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 2 

Abstract 19 

Apex predators are important indicators of intact natural ecosystems. They are also sensitive to 20 

urbanization because they require broad home ranges and extensive contiguous habitat to support their 21 

prey base. Pumas (Puma concolor) can persist near human developed areas, but urbanization may be 22 

detrimental to their movement ecology, population structure, and genetic diversity. To investigate 23 

potential effects of urbanization in population connectivity of pumas, we performed a landscape genomics 24 

study of 134 pumas on the rural Western Slope and more urbanized Front Range of Colorado, USA. Over 25 

12,000 single nucleotide polymorphisms were genotyped using double-digest, restriction site-associated 26 

DNA sequencing (ddRADseq). We investigated patterns of gene flow and genetic diversity, and tested for 27 

correlations between key landscape variables and genetic distance to assess the effects of urbanization and 28 

other landscape factors on gene flow. Levels of genetic diversity were similar for the Western Slope and 29 

Front Range, but effective population sizes were smaller, genetic distances were higher, and there was 30 

more overall population substructure in the more urbanized Front Range. Forest cover was strongly 31 

positively associated with puma gene flow on the Western Slope, while impervious surfaces restricted 32 

gene flow and more open, natural habitats enhanced gene flow on the Front Range. Landscape genomic 33 

analyses revealed differences in puma movement and gene flow patterns in rural versus urban settings. 34 

Our results highlight the utility of dense, genome-scale markers to document subtle impacts of 35 

urbanization on a wide-ranging carnivore living near a large urban center.  36 

 37 
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 3 

Introduction 41 

Urbanization is a major threat to biodiversity, and in particular to apex predators with broad home 42 

ranges (Cohen 2003; Theobald 2005; Crooks et al. 2017). Habitat fragmentation due to urbanization can 43 

have important impacts on predator movement, disease, and survival (Markovchick-Nicholls et al 2008; 44 

Carver et al. 2016; Fountain-Jones et al. 2017). This reduced connectivity can lead to smaller, more 45 

isolated populations, where less gene flow and genetic diversity, as well as smaller effective population 46 

sizes (Riley et al. 2006; Vandergast et al. 2007; Ernest et al. 2014) ultimately cause local and regional 47 

extirpations through environmental and demographic stochasticity and inbreeding depression (Allendorf et 48 

al. 2013). Moreover, increased human recreational activities in wildlife habitats associated with nearby 49 

urbanization can change wildlife movement patterns and habitat usage, exacerbating the impacts of 50 

fragmentation (McKinney 2002; Lewis et al. 2015). As human populations continue to expand worldwide, 51 

urban areas are becoming larger and more extensive on the landscape. However, we do not fully 52 

understand how urbanization affects natural ecosystems near wildland-urban interfaces (Radeloff et al. 53 

2005; Magle et al. 2012). 54 

Large carnivores are important indicators of intact natural ecosystems, as they require an abundant 55 

and sustainable prey base, as well as high habitat connectivity to support their broad home ranges (Sergio 56 

et al. 2006, 2008). However, understanding the effects of urbanization on large carnivores is difficult due 57 

to their low population densities and secretive nature (Logan and Sweanor 2001; Riley et al. 2006; 58 

Hornocker and Negri 2009). Camera traps, radio-telemetry, and GPS collars provide valuable information 59 

on animal home ranges and population sizes (e.g., Lewis et al. 2015; Blecha et al. 2018), but these studies 60 

are expensive, time consuming, and can only monitor a small fraction of the total population for limited 61 

time periods. Population and landscape genetics can provide additional, complementary techniques for a 62 

more detailed understanding of wildlife populations (Epps et al. 2007; Lowe and Allendorf 2010; 63 

Balkenhol et al. 2016). Genetic studies provide an indicator of functional landscape connectivity through 64 

measures of gene flow, effective population sizes of breeding individuals, and cost-efficient monitoring of 65 
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genetic diversity across broad geographic areas (McRae et al. 2005; Solberg et al. 2006). Moreover, recent 66 

high-throughput sequencing technologies enable the genotyping of many more thousands of loci than 67 

previously possible, providing higher power to detect the often subtle population genetic structure of wide-68 

ranging species such as large carnivores (Luikart et al. 2003; Holderegger et al. 2006).  69 

Pumas (Puma concolor; other common names include mountain lions, cougars, panthers, 70 

catamounts) are a large, apex predator with one of the broadest latitudinal ranges of any terrestrial 71 

carnivore, spanning western North America, Central America, and South America (Hornocker and Negri 72 

2009). Pumas are sensitive to urbanization, requiring broad-scale landscape connectivity to persist, and are 73 

thus useful indicators for monitoring the effects of urban fragmentation (Beier 1995; Crooks 2002; 74 

Maletzke et al. 2017). Given sufficient habitat area and landscape connectivity, however, pumas can still 75 

persist within and adjacent to urban systems (Wilmers et al. 2013; Riley et al. 2014; Lewis et al. 2015; 76 

Zeller et al. 2017; Blecha et al. 2018).  Furthermore, the substantial area requirements of large carnivores 77 

such as pumas can enhance their role as “umbrella” species, whose protection also benefits co-occurring 78 

species through broad-scale habitat preservation (Thorne et al. 2006).  79 

The southern Rocky Mountains in western Colorado, USA support natural habitats with high 80 

puma densities, as well as many rural and urban human developments (Hornocker and Negri 2009). The 81 

Western Slope of the Rocky Mountains primarily consists of large areas of contiguous public wildlands 82 

with an abundant prey base for pumas, interspersed with small rural and exurban developments, including 83 

the Uncompahgre Plateau region near the town of Montrose (Western Slope Study Area; Figure 1).  In 84 

contrast, the Front Range is a rapidly urbanizing, major metropolitan area on the Eastern Slope of the 85 

Continental Divide, where urbanization is spreading from lower elevation areas in and around the Denver 86 

Metropolitan Area into adjacent wildland habitats in the foothills of the Rocky Mountains. Pumas continue 87 

to persist near this wildland-urban interface, including adjacent to the city of Boulder on the western edge 88 

of the Denver Metropolitan Area (Front Range Study Area; Figure 1; Lewis et al. 2015; Moss et al. 89 

