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Abstract: Gene regulatory programs controlling the activation and polarization of CD4+ T cells 
are incompletely mapped and the interindividual variability in these programs remain unknown. 
We sequenced the transcriptomes of ~160k CD4+ T cells from 9 donors following pooled 
CRISPR perturbation targeting 140 regulators. We identified 134 regulators that affect T cell 
functionalization, including IRF2 as a positive regulator of Th2 polarization. Leveraging 
correlation patterns between cells, we mapped 194 pairs of interacting regulators, including 
known (e.g. BATF and JUN) and novel interactions (e.g. ETS1 and STAT6). Finally, we 
identified 80 natural genetic variants with effects on gene expression, 48 of which are modified 
by a perturbation. In CD4+ T cells, CRISPR perturbations can influence in vitro polarization and 
modify the effects of trans and cis regulatory elements on gene expression. 
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CD4+ T cells display an incredible degree of functional diversity during adaptive immune 
responses classically characterized by the expression of canonical cytokines that create systemic 
inflammatory responses (e.g. Th17) (1–4), signal and recruit B cells (e.g. Th1 and Th2) (5–11), 
and induce tolerance in the tissue microenvironment (e.g. Treg) (12, 13). Recently, the ability of 
CD4+ T cells to directly kill infected and tumor cells have also received renewed attention (14–
16). While the functionalization of CD4+ T cells is predominantly determined by the polarization 
of naive T cells (Tnaive), recent results have suggested a high degree of variation within and 
plasticity between canonical subtypes (17). Indeed, we (18, 19) and others (20–22) have shown 
that human circulating CD4+ T cells are composed of a mixture of canonical and non-canonical 
populations with significant interindividual variability in both the proportion and gene 
expression of each population (18). 

Key regulators of CD4+ T cell differentiation and polarization have been mapped in mice 
utilizing pooled and arrayed genetic screens. For example, pooled knockdown screens with RNA 
interference have identified Ppp2r2d as a key regulator of T cell proliferation (23) and mapped 
two self-reinforcing, mutually antagonistic modules of regulators that drive Th17 differentiation 
(24). More recently, a pooled genome wide CRISPR screen paired with bulk RNA sequencing 
identified Trappc12, Mpv17l2, and Pou6f1 as regulators of both Th2 activation and 
differentiation (25). Despite these insights, mapping gene regulatory programs that underlie 
human CD4+ T cell state transitions is incomplete and the intra- and inter-individual variability 
in these programs remain largely unknown. 

Recent advances in the integration of droplet-based single cell RNA-sequencing (dscRNA-seq) 
and CRISPR/Cas9-mediated genome engineering has created new opportunities to assess the 
functional consequences of genetic perturbations in primary human T cells at an unprecedented 
molecular and cellular resolution (26–28). Here, we integrate single guide RNA (sgRNA) 
lentiviral infection with Cas9 protein electroporation (SLICE) and multiplexed dscRNA-seq 
(mux-seq) to screen the effects of 140 regulators in primary CD4+ T cells across nine donors. By 
linking each sgRNA with the transcriptomes of hundreds of heterogeneous CD4+ cells, we map 
regulators that affect the activation and polarization of specific T cell subsets. By further 
leveraging the coexpression patterns across single cells, we define novel gene regulatory 
relationships between pairs of regulators and their downstream targets. Finally, by incorporating 
donor genetics, we identify instances where genetic effect on gene expression is modified by 
CRISPR perturbations. Our work demonstrates that systematic analyses using multiplexed 
single-cell genomics and genome engineering is a powerful approach to map the gene regulatory 
networks that govern the functionalization of primary human T cells and characterize the intra- 
and inter-individual variability in these networks. 

Results 

CRISPR perturbation screen in activated CD4+ T cells across donors 
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To map gene regulatory programs that underlie the polarization and activation of human CD4+ T 
cells, we performed sgRNA lentiviral infection with Cas9 protein electroporation (SLICE) (28) 
followed by multiplexed single-cell RNA-sequencing (mux-seq). Primary CD4+ T cells were 
isolated from peripheral blood mononuclear cells (PBMCs) and activated in vitro as previously 
described (29, 30) (Fig. 1A; Methods). Activated cells were transfected with 280 sgRNAs 
targeting 140 regulators that were either highly expressed (top quartile from bulk RNA-seq) or 
have binding sites that were differentially accessible (from bulk ATAC-seq) in activated CD4+ T 
cells (18) (Fig. 1B; Table 1; Methods). Following Cas9 electroporation and multiple rounds of 
selection and proliferation, activated CD4+ T cells (31) were pooled across 9 donors and profiled 
using the 10X Chromium platform in 16 wells resulting in 320,708 cell-containing droplets and 
16,750 reads/droplet (Fig. S1-3; Methods). To maximize the probability of detecting sgRNAs in 
cells, we further amplified and sequenced the sgRNA transcripts from the resulting 10X cDNA 
library to near saturation as previously described (32) (98% compared to 63% in the 3’ tagged 
library; Fig. 1C; Methods). 

