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Summary 

Chromosome folding is extensively modulated as cells progress through the cell cycle. During 

mitosis, condensin complexes fold chromosomes in helically arranged nested loop arrays. In 

interphase, the cohesin complex generates loops that can be stalled at CTCF sites leading to 

positioned loops and topologically associating domains (TADs), while a separate process of 

compartmentalization drives the spatial segregation of active and inactive chromatin domains. 

We used synchronized cell cultures to determine how the mitotic chromosome conformation is 

transformed into the interphase state. Using Hi-C, chromatin binding assays, and 

immunofluorescence we show that by telophase condensin-mediated loops are lost and a 

transient folding intermediate devoid of most loops forms. By late telophase, cohesin-mediated 

CTCF-CTCF loops and positions of TADs start to emerge rapidly. Compartment boundaries are 

also established in telophase, but long-range compartmentalization is a slow process and 

proceeds for several hours after cells enter G1. Our results reveal the kinetics and order of 

events by which the interphase chromosome state is formed and identify telophase as a critical 

transition between condensin and cohesin driven chromosome folding. 
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Introduction 

During interphase cohesin organizes chromosomes in loops, thought to be the result of a 

dynamic loop extrusion process 1. Loop extrusion can occur all along chromosomes but is 

blocked at CTCF sites leading to detectable loops between convergent CTCF sites 2-7 and the 

formation of topologically associating domains (TADs 7-9). At the same time long-range 

association of chromatin domains of similar state, within and between chromosomes, leads to a 

compartmentalized nuclear arrangement where heterochromatic and euchromatic segments of 

the genome are spatially segregated 10. Compartmentalization is likely driven by a process akin 

to microphase segregation and is mechanistically distinct from loop and TAD formation 10-18. The 

spatial arrangement of interphase chromosomes is closely correlated with gene expression 

patterns genome-wide, suggesting direct functional links between genome folding and gene 

regulation. The mechanistic connections, and causal relations, between chromosome 

organization and genome regulation are currently the topic of extensive studies 19. 

 

During mitosis cohesin mostly dissociates from chromosome arms 20, 21 and condensin 

complexes re-fold chromosomes into helically arranged arrays of nested loops 22-29. This 

compaction facilitates accurate chromosome segregation during the metaphase-anaphase 

transition. Recently we described intermediate folding states through which cells interconvert 

the interphase organization into fully compacted mitotic chromosomes 29. During prophase 

cohesin-mediated loops, TADs and compartments disappear, and condensin II generates 

stochastically positioned arrays of loops. After nuclear envelope breakdown, during 

prometaphase, the combined action of condensins I and II generates nested loops and these 

start to follow a helical arrangement around a centrally located scaffold.  

 

The kinetics and pathway of disassembly of the mitotic conformation and re-establishment of 

the interphase state as cells enter G1 are not known in detail. Previous studies have shown that 

condensin I loading, already high in metaphase, further increases during anaphase and then 

rapidly decreases, while condensin II colocalizes with chromatin throughout the cell cycle 30. 

Cohesin, mostly dissociated from chromatin during prophase and prometaphase 20, 21, re-

associates with chromosomes during telophase and cytokinesis, as does CTCF 20, 31, 32.). 

However, it is not known how these events relate to modulation of chromosome conformation 

and whether distinct chromosome folding intermediates exist in the pathway towards a fully 

formed interphase nucleus. Here we used synchronized cell cultures to determine chromosome 

conformation, and chromatin association and dissociation of key chromatin architectural 

proteins such as condensins, cohesin and CTCF as cells exit mitosis and enter G1. We find that 

during telophase when condensin-dependent loops have dissolved, a transient chromosome 

conformation intermediate is formed that has properties that have previously been shown to be 

consistent with a fractal globule state and that is devoid of most loops. Along these 

chromosomes cohesin then re-loads, and cohesin mediated loops and TADs are established 

rapidly as cells progress through cytokinesis. Compartment domain boundaries are also 

detectable as early as telophase, but long-range, chromosome-wide association between distal 

compartment domains form with much slower kinetics and compartmentalization continues to 

strengthen until late G1. 
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Results 

Synchronous entry into G1 
HeLa S3 cells were arrested in prometaphase using our previously established protocol 28 (see 
methods). Briefly, cells were arrested in S-phase by addition of thymidine for 24 hours, released 
for 3 hours, and then arrested in prometaphase by the addition of nocodazole for 12 hours. 
FACS and microscopic inspection of cells showed that this procedure leads to cultures in which 
over 95% of cells are in prometaphase (Fig. 1a, Supplemental Fig 1, and see below). In order to 
determine how chromosome conformation changes as cells exit mitosis and enter G1, 
prometaphase arrested cells were released in fresh media (t = 0 hours) and aliquots were 
harvested at subsequent time points up to 12 hours after release from prometaphase. FACS 
analysis was used to determine the fraction of cells that had entered G1 based on their DNA 
content. We observed that about 50% of the cells had re-entered G1 between 3 and 4 hours 
after release from prometaphase arrest and that cells began to enter S phase after about 10 
hours (Fig. 1a). The highest proportion of G1 cells was observed at 8 hours after release and 
data obtained at this time point is used as a G1 reference in this work. Replicate time courses 
yielded similar results with some variation in entry kinetics (Supplemental Fig. 2, 3).  
 

 
 
Fig. 1: Hi-C analysis during mitotic exit and G1 entry 
a, FACS analysis of nonsynchronous and prometaphase-arrested cultures and of cultures at different time points 

after release from prometaphase-arrest. Percentages in the upper right corner represent the percent of cells with a 
G1 DNA content. b, Hi-C interaction maps for nonsynchronous and prometaphase-arrested cultures and of cultures 

at different time points after release from prometaphase-arrest. Data for chromosome 14 are shown for two 
resolutions: 200 kb (top row) and 40 kb (bottom row).  

 
Chromosome conformational changes as cells enter G1 
To assess chromosome conformation, we performed Hi-C on aliquots of cells taken at various 
time points after cells were released from prometaphase arrest (Fig. 1b). Hi-C chromatin 
interaction maps for cells in prometaphase reproduced previously identified features. First, the 
contact map is dominated by frequent interactions along the diagonal and the absence of locus 
specific features 28. When interaction frequencies (P) were plotted as a function of genomic 
distance (s) between loci, we observed the typical decay pattern observed for mitotic cells 
arrested with nocodazole (Supplementary Fig 4). P(s) initially decays slowly up to 10 Mb with an 
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exponent close to -0.5, followed by a more rapid decay at larger distances. We note the 
presence of a weak shoulder in the decay plot around 10 Mb which might represent some 
remaining helicity that was shown to occur during earlier stages of prometaphase 29.  
 
After release from prometaphase arrest, we observed a progressive gain in features of 
chromatin interaction maps normally seen in interphase and a reduced prominence of 
interactions across a broad diagonal typically seen in mitosis. First, visual inspection of the Hi-C 
interaction maps revealed the first emergence of short-range interphase chromatin features, 
such as TADs, as quickly as 2.5 hours after release from prometaphase arrest and these 
become more obvious over time (Fig. 1b, bottom row). Second, we observed the first 
appearance of a checker-board pattern of longer range interactions, reflecting the formation of A 
and B compartments, between 3 and 4 hours (Fig. 1b, top row). By 8 hours, the chromatin 
interaction maps and the shape of P(s) strongly resembled those obtained for nonsynchronous 
cell cultures (Supplementary Fig. 4) 28. We note that the checker-board at the 8 hour time point 
is sharper than that observed in a nonsynchronous culture, as expected for a pure G1 culture.  
 