2016a). From 2010 – 2017, Colorado was the 8th fastest growing U.S. state by population (577,829 90 
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residents added) and the 6th fastest by percentage (11.5% population growth; U.S. Census Bureau 2017), 91 

with most of this growth occurring along the eastern edge of the Front Range. Thus, comparative studies 92 

of puma movement and gene flow in one of the most populous states in the mid-continental USA, which 93 

also supports a robust puma population, can provide insight into the effects of urbanization on this 94 

important apex predator. 95 

Here, we tested how different landscape factors, including urbanization, enhance or restrict gene 96 

flow and genetic diversity in a large apex predator across an urban-rural divide in Colorado, USA. A large 97 

sample (n = 134) of pumas were utilized from (a) the rural Western Slope and (b) the more urbanized 98 

Front Range (Figure 1). We used double digest restriction site associated DNA sequencing (ddRADseq) to 99 

genotype pumas at 12,444 single nucleotide polymorphism (SNP) loci to evaluate the potential differences 100 

in gene flow, effective population sizes, genetic diversity, and population structure in these two different 101 

landscapes. We tested landscape genomic hypotheses by correlating key landscape factors with puma 102 

genetic distance measures. We hypothesized that pumas in the more urbanized Front Range would have 103 

(a) smaller effective population sizes, (b) lower levels of genetic diversity, and (c) more landscape factors 104 

related to urbanization that restrict gene flow, relative to the rural Western Slope landscape. 105 

 106 

Materials and Methods 107 

Samples and sequences 108 

Puma blood and tissue samples were collected as part of ongoing monitoring efforts by Colorado 109 

Parks and Wildlife in both the Western Slope and Front Range regions of the southern Rocky Mountains 110 

of Colorado, USA (Figure 1; Lewis et al. 2015; Carver et al. 2016). Samples were collected from 2005-111 

2014 on the Western Slope and 2007-2013 on the Front Range. Western Slope samples consisted of 36 112 

males and 42 females, and Front Range samples consisted of 24 males, 31 females, and 1 puma of 113 

unknown sex. Our sampling represents a large proportion of the resident pumas present in both regions 114 

during the sampling period, as Lewis et al. (2015) estimated 14.4 (S.E. 1.6) and 14.7 (S.E. 1.3) resident 115 
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pumas occupying the Western Slope and Front Range study areas at a single time point, respectively, from 116 

motion camera and telemetry data collected in 2009 and 2010. 117 

Genomic DNA was extracted from tissue or blood using QIAGEN DNeasy Blood & Tissue kits 118 

(QIAGEN Inc., Valencia, CA). We genotyped a total of 78 individuals from the Western Slope and 56 119 

individuals from the Front Range using the ddRADseq protocol described in Peterson et al. (2012) and 120 

sequenced on Illumina HiSeq 2500 and 4000 machines (Illumina, San Diego, California) using 100bp 121 

single-end sequencing at the University of Oregon Genomics Facility (gc3f.uoregon.edu). We tested 9 122 

different combinations of restriction enzymes on puma samples for digestion efficiency and evaluated the 123 

size ranges of fragment distributions using an Agilent Tapestation 2200 (Agilent Genomics, Santa Clara, 124 

California). We chose the digest enzymes EcoRI-HF (6bp recognition) and NlaIII (4bp recognition) and a 125 

target fragment size range of 300–400 bp (excluding adapters). We used a Blue Pippin with a 2%, internal 126 

standard, 100-600 bp gel cartridge (Sage Science, Beverly, Massachusetts) for size selection and a 127 

biotinylated P2 adapter with DynaBeads® (Peterson et al. 2012) to purify the polymerase chain reaction 128 

(PCR) template for the final enrichment. PCR was performed for 12 cycles and five reactions were tested 129 

for each pool of individuals. We initially genotyped 16 individuals multiplexed into an Illumina 2500 130 

HiSeq lane to estimate maximum multiplexing based on a target of >12X coverage per locus. After 131 

assessment of locus coverage, we proceeded to multiplex 48 and 70 individually-barcoded samples on 132 

Illumina 2500 and 4000 HiSeq lanes, respectively, using the Peterson et al. (2012) flex adaptors. 133 

 134 

Bioinformatics pipeline and filters 135 

We evaluated read quality for each sequencing lane using FastQC 136 

(bioinformatics.babraham.ac.uk) and assembled our SNP dataset de novo using Stacks v 1.41 (Catchen et 137 

al. 2013). Details on Stacks code and parameter settings used are on the GitHub repository; 138 

github.com/pesalerno/PUMAgenomics. We demultiplexed and filtered sequencing reads using the 139 

program process_radtags in Stacks. Due to sensitivity of downstream genotyping with different Stacks 140 
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parameter settings (Mastretta-Yanes et al. 2015; Paris et al. 2017), we incorporated individual sample 141 

replicates in library preparations. In each library, we included 3 within and 3 between library replicates, 142 

which were used for estimating genotyping error rates for different combinations of parameters used to 143 

construct loci with the denovo_map.pl Stacks pipeline. We ran 11 different de novo assemblies varying 4 144 

different Stacks parameters that affect locus, allele, and SNP error rates and the number of loci genotyped, 145 

consisting of (1) minimum number of identical, raw reads required to create a stack (-m), (2) number of 146 

mismatches allowed between loci when processing a single individual (-M), (3) number of mismatches 147 

allowed between loci when building the catalog (-n), and (4) maximum number of stacks at a single de 148 

novo locus (-max_locus_stacks) (Table S1; Mastretta-Yanes et al. 2015). Locus error rate was calculated 149 

as the number of loci present in only one of the samples of a replicate pair divided by the total number of 150 

loci, allele error rate was the number of allele mismatches between replicate pairs divided by the number 151 

of loci, and SNP error rate was the proportion of SNP mismatches between replicate pairs. 152 

After identifying the most supported parameter settings that minimized locus, allele, and SNP 153 

error rates, while maximizing the number of SNPs (-m = 3, -M = 4, -n = 4, max_locus_stacks = 3; Table 154 

S1), we exported the SNP matrix with the populations program in Stacks (Catchen et al. 2013), retaining 155 

SNPs that were present in at least 20% of individuals by population, and retaining a single random SNP 156 

per locus. This matrix was further filtered for missing data in Plink v. 1.07, first by locus, then by 157 

individual, and then by minor allele frequency (MAF) using multiple combinations of thresholds for 158 

reducing missing data in the matrix (see github.com/pesalerno/PUMAgenomics). After evaluating missing 159 

data from SNP matrices, we retained the matrix with a more stringent locus filter (excluding loci missing 160 