After filtering for doublets using exonic SNPs (77,046 - 24%) and cells with ambiguous sgRNA 
assignments (79,037 cells - 25%; Methods), 164,623 cells were kept for subsequent analyses 
corresponding to 18,291±4,571 cells per donor and 882±522 cells per sgRNA (Fig. 1C, D; Table 
2; Methods). Of these, 105,664, 40,960, 12,675, and 5,324 cells contained one, two, three, or 
four sgRNAs, resulting in an estimated multiplicity of infection (MOI) of 1 (Fig. 1E, S4). 

To assess the cutting efficiency of each sgRNA, we sequenced the sgRNA pool and DNA of the 
edited cells from each donor by targeted amplification of 268/280 loci (Methods). The insertion 
and deletion (indel) frequencies at each targeted locus and coverage of the corresponding sgRNA 
in the pool are expectedly correlated (R = 0.36, P < 1.68x10-8, Fig. 1F) and the average ratio 
between these two quantities - defined as the cutting efficiency - is 21%±15% (Fig. 1F inset). 
We defined 14 sgRNAs as uncut negative controls (WT) where the ratios between the cutting 
efficiencies and proportion of cells containing each sgRNA are 1.645 standard deviations below 
the mean (z-score < -1.645, P < 0.05) (Fig. 1G, S5; Methods). In all, the integration of SLICE 
and mux-seq is an efficient and cost-effective strategy for pooled screening and profiling of 
primary human T cells across many donors. 

Heterogeneity of activated CD4+ T cells 

Because CD4+ T cells dynamically migrate to and egress from tissues through circulation, cells 
isolated from PBMCs likely represent a functionally diverse population of cells reflective of the 
specific immunological state of an individual. This is supported by previous functional genomic 
analyses of activated primary CD4+ cells demonstrating marked heterogeneity within and 
variability between individuals in the chromatin and expression profiles that overlap signatures 
from multiple sorted populations including Th1s, Th2s, and Th17s (18, 22, 33). 
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To assess the heterogeneity of activated CD4+ T cells using dscRNA-seq, we clustered 164,623 
cells into 10 Leiden clusters (34) with each cluster containing on average 16,462 cells 
(maximum: 65,720; minimum: 127; Fig. 2A, B). We identified 2,189 differentially expressed 
genes in at least one cluster (624±691 per cluster) and annotated each cluster based on the most 
highly expressed markers. We found a CD27+/CCR7+ naive T cell population (Tnaive) (35, 36) 
(65,720 cells, 40%), and three effector populations including IL5+/IL17RB+/GATA3+ Th2s (37–
45) (1,969, 1.1%), IFNG+ Th1s (42, 46, 47) (8,022 cells, 4.8%), and PRF1+/GNLY+/NKG7+ 
cytotoxic cells (Tcyto) (16) (37,960, 23%) (Fig. 2C, D). We also identified three activated 
populations (Thstim) defined by the expression of HMGB2 and STMN1 (48, 49) and distinguished 
from each other by the expression of histone markers (Thstim,histone, 19,920 cells, 12%), cell 
cycling markers PTTG1 (50, 51) and KIAA0101 (52–54) (Thstim,cycling, 16,905 cells, 10%), and 
naive markers CCNB1 (55) (Tstim,naive, 12,345 cells, 7.4%). We also found a proliferating 
population (Tprolif) that expressed genes associated with tumor progression, including FXYD5 
(56–58), LIMD2 (59, 60), and PFDN5 (61) (903 cells, 0.05%). Finally, we identified two small 
clusters likely to be transitional, as they are intermediates in lineage trajectory (62) space either 
between naive and cytotoxic cells (Tnaive→cyto 752 cells, 0.04%) or between naive and stimulated 
cells (Tnaive→stim: 172 cells, 0.01%; Fig. S6). To validate these annotations, for each cluster, we 
correlated the average log fold change in expression of upregulated genes (with respect to all 
other clusters) to the bulk RNA-seq expression profiles across 45 reference circulating immune 
populations (22) (Methods). This approach assigned 8/10 clusters to their expected reference 
population (Fig. 2E, Methods). The frequency of each cluster was generally consistent across 
donors (average pairwise R = 0.94±0.04; Fig. 2F, S7). These results demonstrate that 
multiplexed single-cell RNA-sequencing of activated CD4+ T cells recapitulate the expected T 
cell subpopulations obtained from sorted PBMCs and enables estimates of donor variability in T 
cell composition.  