 
Compartmentalization occurs slower than formation of TADs and loops 
To confirm these visual observations, we quantified the presence and strength of specific 
features, such as TADs, loops, and compartments as they reform during mitotic exit and G1 re-
entry. For these quantifications, we only used the set of structurally intact chromosomes in HeLa 
S3 cells as we did previously 28. 
 
We used eigenvector decomposition to determine the positions of A and B compartments 10. In 
prometaphase-arrested cells, A and B compartments are absent, as expected (Supplemental 
Fig 5). Interestingly, by 3 hours release from prometaphase, PC1 detects the presence of A and 
B compartments, despite the fact that in Hi-C interaction maps, the checker-board pattern is 
weak (Fig. 1b, top row and Supplemental Fig 5a). For some chromosomes, PC3 corresponds to 
compartments at even earlier times (t = 2.75 hours) (Supplemental Fig. 5b). At subsequent time 
points, the amplitude of the PC1 track increases, which could be due to increased compartment 
strength as time progresses. To quantify compartment strength directly, we plotted interactions 
between loci arranged by their PC1 values (derived from the t = 8 hours Hi-C data) and 
obtained “saddle plots” 14 (Fig. 2a, top row). In these plots, interactions in the upper left corner 
represent interactions between B compartments and interactions in the lower right corner 
represent A-A interactions. The compartment strength is calculated as the ratio of homotypic (A-
A and B-B) to heterotypic (A-B) interactions. The first appearance of preferred homotypic 
interactions is observed as early as 2.5 hours after release (Fig. 2a). These preferred 
interactions are initially weak, but gain strength during later time points. By ~5 hours after 
release, compartment strength is about 50% of the maximum strength we detect at 8 hours after 
prometaphase release.  
 
We quantified A-A and B-B interaction frequencies separately as a function of time after release 
from prometaphase (Supplemental Fig. 6). We find that both compartment types form with 
similar kinetics (Supplemental Fig. 6c and 6f). Interestingly, when analyzed as a function of 
genomic distance between domains visual inspection of the saddle plots shows that B-B 
interactions are most prominent between loci separated up to 30 Mb, while A-A interactions are 
more prominent for loci separated by >30 Mb (Supplemental Fig. 6a and 6d). For compartment 
interactions up to 30 Mb, the kinetics of development of B-B interactions is faster than that of A-
A interactions. For distances larger than 30 Mb, A-A interactions develop faster. These analyses 
reveal unanticipated complexities of compartmentalization. 
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Fig. 2: Kinetics of loop, TAD, and compartment formation 
a, Top row: Saddle plots of Hi-C data binned at 200 kb resolution for nonsynchronous and prometaphase-arrested 

cultures and of cultures at different time points after release from prometaphase-arrest. Saddle plots were calculated 
using the PC1 obtained from the Hi-C data of the 8 hour time point. Numbers at the center of the heatmaps indicate 
compartment strength calculated as the ratio of AA+BB/AB using the mean values from dashed corner boxes. Middle 
row: Aggregate Hi-C data binned at 40 kb resolution at TAD boundaries identified from the Hi-C data of the 8 hour 
time point. The order of panels is the same as the top row. Dashed lines indicate the edges of the domains. Bottom 
row: Aggregate Hi-C data binned at 10 kb resolution at chromatin loops identified by Rao et al. 2. The order of panels 
is the same as the top row. b, Left: Average insulation profile across TAD boundaries for different time points. Right: 

Average Hi-C signals at and around looping interactions. Each line represents the signal from the lower left corner to 
the upper left corner of the loop aggregate heatmaps shown in panel a (dashed line). c, Normalized feature strength 

for TADs, loops, and compartments as a function of time after release from prometaphase. The strength for each of 
these features was set at 1 for the 8 hour time point. Dotted line indicates the fraction of cells in G1 at each time 
point, normalized to t = 8 hours. 

 
Next, we quantified the appearance of domain boundaries, many of which define TADs. First, 
we calculated the insulation profiles along chromosomes 33. Insulation values represent the 
relative frequency of interaction across any locus. Minima in this profile represent domain 
boundaries 34. We aggregated Hi-C data at domain boundaries (Fig. 2a, middle row). In G1 
cells, we observe a depletion of interactions across domain boundaries which is also illustrated 
by the average insulation profile across boundaries (Fig. 2b, left). In prometaphase, insulation at 
boundaries is absent, as observed before 28. As cells exit mitosis, we observe insulation at 
boundaries as soon as 2.5 hours after release from prometaphase. Insulation strength 
increases as time progresses and reaches 50% of maximum strength at ~3.5 hours after 
release. We are aware that some domain boundaries identified by insulation analysis represent 
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compartment boundaries and not TAD boundaries. When analyzed separately, we find that 
compartment boundaries appear with similar kinetics as TAD boundaries (Supplemental Fig. 7). 
We conclude that both TAD and compartment domain boundaries are established around the 
same time, 2.5-3 hours after release from prometaphase. 
 
Finally, we quantified the appearance of looping interactions. Rao et al. identified a set of 3,094 
looping interactions in HeLa S3 cells, the large majority of which are interactions between CTCF 
sites that coincide with TAD boundaries, and 507 are on the structurally intact chromosomes in 
HeLa S3 cells 2. We aggregated Hi-C data at this set of looping interactions (Fig. 2a, bottom 
row). While such loops are readily detected in nonsynchronous cells, they are absent in 
prometaphase, as observed before 35. Loops reappear as soon as 2.5 hours after release and 
gain strength in the following hours. We calculated the strength of these loops by the Hi-C signal 
at the pairwise interaction divided by the Hi-C signals flanking it, illustrated in Fig. 2b. Loop 
strength reaches 50% of the maximum obtained over the time course after ~3.5 hours release 
from prometaphase.  
 
To directly compare the kinetics with which TADs, loops, and compartments form, we plotted 
the strength of each feature at each time point as the percentage of its maximum during the 
time course (Fig. 2c). We observed that TADs and loops form with kinetics that are similar or 
slightly faster than the kinetics of G1 entry. In contrast, even though compartment identity is 
established relatively quickly (t = 2.5-3 hours), development and strengthening of long-range 
interactions between compartment domains, compartmentalization, continues for several hours 
with kinetics that are slower than that of cells entering G1. This temporal difference between 
TAD and loop formation, as compared to long-range inter-compartment interaction formation, 
might be related to the fact that these structures are formed by different mechanisms 14-16. 
Similar temporal kinetics of loop, TAD, and compartment formation was observed in 
independent time courses (Supplemental Fig 8).  
 