>25% individuals) and a less stringent filter on minor allele frequency (excluding loci with MAF < 0.01). 161 

We additionally filtered loci that were found at position 95 (the last position of our reads) due to a higher 162 

number of SNPs present in this position, suggesting increased error rates due to low sequence quality 163 

towards the end of the sequencing read. In order to compare landscape resistances with putatively neutral 164 

loci, we used a Principal Components Analysis (PCA) to identify loci showing strong signatures of 165 
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selection relative to neutral background genomic variation with the program PCAdapt (Luu et al. 2016). 166 

We found twelve, putatively adaptive, outlier loci using a false discovery rate of 10%, so we filtered these 167 

outliers out for downstream landscape genomic analyses to avoid confounding neutral demographic 168 

patterns with patterns generated by loci under selection.  169 

 170 

Population genomics and structure 171 

Population genomic statistics were calculated for the two sampling regions, the Western Slope and 172 

Front Range (Figure 1). Observed and expected heterozygosity (Hobs and Hexp), nucleotide diversity (π), 173 

inbreeding coefficient (FIS), and population genetic differentiation (FST) were calculated using the 174 

populations program in Stacks with SNP loci that passed previous filters, excluding a single individual 175 

(sample_1382) that did not pass the 75% missing data threshold. We estimated allelic richness (Ar) using 176 

HP-RARE 1.0 (Kalinowski 2005), which corrects for variance in sample sizes using rarefaction. Two 177 

complementary, individual-based genetic distances were calculated: proportion of shared alleles distance 178 

(Dps; Bowcok et al. 1994) using the adegenet R v. 3.3.3 package and relatedness distance (r; Smouse and 179 

Peakall 1999) using the PopGenReport R package. We then calculated mean genetic distance among 180 

individuals for each region, corrected for geographic distance (i.e., genetic distance per km), since 181 

individuals that are farther apart are expected to have higher genetic distances due to neutral isolation by 182 

distance population processes (Wright 1942; Balkenhol et al. 2016). Effective population sizes (Ne) were 183 

estimated using the linkage disequilibrium method in NeEstimator v. 2.01 (Do et al. 2014), using the 184 

correction for chromosome number (Waples et al. 2016), which has been shown to be a robust method for 185 

inferring Ne using SNP datasets and large sample sizes (Waples 2016; Waples et al. 2016). We evaluated 186 

overall genetic structure as well as genetic differentiation among the two sampling sites (Western Slope 187 

and Front Range) using PCA and Discriminant Analysis of Principal Components (DAPC) in the R 188 

package adegenet (Jombart 2008) and Admixture ancestry analysis (Alexander et al. 2009). We used the 189 

function assignplot to identify individuals that were putative migrants or admixed based on the individual 190 
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DAPC assignment probabilities. We used the find.clusters command in adegenet and minimized cross 191 

validation error in Admixture to estimate the number of populations (i.e., K).  192 

 193 

Landscape genomics 194 

 Geographic Information Systems (GIS) data were collected for different landscape factors that we 195 

hypothesized would affect puma dispersal and gene flow in Colorado. Table 1 provides details on GIS 196 

data sources, spatial resolution, and ecological justification for each landscape factor. Study area extents 197 

were calculated and landscape variables were compared across regions by buffering individual data points 198 

by a typical female puma dispersal distance of 34.6 km (Logan and Sweanor 2001), dissolving 199 

overlapping buffers, and calculating zonal statistics within each region (Western Slope and Front Range) 200 

using ArcGIS v. 10.1 (ESRI, Redlands, California). Landscape data were converted into resistance 201 

surfaces using the Reclassify and Raster Calculator tools in ArcGIS. The following hypothesized 202 

relationships of landscape factors with puma gene flow were modeled: percent impervious surface cover 203 

(negative effect on gene flow), land cover (forested, open-natural, and developed: positive, neutral, and 204 

negative effects on gene flow, respectively), percent tree canopy cover (positive effect), vegetation density 205 

(positive effect), river and stream riparian corridors (positive effect), roads (negative effect), minimum 206 

temperature of the coldest month (negative effect), annual precipitation (positive effect), topographic 207 

roughness (positive effect), and elevation (negative effect). Additionally, we included an isolation by 208 

geographic distance model, which would be supported if none of the landscape variables had an effect on 209 

gene flow except for straight line, Euclidean distance between individuals (Wright 1942; Balkenhol et al. 210 

2016). Table S2 describes methods and justification for converting raw landscape variables to resistance 211 

surfaces. 212 

 Two genetic distance measures were used as response variables in landscape genomic analyses: 213 

proportion of shared alleles distance (Dps; Bowcok et al. 1994) and relatedness distance (r; Smouse and 214 

Peakall 1999). Environmental resistances among individuals were calculated using Circuitscape (McRae 215 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2019. ; https://doi.org/10.1101/679720doi: bioRxiv preprint 

https://doi.org/10.1101/679720
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

2006) for each landscape resistance surface (McRae 2006; Row et al. 2017). Circuitscape resistances are a 216 

useful tool in landscape genetics because they summarize all potential movement pathways 217 

simultaneously, as opposed to least cost paths that evaluate only a single idealized pathway, and thus 218 

assume the study organism has complete knowledge of the landscape and always chooses the ideal 219 

pathway (McRae 2006; Balkenhol et al. 2015). Landscape variables were tested for multicollinearity, both 220 

prior to and after calculating environmental resistances in Circuitscape, to ensure Pearson’s r correlations 221 

< 0.7 and variance inflation factor (VIF) scores < 5 in final landscape genomics models, as collinearity can 222 

cause instability in parameter estimation in regression models (Tables S3 and S4; Warren et al. 2010; 223 

Dormann et al. 2012; Rowe et al. 2017).  224 

 Two complementary methods were used to estimate the effects of environmental resistances on 225 

genetic distances: multiple regression on distance matrices (MRDM; Legendre et al. 1994) using 226 

PERMUTE v.3.4 and maximum likelihood of population effects (MLPE; Clark et al. 2002; van Strien et 227 

al. 2012; Row et al. 2017) using the lme4 R package. MRDM is a permutational, distance matrix-based 228 

approach that has been traditionally used in landscape genetic analyses, whereas MLPE is a newer linear 229 

mixed effects modeling technique that models pairwise comparisons as a random effect and environmental 230 

resistances as fixed effects (Balkenhol et al. 2016). Recent evaluations of landscape genetic approaches 231 

found linear mixed effects modeling using MLPE to be more accurate, although both approaches 232 

performed well (Shirk et al. 2017). Therefore, we included the traditional MRDM approach as well as 233 

