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Figure 18: Effect of changing the number of nearest neighbors on the ARI, AMI, and FM scores for
the Paul data set using RankCorr to select markers. Clustering was performed with Louvain and
the scores were optimized over the resolution. All of the choices of numbers of nearest neighbors
produce similar curves for all three scores. Choosing 30 nearest neighbors appears to provide
increased performance for small numbers of markers.
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Figure 19: Clustering the 68k PBMC from [25] with Louvain clustering. (a) contains a UMAP
plot of the bulk labels. (b) is a UMAP plot of a Louvain clustering of the data set. It was created
by first filtering to the 1000 most variable genes (see the Methods). The Louvain algorithm was
run on the top 50 PCs and used 25 nearest neighbours for each cell with a resolution parameter
of 0.3. The Louvain clustering solution subjectively look similar to the bulk labels. The ARI for
the clustering compared to the bulk labels is 0.345, the AMI is 0.565, and the FMS is 0.462 (these
values have been rounded to 3 significant digits).
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Figure 20: UMAP projection of the data consisting of ZhengFull combined with the isolated
CD19+ B cell data set from [25] that was used to estimate parameters in Splatter simulations for
generating synthetic data. We show only the isolated CD19+ sample (labeled “bCells”) and the
cluster of B cells from ZhengFull. The overlap between the two clusters is quite good.
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