 
TADs and loops form prior to cytokinesis 
TADs and loops appear somewhat earlier than cells starting to enter G1, but at later time points 
TAD and loop strength follows the accumulation of G1 cells closely. We reasoned that if the 
kinetics of TAD and loop formation is simply attributable to the kinetics of cells entering G1, then 
the observed Hi-C data at a given time point should be very similar to an appropriate mixture of 
a purely mitotic and purely G1 Hi-C dataset. To generate such mixtures, we randomly sampled 
reads from the prometaphase-arrested (t = 0 hour) and 8 hour released samples and mixed 
them according to the cell cycle distribution (percentage of cells in G1) of each sample to obtain 
a simulated time course of release from prometaphase (Fig. 3a). We then used the simulated 
time course datasets to perform the same analyses as described above to determine TAD, loop, 
and compartment strength (Fig. 3b-d).  
 
We first looked at the emergence of loops (Fig. 3b). In the experimental time course we 
observed loops at 2.5 hours after release from prometaphase. Interestingly, in the simulated 
time course loops appear later, at about 3 hours. To quantify the difference in loop strength 
between experimental and simulated data at each time point, we subtracted the average loop 
signal for these datasets at each time point. We find that at 2.5-2.75 hours after release, loop 
strength in the experimental data is greater than in the simulated data, indicating that the 
percentage of G1 cells is not predictive of loop strength at these early time points. We did not 
see a difference in the kinetics of loop formation for loops of different sizes, suggesting that loop 
extrusion is a relatively fast process (Supplemental Fig 9). Similarly, we quantified the 
appearance of insulation at TAD boundaries as a function of time in the experimental and  
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Fig. 3: TADs and loops form quicker than expected, while compartmentalization occurs slower than expected  
a, Schematic diagram of simulating Hi-C data based on the percentage of G1 cells at each time point. b, Aggregate 

Hi-C data binned at 20 kb resolution at chromatin loops at different time points. Top row: Experimental Hi-C data. 
Middle row: Simulated Hi-C data. Bottom row: The difference between experimental and simulated Hi-C data. Loops 
are more prominent in experimental Hi-C data than in the simulated data at t = 2.5 and t = 2.75 hours. This analysis 
included loops larger than 200 kb to avoid the strong signal at the diagonal of the interaction matrix. c, Aggregate Hi-

C data binned at 40 kb resolution at TAD boundaries for different time points. Top row: Experimental Hi-C data. 
Middle row: Simulated Hi-C data. Bottom row: The difference between experimental and simulated Hi-C data. 
Insulation strength is stronger in experimental Hi-C data than in simulated Hi-C data at t = 2.5 and t = 2.75 hours. d, 

Saddle plots of Hi-C data binned at 200 kb resolution for different time points. Top row: Experimental Hi-C data. 
Middle row: Simulated Hi-C data. Bottom row: The difference between experimental and simulated Hi-C data. Saddle 
plots were calculated using the PC1 obtained from the experimental Hi-C data of the 8 hour time point. 
Compartmentalization is weaker in experimental Hi-C than in simulated Hi-C data as illustrated by the fact that A-B 
interactions are less depleted in the experimental data (upper right and lower left corner of saddle plots).  
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simulated time course datasets (Fig. 3c). At 2.5 and 2.75 hours after release from 
prometaphase, TAD boundaries are more prominent in the experimental Hi-C data. Combined, 
this indicates that TADs and loops appear prior to cells entering G1. We used the same 
approach to determine how compartment strength relates to the fraction of cells in G1 (Fig. 3d). 
We quantified compartment strength using saddle plots, as above, and find that from 3 to 6 
hours release, compartmentalization is weaker in the experimental Hi-C data as compared to 
the simulated Hi-C datasets: the simulated Hi-C data show less inter-compartment interactions 
(A-B) than the actual samples. This again illustrates that although compartment domain 
definition occurs as early as t = 2.5 hours, compartmentalization (the preferred long-range 
interaction between domains) is a relatively slow process that continues for several hours after 
cells have entered G1. Similar results were obtained with independent experimental and 
corresponding simulated time courses (Supplemental Fig. 10, 11). 
 
 
An intermediate folding state during mitotic exit 
Properties of chromosome folding can be derived from P(s) plots. For example, P(s) plots for 
interphase and mitosis are distinct (Fig. 4a) and have been used to test models of chromosome 
folding 1, 10, 28, 29, 36. We calculated P(s) for Hi-C data obtained from cells at different times after 
release from prometaphase arrest. We observe a gradual transition over time from a mitotic P(s) 
shape to that of an interphase P(s) curve (Supplemental Fig. 4). The transitional shapes could 
be the result of a mixture of mitotic P(s) and interphase P(s) or could represent intermediate 
folding states. To distinguish these possibilities, we returned to our simulated mixtures of Hi-C 
data described above. We calculated P(s) for the simulated datasets and compared to 
experimental P(s) at each time point (Fig. 4a). For most of the time points, the simulated P(s) 
closely aligns with the experimental P(s) and the difference between the two plots is minor (Fig. 
4a, bottom graphs). Interestingly, we observed relatively large differences when we compare 
simulated and experimental P(s) at 2.5 and 2.75 hours after release from prometaphase. This 
means that at those time points, the percentage of G1 cells (9% and 17%, respectively) does 
not explain the change in P(s), and indicates that at these times an intermediate chromatin 
folding state exists.  
 
To further explore this transition and the properties of this putative folding intermediate, we 
calculated the derivatives of P(s). Previous work has shown that the derivate of P(s) can reveal 
the average chromatin loop size and the density of loops along the chromosome 29, 37, 38. The 
derivative of P(s) for G1 cells shows a local maximum around 100 kb, indicating the average 
cohesin mediated loop size, followed by a relative deep minimum, indicating the linear density of 
chromatin loops (Fig. 4b). The derivative of P(s) for prometaphase cells shows a local maximum 
around several hundred kilobases. The interpretation of the derivative P(s) plots for densely 
packed loops arrays in mitosis is more complicated than the interpretation of interphase data. 
The maximum in the derivative of mitotic P(s) represents the condensin mediated loop array, 
but the size of the loops is likely smaller than the position of the maximum 29. Nonetheless, the 
derivate of P(s) for interphase and mitotic cells are highly distinct with the local maximum in 
interphase representing the cohesin-mediated loops and the local maximum in mitotic cells 
representing the presence of a densely packed condensin loop array. We compared derivatives 
of P(s) for simulated and experimental data across the time course (Fig. 4b, see Supplemental 
Fig. 10d and 11d for similar analyses of replicate time courses). We observe that experimental 
and simulated data are very similar for most time points. At 2.5 and 2.75 hours after release 
from prometaphase, however, the derivative of the experimental P(s) has a unique shape not 
observed at any time point in the simulated datasets, indicating it is not the result of a mixed 
population of mitotic and interphase cells. While for the simulated data evidence for a condensin 
loop array is still observable, the derivative of the experimental P(s) shows a relatively constant  
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Fig. 4: Formation of a transient folding intermediate 
a, Contact frequency (P) versus genomic distance (s) for read normalized Hi-C datasets for experimental mitotic and 

G1 data (upper left, blue and orange lines, respectively) and experimental Hi-C data obtained from cells at different 
time points after release from prometaphase arrest (solid lines). Dotted lines are P(s) plots for simulated Hi-C 
datasets for corresponding time points. At the bottom of each P(s) plot, the difference between experimental and 
simulated P(s) is plotted for the different time points, except for the upper left plot which shows the difference P(s) for 
experimental G1 and mitotic cells. Note, that the difference plot for the upper left graph is on a different scale than all 
of the other difference plots. b, Derivative from P(s) plots shown in panel a. In the upper left graph, we indicate 

features that represent the condensin mitotic loop array and the cohesin loop size and density. The blue arrow 
indicates loss of the condensin-dependent mitotic loop array. The orange arrow indicates the initiation of the cohesin-
dependent G1 loops.  