MLPE in order to utilize multiple, complementary techniques for inferring associations between landscape 234 

features and gene flow. For MRDM and MLPE, genetic distances were the response variable and 235 

environmental resistances were explanatory variables. Additionally for MLPE, a random effect matrix of 236 

individual comparisons was included to control for the non-independent, pairwise structure of the data, 237 

and landscape resistances were standardized to units of standard deviation centered on the mean (van 238 

Strien et al. 2012; Row et al. 2017). Models were ranked using the Bayesian information criterion (BIC), 239 

and top models within 5 BIC units are reported (Richards 2015). 240 
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 241 

Results 242 

Genotyping and filtering SNP matrices 243 

Initial Stacks processing retained a single random SNP per 95 bp read and SNPs present in at least 244 

20% of individuals by population, resulting in a matrix of 98,813 SNPs. These SNPs were further filtered 245 

in Plink by removing loci that were present in less than 75% of individuals, which resulted in a matrix of 246 

20,355 SNPs. Only a single individual was excluded based on our >75% missing loci per individual 247 

threshold. After excluding SNPs present in the 95th sequencing base position and with minor allele 248 

frequency <0.01, we retained 12,456 SNPs. PCAdapt detected twelve outlier loci, putatively under 249 

selection, while accounting for population structure (K=2). After removing these putatively adaptive loci, 250 

the final neutral dataset contained 12,444 SNPs (Table S1; github.com/pesalerno/PUMAgenomics). 251 

 252 

Population genomics and structure 253 

The two study areas encompass similar geographic extents: 11,889 km2 for the Western Slope and 254 

11,958 km2 for the Front Range (Table 2). Measures of genetic diversity (Hobs, Hexp, π, Ar,) and inbreeding 255 

(FIS) were similar for the Western Slope and Front Range (Table 2). However, the effective population 256 

size (Ne) was smaller, mean genetic distances among individuals (DPS/km and r/km) were higher, and there 257 

was more overall population substructure in the more urbanized Front Range (Table 2, Figure 2). We also 258 

calculated Ne using subsets of individuals (i.e., pre and post-2010 individuals in the Front Range, pre and 259 

post-2011 individuals in the Western Slope), since multiple overlapping generations may bias effective 260 

population size estimates low or high (Waples 2016; Waples et al. 2016). Ne remained consistently higher 261 

in the Western Slope, although it differed between the earlier and later sampling periods there, and 262 

indicated the population may be expanding (Table S5). We found a detectable signature of population 263 

differentiation between the Western Slope and Front Range regions based on a PCA and DAPC, and 264 

Admixture ancestry analysis indicated K=2 was the best supported value of K by minimizing cross 265 
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validation error (Figure 2; Alexander et al. 2009). The proportion of correct individual assignment to 266 

populations based on DAPC (Figure 2b), which attempts to minimize within population distances and 267 

maximize between population distances (Jombart 2008), was high for most individuals in both the 268 

Western Slope (0.98) and the Front Range (0.96). However, the DAPC assignplot also identified admixed 269 

individuals and putative migrants between regions, including a female and a male in the Front Range that 270 

assigned mostly to the Western Slope, and an admixed male in the Western Slope that assigned mostly to 271 

the Front Range (Figure 2b). We also analyzed both regions separately for population substructure (Figure 272 

S1), and there was no signature of population differentiation within the Western Slope or Front Range, 273 

further supporting two populations. 274 

 275 

Landscape Genomics 276 

The Front Range has more urban development than the Western Slope, with more impervious 277 

surface cover and a higher density of roads (Figure 1, Table 3, Table S2). The Front Range also has more 278 

tree canopy cover, higher vegetation density, and higher annual precipitation than the Western Slope 279 

(Table 3), likely due to the high desert habitats (i.e., the Colorado Plateau ecoregion) in the Western Slope 280 

being drier than the grassland and shrub habitats found at lower elevations of the Front Range (i.e., the 281 

Great Plains ecoregion; McMahon et al. 2001).  282 

Prior to running Circuitscape, landscape raster surfaces were largely uncorrelated (i.e., Pearson’s r 283 

< 0.7), with the exception of elevation, which was positively correlated with annual precipitation and 284 

negatively correlated with minimum temperature of the coldest month in both regions, and vegetation 285 

density, which was negatively correlated with annual precipitation in the Front Range (Table S3). After 286 

Circuitscape analyses, environmental resistance variables showed more collinear relationships than raw 287 

raster surfaces (Table S4), likely due to Circuitscape resistances being higher for individuals separated by 288 

larger geographic distances (McRae 2006). Therefore, we removed landscape variables from both regions 289 

that were strongly correlated with many other variables, until all VIF scores were less than 10 (Row et al. 290 
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2017). Variables retained were geographic distance, river and stream riparian corridors, roads, impervious 291 

surface cover, tree canopy cover, vegetation density, and minimum temperature of the coldest month. 292 

However, vegetation density was still correlated with geographic distance in both regions, and impervious 293 

surface was correlated with geographic distance and tree canopy cover in the Western Slope (Table S4). 294 

We removed these variables as well, resulting in Pearson’s r correlations less than 0.7 and VIF scores less 295 

than or equal to 4.1 and 3.5 in the Western Slope and Front Range, respectively, for all explanatory 296 

variables. Thus final MRDM and MLPE models for the Western Slope included geographic distance, tree 297 

canopy cover, stream and river riparian corridors, roads, and minimum temperature of the coldest month; 298 

and for the Front Range included the same landscape variables plus impervious surface cover.  299 

 Landscape genomic patterns of pumas were different in the rural Western Slope compared to the 300 

more urbanized Front Range, with the exception of geographic distance being supported in both regions 301 

(Tables 4 and 5). In the Western Slope, tree canopy cover was consistently positively correlated with gene 302 

flow in MRDM and MLPE models, and low minimum temperatures of the coldest month (i.e., those found 303 

in high elevation, alpine tundra habitats) were negatively correlated gene flow in one MLPE model 304 