 
value of -1 for genomic distances ranging from 100 kb to 1 Mb. At subsequent time points, the 
local maximum around 100 kb becomes more prominent and the subsequent minimum 
becomes deeper indicating progressive cohesin loading and loop formation. We interpret this to 
mean that at t = 2.5 and t = 2.75 hours, there is a transient intermediate folding state in which 
the condensin loop array is largely disassembled and only some cohesin loops start to form. 
Similar results were obtained in three independent replicate time courses (Supplemental Fig. 
10d, 11d). Inspection of the kinetics of the three time courses indicates that this intermediate 
conformation is transient, possibly as short as 15 minutes (Fig. 4b). Therefore, it is most reliably 
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detected in time courses with many samples taken with short time intervals during the first hours 
after release from prometaphase arrest (e.g. compare time course 1 (Fig. 4b) to time course 2 
(Supplemental Fig. 10d)). 
 
 
The transient intermediate folding state occurs at the anaphase-telophase transition 
In order to better define the cell cycle state during which we observe the intermediate folding 
state characterized by a very low density of chromatin loops and no compartmentalization, we 
analyzed cells at different time points by microscopy. Specifically, we stained cells with DAPI to 
assess chromosome morphology and with antibodies against alpha-tubulin to detect spindle 
organization (Fig. 5a). Based on chromosome morphology and spindle organization, we 
classified cells (~74,000) into six different cell cycle phases: prometaphase, metaphase, early 
anaphase, late anaphase/early telophase, late telophase, and G1. We then determined the 
percentage of cells in each stage at different time points after release from prometaphase and 
generated cumulative plots (Fig. 5b). We observe that after 2.1 hours, 50% of the cells have 
entered metaphase and rapidly progress to anaphase (t = 2.2 hours). By 2.5 hours, 50% of the 
cells are at the anaphase to early telophase transition. Cells spend the next ~1.75 hours in 
telophase and cytokinesis and 50% of the cells have entered G1 after about 4 hours in this time 
course. From the timing of these events, we conclude that the transient intermediate folding 
state occurs during the anaphase-telophase transition between 2 and 3 hours after release from 
prometaphase. 
 
 
Condensin unloading and cohesin loading occurs during the anaphase-telophase 
transition 
The derivative of P(s) plots (Fig. 4b) combined with the cell cycle classification described above 
(Fig. 5b) indicate that the mitotic loop array is disassembled during late anaphase and early 
telophase. The mitotic loop array is generated by condensins I and II, while interphase loops 
and TADs are mediated by cohesin 15, 16, 27, 29, 39. Therefore, we set out to determine the kinetics 
with which condensins dissociate from chromosomes and cohesin associates with chromatin as 
cells exit mitosis. First, we analyzed condensin binding to chromosomes by microscopy. We 
have been unable to identify suitable antibodies for immunofluorescence detection of 
endogenous condensin I or II. Therefore, we generated a HeLa S3 cell line expressing the 
condensin I subunit NCAPH fused to dTomato. The kinetics of mitotic exit for this cell line are 
comparable, though slightly slower, to that of HeLa S3 cells (Supplemental Fig 12a). We again 
classified cells in different cell cycle stages based on chromosome morphology and spindle 
organization and analyzed condensin I binding (NCAPH-dTomato) and cohesin association 
(Rad21) (Fig. 5c-d). We find that condensin I is associated with chromosomes until late 
anaphase. By late telophase, most of the condensin I has dissociated. In contrast, very little 
cohesin is observed on chromosomes up until late anaphase, but is increasingly colocalized 
with chromatin during late telophase. In the same time course experiment, we also analyzed 
CTCF and Lamin A localization. We find that CTCF is not on chromosomes during 
prometaphase, consistent with our previous data 35. CTCF becomes colocalized with chromatin 
during late telophase with kinetics similar to that of cohesion (Fig 5d). Lamin A displays 
comparable chromatin colocalization dynamics.  
 
Second, we determined chromatin association of these complexes directly by purifying 
chromatin-bound proteins followed by western blot analysis (Fig. 5e, left). Chromatin 
fractionation was used as an approach because many condensin and cohesin complexes 
associate with chromatin and generate loops in a sequence independent manner 14, 29, which is 
not readily detected using chromatin immunoprecipitation followed by DNA sequencing. We  
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Fig. 5: Chromatin association dynamics of condensins and cohesin during mitotic exit 
a, Classification of cell cycle stages based on DAPI staining and alpha-tubulin organization. Prometaphase cells were 

defined as cells with condensed chromosomes and disrupted tubulin structure due to the microtubule inhibitor used 
for prometaphase arrest. Cells classified as metaphase had a single axis of DAPI staining with tubulin aligned on 
each side. Anaphase cells had tubulin on each side of the DAPI axis but must have had two distinct DAPI clusters 
representing the separation of two genomic copies. Late anaphase/early telophase classification was characterized 
by the presence of tubulin only between the two DAPI populations and no longer on the ends. When the tubulin signal 
was compressed between the two DAPI clusters, we classified those as late telophase and cytokinesis. Finally, all 
cells with decondensed chromatin and no nuclear tubulin were classified as G1 cells. Scale bar = 5 µm. b, 
Cumulative plots of cells at different cell cycle stages defined by imaging. c, Localization of NCAPH and Rad21 on 
chromosomes during different cell cycle stages. Scale bar = 5 µm. d, Quantification of NCAPH, Rad21 and CTCF 

colocalization with chromatin and Lamin A ring formation at different cell cycle stages (see Methods). P = 
prometaphase, M = metaphase, A = early anaphase, T = late anaphase/early telophase, T2 = late telophase, G1 = 
G1. e, Western blot analysis of chromatin-associated proteins purified from cells at different time points after release 
from prometaphase. f, Quantification of the western blot shown in panel e. Protein levels were normalized to Histone 

H3 levels from the same samples. 
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quantified the level of chromatin binding for proteins of interest from the western blot and 
normalized each to the Histone H3 level in the corresponding sample (Fig. 5e, right). We find 
that SMC4, a subunit of both condensin I and II, dissociates from chromatin rapidly during 
anaphase. Condensin II (NCAPG2, NCAPD3) showed very similar dissociation kinetics, as did 
condensin I (NCAPH-dTomato, Supplemental Fig. 12b). Cohesin (Rad21) started to associate 
with chromatin during anaphase-telophase and continued to load as cells entered and 
progressed through G1. Finally, we analyzed chromatin association of CTCF, Lamin A, and 
elongating RNAPII. They all show very similar binding kinetics as cohesin (Fig. 5e-f). The timing 
of chromatin association of cohesin and CTCF is consistent with earlier studies 20, 31, 32 and with 
more recent chromatin immunoprecipitation experiments that showed CTCF re-binding at CTCF 
sites during anaphase-telophase, followed rapidly by cohesin accumulation at those sites 32, 40. 
 