(Tables 4 and 5). In contrast, in the Front Range, tree canopy cover and percent impervious surface cover 305 

were negatively associated with gene flow in the top MLPE models (Table 5). Since the relationship 306 

between tree cover and gene flow was the opposite of what we hypothesized in the Front Range, we also 307 

inverted the tree cover resistance surface (i.e., making higher tree cover = higher resistance), reran 308 

Circuitscape and MLPE analyses, and higher tree cover still showed significant negative correlations with 309 

gene flow in this region. 310 

 311 

Discussion 312 

The apex predator puma (Puma concolor) persists in many urbanized regions throughout its range, 313 

yet the localized effects of recent urban sprawl remain unclear. Here, we compared patterns of genomic 314 

landscape connectivity and diversity of pumas across two regions that span an urban-rural divide in 315 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2019. ; https://doi.org/10.1101/679720doi: bioRxiv preprint 

https://doi.org/10.1101/679720
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

Colorado, USA. Landscape genomic connectivity patterns differed between regions, such that genetic 316 

distances were higher and urbanization (i.e., percent impervious surface cover) restricted gene flow in the 317 

more urbanized Front Range, whereas forest cover was most important for enhancing gene flow on the 318 

rural Western Slope. Despite finding reductions in gene flow associated with urbanization on the Front 319 

Range, population-level genetic diversity and inbreeding measures were similar to those on the rural 320 

Western Slope. This suggests that recent urban sprawl in the Colorado Front Range has not yet had a 321 

substantial impact on the genetic diversity of pumas. This is in contrast to more isolated puma populations 322 

in other highly urbanized landscapes such as southern California and Florida, which exhibit reduced 323 

genetic diversity and strong evidence of inbreeding compared to Colorado pumas (Ernest et al. 2003, 324 

2014; Johnson et al. 2010). However, a smaller effective population size, higher among-individual genetic 325 

distances, and higher population substructure in the recently urbanized Front Range suggest habitat 326 

fragmentation has already impacted this population and could cause further reductions of genetic diversity 327 

as urbanization continues to expand in Colorado (Theobald 2005; U.S. Census Bureau 2017). If puma 328 

populations decline, this could have important cascading effects into lower trophic levels, such as 329 

overgrazing of vegetation by ungulate herbivores (Markovchik-Nicholls et al. 2008). 330 

 331 

Population genomics and structure 332 

The Western Slope and Front Range were resolved as two genetically distinct groups (i.e., K=2; 333 

Figures 1 and 2). Minimum temperature of the coldest month was also negatively associated with gene 334 

flow in one of the top landscape genomic models on the Western Slope (Table 5), suggesting there may be 335 

restricted gene flow through high elevation, alpine tundra habitats (McMahon et al. 2001). However, 336 

potential immigrants and admixed individuals were identified moving in both directions (Figure 2) and 337 

overall genetic differentiation between the two populations was low (pairwise FST = 0.02; Table 2). Since 338 

our sample archive consisted of opportunistically collected samples, our analyses were restricted to 339 

populations in two distinct regions, whereas pumas occur throughout the southern Rocky Mountains in 340 
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Colorado. Therefore, potential immigrants and admixed individuals are not necessarily moving between 341 

our specific Western Slope and Front Range study areas, but may originate from other unsampled 342 

populations that share genetic ancestry with our two study regions. Nevertheless, results from our study 343 

suggest pumas may be somewhat limited in dispersing across the high elevation peaks of the Continental 344 

Divide, and future studies should attempt to sample more intensively across the entire region to further 345 

investigate this trend.  346 

We identified similar levels of genetic diversity and inbreeding between the rural Western Slope 347 

and more urbanized Front Range (Table 2), suggesting urbanization is not yet having a large impact on the 348 

genetic diversity of pumas in Colorado. One potential explanation is that urbanization in the Front Range 349 

is primarily occurring on the eastern edge of the region, possibly creating a relatively impermeable urban 350 

boundary on the eastern border, but not isolating pumas in fragments or limiting their connectivity to 351 

wildland habitat to the west (Figure 1; Lewis et al. 2015; Blecha et al. 2018). Another possibility is that 352 

many of the SNPs we sampled may not have high enough mutation rates to show a strong genomic 353 

signature of the relatively recent effects of rapid urbanization occurring in the Front Range (Haasl and 354 

Payseur 2011; Allendorf et al. 2013). As the human population continues to expand, future urbanization 355 

could result in more fragmented populations and reductions in genetic diversity, as has been detected in 356 

other more urbanized landscapes like southern California and Florida (Ernest et al. 2003, 2014; Johnson et 357 

al. 2010).  358 

Despite similar geographic extents and levels of genetic diversity in the Western Slope and Front 359 

Range, mean genetic distances among individuals were higher in the urban Front Range (Table 2), 360 

suggesting that fragmentation due to urbanization may be limiting puma dispersal and gene flow. In 361 

addition, a larger effective population size (Ne) of pumas was detected on the rural Western Slope 362 

(Ne=69.3) compared to the urban Front Range (Ne=40.2; Table 2), with the caveat that some assumptions 363 

of this estimator are violated in both regions (e.g., closed populations with no immigration, non-364 

overlapping generations). The effect of non-overlapping generations on Ne is difficult to predict (Waples et 365 
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al. 2016), and this assumption is expected to be violated similarly in both the Western Slope and Front 366 

Range populations. Immigration, however, is expected to downwardly bias Ne by creating linkage 367 

disequilibrium through a multi-locus Wahlund effect (Wahlund 1928; Waples and England 2011). Thus, it 368 

is possible that the Front Range may be showing a lower Ne due to having more immigrants from outside 369 

populations than the Western Slope. This is possible, and perhaps likely, given the higher overall 370 

population substructure in the Front Range (Figure 2), which could indicate more potential immigrants 371 

into this region. On the other hand, if immigration rates are similar for both regions, the relatively smaller 372 

Front Range Ne may be due to (1) urbanization and fragmentation impacting and limiting population size, 373 

and/or (2) species range limit theory (Abundant Center Hypothesis) predicting that smaller population 374 

sizes are likely to occur at the edge of the geographic range relative to core areas (Brown 1984; Sagarin 375 

and Gaines 2002). These potential underlying factors are not mutually exclusive and may both be acting 376 

together. However, the lack of difference in most genetic diversity measures, in addition to slightly lower 377 

allelic richness in the Front Range, which is the most sensitive metric to recent bottlenecks (Allendorf et 378 

al. 2013), suggests lower effective population size on the Front Range may be more consistent with recent 379 

urbanization impacts than historical range boundary effects. 380 

 381 

Landscape genomics 382 

With regard to general landscape genomics methodology, we found MRDM to be a much more 383 

conservative approach that adds fewer explanatory variables to the models than MLPE (Tables 4 and 5). 384 

Conversely, MLPE results in more complex models with more explanatory variables and higher r2 values 385 

(genetic variation explained) than MRDM (Tables 4 and 5). The different genetic distance measures we 386 

used (DPS and r) showed largely consistent relationships with landscape variables, but still provided a few 387 

different insights, particularly using MLPE (Tables 4 and 5). Overall r2 values were somewhat low (r2 = 388 

0.04 - 0.08 for MRDM, r2 = 0.11 - 0.17 for MLPE), but this is expected for a large carnivore with extreme 389 
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long distance dispersal abilities (e.g., Short Bull et al. 2011, Balkenhol et al. 2016). Isolation by distance 390 

was important across models for both regions (Tables 4 and 5). 391 

On the rural Western Slope, tree canopy cover was most important for enhancing gene flow, 392 

suggesting pumas prefer to disperse through forests rather than more open shrub and grassland habitats in 393 

this landscape (Table 5). Forests provide more cover for concealment and ambush predation (Logan and 394 

Sweanor 2001; Hornocker and Negri 2009; Warren et al. 2016). Use of open areas may also increase 395 

susceptibility to mortality by hunters and ranchers (Newby et al. 2013), which are both more prevalent in 396 

the rural Western Slope than the more urbanized Front Range. In addition, non-forested areas on the 397 

Western Slope are dry, high elevation desert habitats (i.e., the Colorado Plateau ecoregion; McMahon et 398 

al. 2001), which may provide less prey and water resources, and thus be poorer habitats for hunting and 399 

dispersal (Sweanor et al. 2000; McRae et al. 2005; Dickson et al. 2013).  400 

In the more urbanized Front Range, impervious surface cover restricted gene flow (Table 5). This 401 

suggests urbanization is limiting gene flow, despite high levels of genetic diversity (Table 2). Similarly, 402 

Lewis et al. (2015) found pumas were less likely to be detected in habitats with residential development, 403 

even low-density exurban developments, which are increasingly encroaching into the foothills of the Front 404 

Range region. Genetic studies on pumas from more urbanized and fragmented populations in southern 405 

California and Florida have detected strong inbreeding and isolation associated with urbanization (Ernest 406 

et al. 2003, 2014; Johnson et al. 2010; Riley et al. 2014). Our study detected more subtle impacts of 407 

urbanization in a less fragmented landscape, within mountainous wildland habitats adjacent to a major 408 

metropolitan center, which experiences high levels of human outdoor recreation activities such as hiking 409 

and skiing (Figure 1). In addition, in contrast with the rural Western Slope and contrary to our initial 410 

hypotheses, forest cover was negatively associated with gene flow on the Front Range (Table 5). This 411 

pattern suggests pumas are more willing to disperse through open shrub and grassland habitats in this 412 

region. The reasons for this are unclear, but pumas living in the more developed Front Range may be more 413 

acclimated to human activities and thus more willing to travel outside of forested habitats, demonstrating 414 
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that pumas have a range of adaptable behaviors and will use and move through different types of habitat 415 

(Dickson et al. 2005; Blecha et al. 2018). Pumas may also be hunting more urban mesopredators, 416 

domestic, and agricultural animals in these open habitats on the more developed Front Range, which was 417 

shown in a prior study using stable isotope analysis of Front Range puma diets (Moss et al. 2016b). There 418 

is also less hunting of pumas in the Front Range compared to the rural Western Slope, so pumas may be 419 

less wary of open areas, although this effect would be expected to be counteracted in part by higher traffic 420 

mortality in the more urbanized region (Beier 1995; Crooks 2002).  421 

 422 

Conclusions 423 

Our findings are consistent with prior comparative landscape genetic studies that have revealed 424 

varying effects of landscape factors on movement and gene flow across different portions of a species’ 425 

geographic range (e.g., Vandergast et al. 2007; Short Bull et al. 2011; Trumbo et al. 2013). We found that 426 

in the rural Western Slope with high hunting pressure, forests with high tree canopy cover are most 427 

important for conserving puma genetic connectivity. In contrast, in the more urbanized Front Range, non-428 

forested habitats such as shrublands and grasslands habitats are utilized for dispersal and gene flow, 429 

effective population sizes are smaller, genetic distances among individuals are higher, and gene flow is 430 

being restricted by urbanization (Tables 2, 4, and 5). Next generation sequencing techniques can provide 431 

dense, genome-scale SNP datasets of thousands of putatively neutral markers, which gives researchers 432 

increased power to detect the often subtle effects of landscape factors, such as urbanization, on gene flow 433 

(Luikart et al. 2003; Lowe and Allendorf 2010; Allendorf et al. 2013). This is particularly important for 434 

wide-ranging species with broad geographic distributions, since landscape effects on gene flow occur at 435 

broader geographic scales and may be weaker and more difficult to detect compared to more dispersal-436 

limited species with smaller home ranges (Holderegger et al. 2006; Epps et al. 2007; Balkenhol et al. 437 

2016). Indeed prior work on pumas using 16 microsatellites found no population structure across the 438 

southern Rocky Mountains of Colorado and northern New Mexico (McRae et al. 2005). Our results 439 
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demonstrate that large SNP datasets can allow researchers to identify impacts of urbanization on gene 440 

flow, effective population sizes, and patterns of population genetic structure of wide-ranging species, even 441 

before fragmentation is extensive enough to greatly reduce genetic diversity. Maintaining genetic 442 

connectivity in these “umbrella” species can have outsized benefits towards conserving biodiversity, since 443 

preserving broad swaths of contiguous habitats that are necessary for their persistence also benefits many 444 

other species with smaller home ranges and narrower habitat requirements (Sergio et al. 2006, 2008; 445 

Thorne et al. 2006).  446 
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Tables 661 
 662 
Table 1: Environmental variables used for landscape genomic analyses, data sources, spatial resolution, 663 
and ecological justification. 664 
 665 

Category 
Landscape 
Variable 

Code Description 
Data Source, Spatial 
Resolution 

Calculation Ecological Justification  

Distance Isolation by 
geographic 
distance 

Geo. 
dist. 