We conclude that during late anaphase and into telophase, most condensin has dissociated 
from the chromosomes and both condensin and cohesin association with chromosomes is low. 
This is consistent with the interpretation of the Hi-C data based on the derivate of P(s) that at 
this time point there is a transient chromatin folding intermediate with no condensin-mediated 
loops and only a very low density of cohesin loops, and no long-range compartmentalization. As 
cells progress through late telophase and cytokinesis CTCF and cohesin increasingly load on 
chromosomes and this continues into G1. 
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Discussion 

We have determined how mitotic chromosome conformation is transformed into the interphase 

conformation (Fig 6). We identify late anaphase and telophase as a critical transition when the 

mitotic chromosome arrangement has been disassembled and features of the interphase 

conformation are becoming established. Hi-C, immunolocalization and chromatin binding 

assays show loss of condensin binding during late anaphase-early telophase while CTCF and 

cohesin start loading during telophase. At this critical juncture an intermediate chromosome 

conformation is detected that is characterized by the absence of most loops and no or very 

weak long-range inter-compartment interactions. This is a short-lived transient intermediate 

state. Subsequently during late telophase and cytokinesis CTCF and cohesin re-load, CTCF-

CTCF loops and TAD boundaries are re-established as are compartment domains. While TADs 

and loops become more prominent rapidly with kinetics faster or equal to G1 entry, long-range 

compartmentalization occurs slower and continues to increase for several hours after cells have 

entered G1. 

 

 
Fig. 6: Cellular and chromosomal events as cells exit mitosis and enter G1 

Top: Schematic diagrams indicate the cellular events including spindle formation, nuclear envelope reformation, and 

cytokinesis. Compartment type indicated by color: blue = A, orange = B. Bottom: Models of chromosome 

conformation during mitosis, telophase, and interphase. Green bar indicates abundance of condensins I and II on the 

chromatin at the corresponding cell cycle stages. Yellow bar indicates cohesin abundance on the chromatin at the 

corresponding cell cycle stages. 

 

Our data show that key features that define the interphase state, loop anchors and domain 

boundaries (TADs and compartments) are defined prior to cells entering G1. The fact that TADs 

and loops form rapidly indicates that the process of loop extrusion is relatively fast, extruding 

loops of up to several hundreds of kb within 15-30 minutes, consistent with previous studies that 

showed that loop extrusion by SMC complexes is a fast process (1-2 Kb per second on naked 

DNA, 41, several Kb per minute during prophase 29. In contrast, long-range 

compartmentalization, i.e. the association of compartment domains that are typically separated 

by many megabases occurs more slowly during several hours in G1, even though their 

boundaries and identities are detectable much earlier (telophase). This supports the notion that 

compartmentalization is mechanistically distinct from TAD and loop formation. While the latter 

are formed by the active process of loop extrusion, the former has been proposed to be due to 
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phase segregation that probably depends on passive diffusion 11-13, 17, 18, 42.  A previous study 

also showed that compartmentalization occurs during early G1, although that work did not have 

time resolution during anaphase, telophase and cytokinesis 43. Our data are in line with very 

recent studies from the Blobel lab that independently found that domain and loop anchors are 

established prior to G1 entry while inter-compartment interactions develop slower 40. Further, 

our work suggests that B-B interactions are occurring at shorter genomic distances than A-A 

interactions (Supplemental Fig. 6). This may be related to the positioning of B domains at the 

lamina while A domains tend to be more central allowing for interactions between domains 

separated by larger distances. Additional studies are needed to further explore the relationship 

between compartmentalization and overall nuclear organization. 

 

The formation of an intermediate folding state during telophase coincides with this condensin-to-

cohesin transition. Hi-C data for this state shows that chromosomes are mostly devoid of loops 

and long-range compartmentalization is minimal. The exponent of P(s) for this intermediate 

fluctuates around -1 for loci separated by 100 kb up to several Mb. Interpretation of this feature 

is not straightforward. It could represent the fact that chromosomes are transitioning between 

two states, with the -1 exponent being the average of the two. Alternatively, and more 

interestingly, an exponent of ~-1 been proposed to correspond to a state that is similar to a 

fractal globule 10, 44-46. A key characteristic of fractal globule folding is that it represents a largely 

unentangled fiber. One speculative interpretation therefore is that during telophase 

chromosomes are topologically unentangled. How could this state be formed? One intriguing 

possibility is that this unentangled state is a remnant of the condensin-mediated mitotic loop 

array that is also not entangled. Continuous loop extrusion by condensin complexes, combined 

with topoisomerase II activity would lead to decatenation of adjacent loops 47. Indeed, loss of 

condensin at late mitotic stages leads to re-catenations of sister chromatids 48 suggesting 

continuous action of condensin may also be required to disentangle chromatin loops along each 

chromatid. Dissociation of condensin during anaphase would then leave a largely unentangled 

though still linearly arranged conformation. Subsequent cohesin loading would then initiate the 

formation of loops again. Although at this time the exact topological state of the telophase 

chromosomes is speculative, our results demonstrate that this transient state represents a key 

intermediate between the mitotic and interphase genome conformations. Future examination of 

the molecular and physical properties of this intermediate can not only reveal mechanisms by 

which cells build the interphase nucleus, but may also lead to better insights into the mitotic 

state from which it is derived. 
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Supplementary Materials 

Supplementary Figures 1-12 

 
Materials and Methods 
 
Cell Culture 
HeLa S3 CCL-2.2 cells (ATCC CCL-2.2) and HeLaS3-NCAPH-dTomato cells (see below) were 
cultured in DMEM, high glucose, GlutaMAXTM Supplement with pyruvate (Gibco 10569010) with 
10% fetal bovine serum (Gibco 16000044) and 1% PenStrep (Gibco 15140) at 37°C in 5% CO2.  
 
Creation of Stable HeLaS3-NCAPH-dTomato Cell Line 
We used pSpCas9(BB)-2A-Puro (PX459) V2.0 [a gift from Feng Zhang (Addgene plasmid # 
62988 ; http://n2t.net/addgene:62988 ; RRID:Addgene_62988)] to construct CRISPR/Cas 
vectors according to the protocol of Ran et al. 49.  gRNAs are listed in Table 1. 
 
To construct donor plasmids for C-terminal integration of dTomato, plasmids were based 
on pUC19 and constructed using synthesized DNA and homology arms generated by PCR 
(primers listed in Table 2). Template DNA (genomic DNA from HeLa S3 cells) was amplified 
using Q5 High-Fidelity DNA Polymerase (New England Biolabs) to generate NCAPH homology 
arms. gBlock containing dTomato and Blasticidin resistance was synthesized by Integrated DNA 
Technologies (IDT) (sequence in Table 3). Homology arms and gBlocks were cloned into 
pUC19 by Gibson assembly, using NEBuilder® HiFi DNA Assembly Master Mix (NEB). 
 
To generate stable cell lines, 5 x 106 cells were electroporated with gRNAs and donor plasmid. 
24 hours after electroporation, 1 μg/ml puromycin was added.  Two days later, 1 ug/mL 
blasticidin was added for NCAPH-dTomato selection. After 5 days, colonies were picked for 
further selection in a 96-well plate.  
 