Euclidean, straight-
line distance 
between 
individuals 

No environmental data; 
model assumes only 
distance affects gene 
flow,  
30 meter 

ArcGIS Reclassify tool, 
Circuitscape 

Model of isolation by 
straight-line distance 
(Wright 1942). 

Land cover Land cover: 
forested, 
open-
natural, and 
developed  

Land 
cover 

Multiple land cover 
categories 
collapsed into 3 
costs of 
movement: 
forested (lowest), 
open natural areas 
(medium), and 
developed 
(highest) 

National Land Cover 
Database 
(mrlc.gov/nlcd2011.php; 
Homer et al. 2011),  
30 meter 

ArcGIS Spatial Analyst Forested habitats provide 
the most cover for hunting 
and dispersal, open natural 
areas are intermediate, and 
developed areas are the 
least suitable habitat for 
dispersal (Crooks 2002; 
Lewis et al. 2015). 

 Percent 
impervious 
surface 
cover 

Imperv. Percentage of 
impervious surface  

National Land Cover 
Database 
(mrlc.gov/nlcd2011.php; 
Homer et al. 2011),  
30 meter 

ArcGIS Spatial Analyst Human development results 
in increased noise, lights, 
and hunter access, limiting 
dispersal (Riley et al. 2006; 
Ernest et al. 2014; Maletzke 
et al. 2017). 

 Road 
corridors 

Roads Roads, with 50 
meter buffers on 
each side 

Colorado Department of 
Transportation 
(dtdapps.coloradodot.info
/otis),  
30 meter 

ArcGIS Analysis Tools, 
Spatial Analyst 

Roads increase mortality, 
noise, lights, and hunter 
access, limiting dispersal 
(Riley et al. 2006; Newby et 
al. 2013; Maletzke et al. 
2017).  

 River and 
stream 
riparian 
corridors 

Riparian River and stream 
riparian corridors, 
with 50 meter 
buffers on each 
side 

National Hydrography 
Dataset (nhd.usgs.gov),  
30 meter 

ArcGIS Analysis Tools, 
Spatial Analyst 

River and stream riparian 
corridors provide vegetative 
and topographical cover for 
dispersal, as well as water 
sources attracting prey 
species (Naiman et al. 1993; 
Hilty and Merenlender 2004; 
Dickson et al. 2005). 

Vegetation Percent tree 

canopy 
cover  

Tree 

cover 

Percentage of tree 

canopy cover 

National Land Cover 

Database 
(mrlc.gov/nlcd2011.php; 
Homer et al. 2011),  
30 meter 

ArcGIS Spatial Analyst Low tree canopy limits cover 

for ambush predation and 
concealment, and restricts 
dispersal (Sweanor et al. 
2000; Logan and Sweanor 
2001; Warren et al. 2016; 
Blecha et al. 2018). 

 Enhanced 
vegetation 
index 

Veg. 
density 

Density of 
vegetation 
calculated from 
chlorophyll 
reflectance in 
visual and near-
infrared spectra 

Moderate Resolution 
Imaging 
Spectroradiometer 
(modis.gsfc.nasa.gov),  
250 meter 

ArcGIS Spatial Analyst Low vegetation density 
limits cover for ambush 
predation and concealment, 
and restricts dispersal 
(Sweanor et al. 2000; Hilty 
and Merenlender 2004; 
Warren et al. 2016; Blecha 
et al. 2018). 

Climate Minimum 
temperature 
of the 
coldest 
month 

Min. 
temp. 

Mean annual 
minimum 
temperature of the 
coldest month (°C) 
calculated from 

Global Climate Data 
(worldclim.org/bioclim; 
Hijmans et al. 2005),  
1 kilometer 

ArcGIS Spatial Analyst Low minimum temperatures 
and high snowfall, found at 
high elevation mountain 
ridgelines (e.g., alpine 
tundra habitats) restrict 
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1970-2000 
weather station 
data, interpolated 
between stations 

hunting, breeding, and 
dispersal (Hornocker and 
Negri 2009). 

 Mean annual 
precipitation  

Ann. 
precip. 

Mean annual 
precipitation 
accumulation (mm) 
calculated from 
1970-2000 
weather station 
data, interpolated 
between stations 

Global Climate Data 
(worldclim.org/bioclim; 
Hijmans et al. 2005),  
1 kilometer 

ArcGIS Spatial Analyst Dry habitats with low 
precipitation accumulation 
limit prey species for 
hunting and vegetative 
cover, restricting dispersal 
(Logan and Sweanor 2001; 
McRae et al. 2005). 

Topography Topographic 
roughness 

Topo. 
rough. 

Topographic 
complexity based 
on variance in 
elevation within a 
moving window 

National Elevation 
Dataset 
(lta.cr.usgs.gov/ned) 
National Map Tool 
(viewer.nationalmap.gov),  
30 meter 

Geomorphometric and 
Gradient Metric Toolbox 
(Cushman et al. 2010), 
ArcGIS Spatial Analyst 

Steep, topographically-
complex canyons and 
mountain slopes provide 
cover for hunting and 
dispersal (Dickson et al. 
2005; Hornocker and Negri 
2009).  

 Elevation Elev. Elevation 
calculated from 
digital elevation 
models. 

National Elevation 
Dataset 
(lta.cr.usgs.gov/ned) 
National Map Tool 
(viewer.nationalmap.gov),  
30 meter 

ArcGIS Spatial Analyst Low minimum temperatures 
and high snowfall, found at 
high elevation mountain 
ridgelines (e.g., alpine 
tundra habitats) restrict 
hunting, breeding, and 
dispersal (Hornocker and 
Negri 2009). 

 666 
667 
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Table 2: Study areas (km2), number of individuals genotyped (Ngen), and population genomic parameter 668 
estimates from the Western Slope and Front Range of Colorado. Population genomic measures are 669 
observed heterozygosity (Hobs), expected heterozygosity (Hexp), nucleotide diversity (π), allelic richness 670 
(Ar), inbreeding coefficient (FIS), genetic differentiation among populations (pairwise FST), mean genetic 671 
distance among individuals corrected for geographic distance (DPS and r per km) with standard errors 672 
(S.E.), and effective population size (Ne) with 95% confidence intervals (C.I.) based on parametric 673 
bootstrapping.  674 
 675 

Region 
Area 

(km2) 
Ngen Hobs Hexp π Ar FIS FST 

DPS/km 

(S.E.) 

r/km 

(S.E.) 