Mitotic Synchronization 
All prometaphase synchronization of cells were done by (1) single thymidine treatment to arrest 
cells in S phase, (2) release into standard media to allow cell recovery and entry into late S, and 
(3) nocodazole treatment to arrest cells in prometaphase. On Day 1, cells were plated at 4 x 106 
cells / 15 cm plate in media containing 2mM thymidine (Sigma T1895). After 24 hours, cells 
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were washed with 1X PBS (Gibco 14190144) and standard media was added back to plates for 
3 hours. Cells were then treated with media containing 100 ng/mL nocodazole (Sigma M1404) 
for 12 hours. Floating mitotic cells were collected and washed in 1X PBS.  
 
Mitotic Release Timecourse 
For prometaphase samples, washed mitotic cells were immediately prepared for downstream 
analysis. Remaining samples were re-cultured in standard media for synchronous release into 
G1 and collected at indicated times. For early time points, both floating and adherent re-cultured 
cells were collected for analysis. After 5 hours release from nocodazole, only adherent cells 
were collected. 
 
Approximately 5 x 106 cells at each time point were fixed in 1% Formaldehyde (Fisher BP531-
25) diluted in serum-free DMEM for Hi-C analysis as described in Belaghzal et al. 50. For cell 
cycle analysis, approximately 1 x 106 cells at each time point were fixed in 86% cold ethanol 
(Fisher 04-355-222) and stored at -20°C. For chromatin association protein analysis, 
approximately 5 x 106 cells at each time point were pelleted, flash frozen, and stored at -80°C. 
Additional samples were collected for fluorescent microscopy. Floating mitotic cells were 
resuspended in 1.5 mL 4% PFA (EMS 15710) (diluted in 1X PBS), transferred onto a Poly-L-
lysine-coated coverslip (Sigma P8920) in a 6 well plate, and spun at 1500xg for 15 min. Cells 
adherent to coverslips at later time points were fixed in 4% PFA for 15 minutes at 20°C. All 
coverslips were washed 3X in 1X PBS and stored in 1X PBS at 4°C.  
 
Cell Cycle Analysis 
Fixed cells were washed in 1X PBS then resuspended in PBS containing 0.1% NP-40 (MP 
Biomedicals 0219859680), 0.5 mg/mL RNase A (Roche 10109169001) and 50 ug/mL propidium 
iodide (Thermo P1304MP). Samples were incubated at 20°C for 30 minutes then analyzed via 
LSR II or MACSQuant VYB flow cytometry. Data was analyzed using FlowJo v3. Viability gates 
using forward and side scatter were set on the nonsynchronous sample and applied to all 
samples within the set. DNA content was plotted as a histogram of the red channel. G1, S, and 
G2/M gates were set on nonsynchronous sample and applied to all samples within the set to get 
percentage of cells in each state throughout the time course release from prometaphase arrest. 
Values plotted for kinetics of G1 entry were normalized such that the maximum number of G1 
cells = 1. 
 
Hi-C Protocol  
Hi-C was performed as described in Belaghzal et al. 50. Briefly, cross-linked cell culture samples 
were lysed then digested with DpnII at 37°C overnight. Next, the DNA overhanging ends were 
filled with biotin-14-dATP at 23°C for 4 hours and ligated with T4 DNA ligase at 16°C for 4 
hours. DNA was then treated with proteinase K at 65°C overnight to remove crosslinked 
proteins. Ligation products were purified, fragmented by sonication to an average size of 200 
bp, and size selected to fragments 100 - 350 bp. We then performed end repair and dA-tailing 
and selectively purified biotin tagged DNA using streptavidin beads. Illumina TruSeq adaptors 
were added to form the final Hi-C ligation products, samples were amplified and PCR primers 
were removed. Hi-C libraries were then sequenced by PE50 bases on an Illumina HiSeq4000.  
 
Hi-C Data Processing 
Hi-C PE50 fastq sequencing files were mapped to hg19 human reference genome using 
distiller-nf mapping pipeline (https://github.com/mirnylab/distiller-nf). In brief, bwa mem was 
used to map fastq pairs in a single-side regime (-SP). Aligned reads were classified and 
deduplicated using pairtools (https://github.com/mirnylab/pairtools), such that uniquely mapped 
and rescued pairs were retained and duplicate pairs (identical positions and strand orientations) 
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were removed. We refer to such filtered reads as valid pairs. Valid pairs were binned into 
contact matrices at 10 kb, 20 kb, 40 kb, and 200 kb resolutions using cooler 51. Iterative 
balancing procedure 52 was applied to all matrices, ignoring the first 2 diagonals to avoid short-
range ligation artifacts at a given resolution, and bins with low coverage were removed using 
MADmax filter with default parameters. Resultant “.cool” contact matrices were used in 
downstream analyses using cooltools (https://github.com/mirnylab/cooltools). For downstream 
analyses using cworld (https://github.com/dekkerlab/cworld-dekker), contact matrices were 
converted to “.matrix” using cooltools dump_cworld. For visualization of contact matrices (as in 
Fig. 1), .matrix files were scaled to 100 x 106 reads using cworld scaleMatrix. 
 
Contact probability (P(s)) plots & derivatives 
Cis reads from the valid pairs files were used to calculate the contact frequency (P) as a 
function of genomic separation (s) (adapted from cooltools). All P(s) curves were normalized for 
the total number of valid interactions in each data set. Corresponding derivative plots were 
made from each P(s) plot. 
 
Compartment analysis 
Compartment boundaries were identified in cis using eigen vector decomposition on 200 kb 
binned data with cooltools call-compartments function. A and B compartment identities were 
assigned by gene density tracks such that the more gene-dense regions were labeled A 
compartments, and the PC1 sign was positive. Change in compartment type, therefore, occurs 
at locations where the value of PC1 changes sign. Compartment boundaries were defined at 
these locations, except for when the sign change occurred within 400 kb of another sign 
change.   
 
To measure compartmentalization strength, we calculated observed/expected Hi-C matrices for 
200 kb binned data, correcting for average distance decay as observed in the P(s) plots 
(cooltools compute-expected). We then arranged observed/expected matrix bins according to 
their PC1 values of the replicate 1 Hi-C dataset from cells released from prometaphase for 8 
hours. We aggregated the ordered matrices for each chromosome within a dataset then divided 
the aggregate matrix into 50 bins and plotted, yielding a “saddle plot” (cooltools compute-
saddle). Strength of compartmentalization was defined as the ratio of (A-A + B-B) / (A-B + B-A) 
interactions. Values used for this ratio were determined by calculating the mean value of the 10 
bins in each corner of the saddle plot. Values plotted for kinetics of compartment formation were 
normalized such that strength = 0 in prometaphase cells and the maximum value = 1. 
 
In order to observe compartmentalization at different genomic ranges, we extracted 
observed/expected Hi-C data at specific distances (0-12 Mb, 12-24 Mb, 24-36 Mb, 36-48 Mb, 
and 48-60 Mb) and made saddle plots. Since less data was used as input for each saddle plot, 
data was split into 20 bins instead of 50. Overall compartmentalization strength was calculated 
similar to above except using the mean value of the 9 bins in each corner of the saddle plot. 
Compartmentalization of individual compartment types was defined as the ratio of A-A / A-B or 
B-B / A-B, where these values were determined by calculating the mean value of the 9 bins in 
the specified corner of the saddle plot. All values were normalized and plotted for kinetics the 
same as above. 
 
TAD analysis 
Domain boundaries were identified using insulation analysis on 40 kb binned data with cworld 
matrix2insulation and locating the minima in each profile (--is 520 kb --ids 320 kb). Domain 
boundaries were classified as compartment boundaries if they overlapped with the compartment 
boundaries defined above. All other domain boundaries were assumed to be TAD boundaries. 
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To measure TAD boundary formation, we aggregated 40 kb binned Hi-C data at domain 
boundaries identified from the replicate 1 Hi-C dataset from cells released from prometaphase 
for 8 hours (cworld elementPileUp). Strength of TAD boundary formation was defined as the 
depletion of interactions across the boundary pileup, i.e. insulation. Boundary strength was 
calculated by measuring the average interaction of domain boundaries with regions 40-500 kb 
away (center vertical bin of boundary pileup) and subtracting that value from the average signal 
in regions immediately flanking the domain boundary (all bins left and right of domain 
boundary). All calculations were made after removing the bin closest to the diagonal. Values 
plotted for kinetics of TAD formation were normalized such that strength = 0 in prometaphase 
cells and the maximum value = 1. 
 
Loop analysis 
We used a previously identified set of HeLa S3 looping interactions for this analysis 2. This set 
contains 3,094 total loops and 507 looping interactions are on the structurally intact 
chromosomes of HeLa S3 cells 28. To visualize looping interactions observed, we aggregated 10 
or 20 kb binned data at loops larger than 200 kb to avoid the strong signal at the diagonal of the 
interaction matrix (cworld interactionPileUp). 
 
Strength of loop formation was defined as the enrichment of signal at the looping interactions 
(center 3x3 pixels at loop position 20 kb binned data) compared to the flanking regions. Strength 
was calculated by averaging the signal at the looping interaction and subtracting the average 
signal outside. Values plotted for kinetics of loop formation were normalized such that strength = 
0 in prometaphase cells and the maximum value = 1. 
 
In order to observe formation of looping interactions at all loops sizes, we aggregated 
observed/expected Hi-C matrices for 20 kb binned Hi-C data at sites of looping interactions. 
Using the observed/expected matrices corrects for distance decay and removes the 
overwhelming signal close to the diagonal, allowing us to observe smaller loops than in the 
observed Hi-C matrices. 
 
Simulated Hi-C mixture datasets 
We generated simulated Hi-C datasets for each replicate time course experiment. For each 
replicate the following protocol was used to randomly mix reads from prometaphase Hi-C 
datasets (t = 0 hours) with random Hi-C data reads from the sample having the highest 
percentage of G1 cells in the respective time course (t = 8 hours for replicate 1 and 2, t = 6 
hours for replicate 3). Mixing ratios were determined based on cell cycle analysis of the same 
time course replicate, such that x% prometaphase reads + 1-x% G1 reads was representative 
of the experimental FACs profile observed at each time point. 
 
First, in order to properly compare samples, all valid pair files within a single Hi-C timecourse 
dataset were randomly down-sampled to the lowest number of uniquely mapped reads within 
that timecourse dataset. Next, the down-sampled valid pairs for experimental prometaphase (t = 
0 hours) and experimental G1 (t = 6 or 8 hours) were randomly sampled to yield the correct ratio 
of experimental cells at each time point and the same number of total reads as the down-
sampled valid pairs files. This step was repeated 25 times, resulting in 25 simulated valid pairs 
files with the same number of reads for each time point in each replicate. P(s) plots for 
simulated Hi-C data represent the average P(s) for 25 replicate valid pair simulations. For all 
other analyses, valid pairs files were binned and balanced (as above) into “.cool” contact 
matrices and the 25 replicates from the same simulated ratios were combined using cooler 
merge.  
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Microscopy—staining & analysis 
Immunofluorescence staining 
Immunofluorescence staining was performed at room temperature. Fixed cells were 
permeabilized with 0.1% triton (Sigma T8787) in 1X PBS for 10 minutes. Cells were blocked 
with 3% BSA (Sigma A7906) in 0.1% triton/PBS for 1 hour. Cells were incubated with primary 
antibody diluted in the blocking buffer for 2 hours [alpha-tubulin mouse mAb (1:5000, Sigma 
T6199), Rad21 rabbit pAb (1:1000, ab154769), Lamin A rabbit pAb (1:1000, ab26300), CTCF 
rabbit pAb (1:800, Cell Signaling 2899)]. Cells were washed with 0.1% triton/PBS 3 x 5 minutes. 
Cells were incubated with secondary antibody diluted in the blocking buffer for 1 hour in the dark 
[Alexa Fluor 647 AffiniPure goat anti-mouse IgG (H+L) (1:100, Jackson 115-605-062), goat anti-
rabbit IgG H&L Alexa Fluor 488 (1:1000, ab15007), goat anti-mouse IgG H&L Alex Fluor 568 
(1:1000, ab175473)]. Cells were washed with 0.1% triton/PBS 1 x 5 minutes and then washed 
with 1X PBS 3 x 5 minutes. Coverslips were mounted to slides using ProLong Diamond Antifade 
Mountant with DAPI (Invitrogen P36962). For image acquisition, we used a Nikon Eclipse Ti 
microscope. Imaging was performed using an Apo TIRF, N.A. 1.49, 60x oil immersion objective 
(Nikon) and a Zyla sCMOS camera (Andor). Images were acquired using NIS-Elements 4.4. 
 
Cell Cycle Classification 
A separate training set of over 1000 individual HeLa S3 cells stained with DAPI and alpha-
tubulin was used to set the classification parameters in Cell Profiler 3.1.8 and Cell Profiler 
Analyst 2.2.1 53-55. Nd2 files from above were split into individual tiffs by channel. DAPI and 
alpha-tubulin intensity, shape, and texture were measured for each cell, and cells were 
classified into either prometaphase, metaphase, early anaphase, late anaphase/early telophase, 
late telophase, G1, or negative populations. Cell cycle classifications were confirmed by visual 
inspection. A total of ~74,000 cells were classified in this study.  
 
Protein Localization 
Cell Profiler was also used to measure the localization of NCAPH-dTomato, Rad21, CTCF, and 
Lamin A. For each cell, we identified primary objects in the DAPI channel (‘DNA’), we used 
propagation to look for secondary objects in the alpha-tubulin channel (‘tubulin’), and finally we 
created a tertiary object as the region between the primary and secondary objects (‘cytoplasm’). 
We calculated enrichment of NCAPH, Rad21, and CTCF co-localizing with the chromatin by 
measuring the mean fluorescence intensity (MFI) of each protein overlapping with the ‘DNA’ 
object and subtracting the MFI of each protein overlapping with the ‘cytoplasm’ object. 
 
To measure the formation of a lamin ring, we shrunk the ‘DNA’ object and subtracted this region 
from the ‘DNA’ original object to create a new object (‘lamin’) at the inside edge of the ‘DNA’ 
where we observed lamin ring presence in nonsynchronous cells. Next, we expanded the ‘DNA’ 
object and subtracted the original ‘DNA’ object to create a new object (‘LamCyto’) just outside of 
the ‘lamin’ object. We were able to quantify the presence of a lamin ring by subtracting the MFI 
of lamin fluorescence in ‘LamCyto’ region from the MFI of lamin in the ‘lamin’ region. This 
enriched for the signal of a lamin ring, therefore, higher values correlated with the presence of a 
lamin ring structure at the edge of the chromatin.    
 