Ne 

(95% C.I.) 

Western Slope 11889 
78 

indiv. 
0.240 0.272 0.0029 1.93 0.117 

0.024 

0.28 

(0.05) 

0.15 

(0.03) 

69.3 

(66.2-72.4) 

Front Range 11958 
56 

indiv. 
0.242 0.263 0.0028 1.89 0.084 

0.46 

(0.16) 

0.24 

(0.09) 

40.2 

(38.7-41.7) 

 676 
677 
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Table 3: Habitat differences between the Western Slope and Front Range of Colorado. Units are percent 678 
cover for impervious surface and tree canopy cover; resistance values for land cover, river and stream 679 
riparian corridors, and roads; degrees Celsius for temperature; millimeters for precipitation; meters for 680 
elevation; and unitless measurements based on chlorophyll reflectance and variance in elevation, 681 
respectively, for enhanced vegetation index and topographic roughness. 682 
 683 

Landscape Data Western Slope       Front Range       

 Min Max Median Mean Std Dev Min Max Median Mean Std Dev 

Elevation (m) 1453.5 4362.9 2354 2418.0 552.5 1474.5 4347.1 2365 2374.9 629.3 

Tree canopy 
cover (%) 

0 100 20 29.9 31.4 0 100 32 35.0 33.6 

Impervious 
surface (%) 

0 100 0 0.5 4.1 0 100 0 4.0 13.5 

Minimum temp. 
coldest month 
(°C) 

-20.2 -9.5 -13.3 -13.9 2.8 -19.9 -8.3 -12.7 -12.6 2.8 

Annual 
precipitation 
(mm) 

208 1137 458 483.3 171.5 359 1006 452 496.4 121.9 

Enhanced 
vegetation index 

-1806 8955 4634 4434.9 1858.3 -1969 9132 5416 4957.8 1800.9 

Topographic 
roughness 

0 27924.6 11 53.1 129.6 0 20067.0 25 56.2 100.8 

Landcover 1 10 1 3.2 3.0 1 10 1 4.2 3.7 

Roads 1 10 1 1.7 2.5 1 10 1 2.7 3.6 

Riparian 1 10 10 9.4 2.3 1 10 10 9.4 2.3 

 684 
685 
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Table 4: Multiple regression on distance matrices (MRDM) landscape genomic results from the Western 686 
Slope and Front Range of Colorado. Response variables were individual-based genetic distances, i.e., 687 
proportion of shared alleles (Dps) and relatedness (r). Explanatory variables, after removing correlated 688 
variables, were the geographic (Euclidean) distance model (geo. dist.), percent impervious surface cover, 689 
percent tree canopy cover, river and stream riparian corridors, roads, and minimum temperature of the 690 
coldest month. Forward selection followed by backward elimination was performed, with 1,000 random 691 
permutations of the dependent distance matrix per step, using Bonferroni-corrected p-to-enter and p-to-692 
remove alpha values of 0.05. Standardized beta coefficients were used to assess the direction of effect of 693 
each landscape variable on gene flow. Only univariate models were supported. 694 
 695 

Region Genetic distance Landscape factors Direction of effect r2 p 

Western Slope Dps tree cover + 0.08 0.001 

 r geo. dist. - 0.04 0.001 

Front Range Dps geo. dist. - 0.05 0.001 

 r geo. dist. - 0.04 0.001 

 696 
697 
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Table 5: Maximum likelihood of population effects (MLPE) landscape genomic results from the Western 698 
Slope and Front Range of Colorado. Response variables were individual-based genetic distances, i.e., 699 
proportion of shared alleles (Dps) and relatedness (r). Pairwise comparisons of individuals were controlled 700 
as a random effect. Fixed effects, after removing correlated variables, were the geographic (Euclidean) 701 
distance model (geo. dist.), percent impervious surface cover, percent tree canopy cover, vegetation 702 
density, river and stream riparian corridors, roads, and minimum temperature of the coldest month. 703 
Standardized beta coefficients were used to assess the direction of effect of each landscape variable on 704 
gene flow. Models reported are within the top 5 BIC units. Landscape factors are in order of standardized 705 
beta coefficients (largest to smallest). 706 
 707 
Region Genetic distance Landscape factors Direction of effect r2 BIC 

Western Slope Dps tree cover + 0.15 0 

  min. temperature -   

  tree cover + 0.15 0.6 

  geo. dist. -   

  tree cover + 0.14 3.0 

 r geo. dist. - 0.17 0 

  tree cover +   

  geo. dist. - 0.17 3.8 

Front Range Dps geo. dist. - 0.12 0 

  tree cover -   

  impervious surface  -   

  geo. dist. - 0.11 2.9 

  tree cover -   

 r geo. dist. - 0.13 0 

  tree cover -   

  impervious surface -   

  geo. dist. - 0.13 0.5 

  tree cover -   

  708 
  709 
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Figure 1: Study area in the Western Slope and Front Range of the southern Rocky Mountains of 747 
Colorado, USA. Landscape genomic analyses included 78 pumas from the Western Slope and 56 pumas 748 
from the Front Range (white circles). Resistance surfaces, shown for the Western Slope, represent 749 
alternative hypotheses of the effects of landscape variables on puma dispersal and gene flow (red=high 750 
gene flow, blue=low gene flow) for: (a) percent impervious surface cover (negative effect on gene flow), 751 
(b) land cover (forested, open-natural, and developed: positive, neutral, and negative effects on gene flow), 752 
(c) percent tree canopy cover (positive effect), (d) vegetation density (positive effect), (e) river and stream 753 
riparian corridors (positive effect), (f) roads (negative effect), (g) minimum temperature of the coldest 754 
month (negative effect), (h) annual precipitation (positive effect), and (i) topographic roughness (positive 755 
effect). We also tested isolation by geographic Euclidean distance. Land cover base maps show forests 756 
(green), shrub and grasslands (tan), urban areas (red), agriculture and ranchlands (brown and yellow), and 757 
alpine tundra (grey). 758 
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Figure 2: Population structure from (a) Principal Components Analysis (PCA), (b) Discriminant Analysis 786 
of Principal Components (DAPC), and (c) Admixture analysis. Individuals assigned to the Western Slope 787 
and Front Range are green and blue, respectively. K=2 was most supported in Admixture analysis using 788 
cross validation error. 789 
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