Chromatin association 
Fractionation protocol 
Flash-frozen cell pellets from each time point of the mitotic release time course were thawed 
and resuspended with lysis buffer (50 mM Tris-HCl, pH 8.0, 100 mM NaCl, 1% NP-40, 1 mM 
DTT, 1X Halt protease inhibitor cocktail (Thermo 78430)). Samples in lysis buffer were 
incubated on ice for 20 minutes and then spun at 13,000 x g for 10 minutes at 4°C. The 
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supernatant (cytoplasmic fraction) was collected and the pellet was resuspended in nuclei buffer 
(10 mM PIPES, pH 7.4, 10 mM KCl, 2 mM MgCl2, 0.1% NP-40, 1 mM DTT, 1X protease 
inhibitor) with 0.25% triton. Samples were incubated on ice for 10 minutes and then spun at 
10,000 x g  for 5 minutes at 4°C. The supernatant (nucleoplasmic fraction) was collected and 
the pellet (chromatin fraction) was resuspended in nuclei buffer with 20% glycerol. The 
chromatin fraction was then sonicated to shear the DNA using a Covaris instrument with the 
following parameters: 10% duty cycle, intensity 5, 200 cycles/burst, frequency sweeping, 
continuous degassing, 240 second process time, 4 cycles. Final chromatin-bound protein 
samples were stored at -20°C. 
 
Western Blots 
The volume for approximately the same number of cells for each sample across the mitotic 
release time course was loaded in each lane of a 4-12% bis-tris protein gel (Biorad 3450125) 
and separated in 1X MES running buffer (Biorad 1610789). Proteins were transferred to 
nitrocellulose membranes (Bio-Rad 1620112) at 30 V for 1.5 hours in 1X transfer buffer 
(Thermo 35040). Membranes were blocked with 4% milk in PBS-T (1X PBS + 0.1% tween) for 1 
hour at room temperature. Membranes were then incubated with specified primary antibody 
diluted 1:1000 in 4% milk/PBS-T overnight at 4°C [Histone H3 (ab1791), Rad21 (ab154769), 
RFP (cross-reacts with dTomato for NCAPH-dTomato, Rockland 600-401-379), SMC2 
(ab10412), SMC4 (ab17958), NCAPD3 (ab70349), NCAPG2 (ab70350), Lamin A (ab26300), 
CTCF (Cell Signaling 2899), RNA polymerase II CTD repeat phospho S2 (ab5095)]. 
Membranes were washed with PBS-T 3 x 10 minutes at room temperature, then incubated with 
secondary antibody (anti-rabbit IgG HRP-linked, Cell Signaling 7074) diluted 1:4000 in 4% 
milk/PBS-T for 2 hours at room temperature. Membranes were washed with PBS-T 3 x 10 
minutes. Membranes were developed and imaged using SuperSignal West Dura Extended 
Duration Substrate (Thermo 34076) and Bio-Rad ChemiDoc. 
 
Quantification 
Band intensity for each protein was quantified using Image Lab 5.2.1. Intensities for each lane 
were normalized by background intensity of an equal sized area in the same lane. All protein 
quantifications were normalized to the Histone H3 levels for the same time course samples. 
 
Table 1. gRNA sequences for genome editing 

 

Sequence of sense gRNA (5'-3') Sequence of antisense gRNA (5'-3') 

TCTGATGTTCTTGTGAGGCA TGCCTCACAAGAACATCAGA 

ACCTCTCTGATGTTCTTGTG CACAAGAACATCAGAGAGGT 

CAAGGAGATTGAGTTCACTA TAGTGAACTCAATCTCCTTG 

ACTATGGAGAAGTCAGCAGC GCTGCTGACTTCTCCATAGT 

TGCATGTTTTGGTCTTCCCT AGGGAAGACCAAAACATGCA 

 
Table 2. PCR primers for NCAPH homology arms 

 

 5' PCR Primer 3' PCR Primer  

NCAPH Homology Arm 1 GTAGTCCCCTAGTTTCCATG TTCTTGTGAGGCAAGGAGAT 

NCAPH Homology Arm2  TGAGTTCACTATGGAGAAGT CATCTCCACAGAATGCAGCA 
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Table 3. gBlock Gene Fragment 

 
gBlock name Sequence Elements 

dTomatoT2ABlastR gcaaggagatATGGTGAGCAAGGGCGAGGAGGTCATCAAAGA
GTTCATGCGCTTCAAGGTGCGCATGGAGGGCTCCATGAAC
GGCCACGAGTTCGAGATCGAGGGCGAGGGCGAGGGCCG
CCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGAC
CAAGGGCGGCCCCCTGCCCTTCGCCTGGGACATCCTGTC
CCCCCAGTTCATGTACGGCTCCAAGGCGTACGTGAAGCAC
CCCGCCGACATCCCCGATTACAAGAAGCTGTCCTTCCCCG
AGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACG
GCGGTCTGGTGACCGTGACCCAGGACTCCTCCCTGCAGG
ACGGCACGCTGATCTACAAGGTGAAGATGCGCGGCACCA
ACTTCCCCCCCGACGGCCCCGTAATGCAGAAGAAGACCAT
GGGCTGGGAGGCCTCCACCGAGCGCCTGTACCCCCGCG
ACGGCGTGCTGAAGGGCGAGATCCACCAGGCCCTGAAGC
TGAAGGACGGCGGCCACTACCTGGTGGAGTTCAAGACCA
TCTACATGGCCAAGAAGCCCGTGCAACTGCCCGGCTACTA
CTACGTGGACACCAAGCTGGACATCACCTCCCACAACGAG
GACTACACCATCGTGGAACAGTACGAGCGCTCCGAGGGC
CGCCACCACCTGTTCCTGTACGGCATGGACGAGCTGTACA
AGGCTAGCGGCAGCGGCGAGGGCAGAGGAAGTCTGCTAA
CATGCGGTGATGTCGAAGAAAATCCAGGCCCAATGGCCAA
GCCTTTGTCTCAAGAAGAATCCACCCTCATTGAAAGAGCA
ACGGCTACAATCAACAGCATCCCCATCTCTGAAGACTACA
GCGTCGCCAGCGCAGCTCTCTCTAGCGACGGCCGCATCT
TCACTGGTGTCAATGTATATCATTTTACTGGGGGACCTTGT
GCAGAACTCGTGGTGCTGGGCACTGCTGCTGCTGCGGCA
GCTGGCAACCTGACTTGTATCGTCGCGATCGGAAATGAGA
ACAGGGGCATCTTGAGCCCCTGCGGACGGTGCCGACAGG
TGCTTCTCGATCTGCATCCTGGGATCAAAGCCATAGTGAA
GGACAGTGATGGACAGCCGACGGCAGTTGGGATTCGTGA
ATTGCTGCCCTCTGGTTATGTGTGGGAGGGCTAAtgagttcact 

dTomato, T2A, 
and Blasticidin 
resisitance 
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