Regulator perturbations drive T cell polarization 

Regulators that control the activation and polarization of specific CD4+ T cell subsets have been 
mapped in mice and humans using either pooled CRISPR/Cas9 screens sorting for specific cell 
surface markers or RNA-interference (RNAi) followed by bulk transcriptomic profiling (24, 63). 
These assays trade off perturbation throughput (low in RNAi, high in CRISPR/Cas9) and 
phenotypic resolution (low by cell sorting, high in bulk transcriptomic profiling). Here, we 
leverage the ability to link CRISPR perturbations to the transcriptomes of single cells using 
SLICE followed by mux-seq to enable high throughput (hundreds of loci) and high phenotypic 
resolution (transcriptome wide) mapping of regulators during human CD4+ activation and 
polarization. We first demonstrate the robustness and performance of our strategy by the 
following two quality control assessments. One, comparing cells expressing each knockout 
sgRNA (KO cells) to cells expressing the wild type sgRNAs (WT cells), the expression fold 
change for the targeted regulator was lower than random genes (FCtargeted = 0.56 vs. FCrandom = 0; 
KS test; P < 2.26x10-16, Fig. 3A). Second, the transcriptomes of cells expressing sgRNAs 
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targeting the same regulator or WT sgRNAs are more correlated on average (RKO = 0.44, RWT = 
0.50) than cells expressing two random sgRNAs (Rrandom= 0; KS test P < 2.2x10-16) (Fig. 3B). 
These two results suggest that sgRNAs targeting the same gene have similar downstream 
transcriptomic effects despite a modest (albeit statistically significant) change in overall fold 
change of the targeted genes. 

We next assessed the effects of KO sgRNAs on T cell states. Compared to WT cells, the 
proportion of KO cells is statistically enriched in activated or polarized subsets (e.g. Thstim,naive 
and Th1) and depleted in the inactivated subsets (e.g. Tnaive cells and transitional Tnaive→cyto; 
hypergeometric test, FDR < 0.05; Fig. 3C). In order to quantify the effect of each sgRNA on cell 
state, we computed the proportion of cells in each cluster that contained a particular sgRNA and 
identified those sgRNAs significantly enriched or depleted using a Z test (Fig. 3D; Table 4; 
Methods). Each cluster had on average 13 sgRNAs depleted (z-score < -1.5, P < 0.1) and 25 
sgRNAs enriched (z-score > 1.5, P < 0.1; Fig. S8). For example, the sgRNA (cutsite: 
chr2:96551631, cutting efficiency: 0.47) targeting the RNA-binding protein AT-Rich Interactive 
Domain-Containing Protein 5A (ARID5A) was enriched in the Th2 cluster (z-score > 1.5, P = 
9.0x10-3; Fig. 3E,F, top panels) and slightly depleted, although not statistically significantly, in 
the Tnaive cluster (z-score <-0.4, P = 0.33). The second ARID5A-targeting sgRNA (cutsite: 
chr2:96550280, cutting efficiency: 0.097) showed consistent patterns of enrichment in Tnaive and 
Th2 cells (Tnaive: z-score < -1.5, P < 0.1; Th2: z-score > 0.2, P = 0.35) (Fig. S9). In contrast, the 
sgRNA targeting interferon response factor 2 (IRF2; cutsite: chr4:184418577, cutting efficiency: 
0.25) was depleted in Th2 cells (z-score < -1.5, P < 0.1; Fig. 3E, F, right panels). The second 
IRF2-targeting sgRNA (cutsite: chr4:184418667) had a cutting efficiency of 0.04 and was thus 
considered a WT sgRNA and is not enriched or depleted in any cluster (Fig. S5). 

We next estimated the trajectory of polarization from Tnaive to Th2 cells using diffusion 
pseudotime (DPT) and quantified the distribution of ARID5A-targeting (cutsite: chr2:96551631) 
and IRF2-targeting (cutsite: chr4:184418577) sgRNAs along the trajectory (Methods). The 
shape of the cumulative distribution function along the DPT is informative of enrichment or 
depletion of cells along the polarization trajectory. For example, if the cumulative percentage has 
an earlier increase, then the more likely a group of cells are to be naive and reside at an earlier 
“time-point”. Compared to all cells, cells containing the IRF2-targeting (cutsite: 
chr4:184418577) sgRNA are less likely to be Th2-like as shown by the 98.1% cumulative 
percentage at ~0.1 DPT (Fig. 3G), suggesting that IRF2 could be important for the polarization 
of Tnaive cells to Th2 cells or the maintenance of already polarized Th2 cells. In contrast, cells 
containing ARID5A-targeting (cutsite: chr2:96551631) sgRNA had a 90.6% cumulative 
percentage at ~0.1 DPT, exemplifying a greater enrichment at a later pseudotime (more Th2-
like). This suggests that ARID5A may play a role in maintaining the Tnaive cell phenotype, which 
is consistent with previous reports (64) (Fig. 3G). 

To validate the IRF2- and ARID5A-targeting phenotypes, we used the Cas9 ribonucleoprotein 
(RNP) system to knockout GATA3, ARID5A and IRF2 each with two sgRNAs and two non-
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targeting negative controls under general activation (anti-CD3/CD28) and Th2 (IL-4, anti-IFNG, 
anti-IL-12) polarization conditions (Methods). After two weeks of culturing, we used 
fluorescence-activated cell sorting (FACS) to sort for Th2 (CD62L+) and Th1 (T-bet+) cells and 
extracted DNA to assess cutting efficiency for each sample. In activated cells containing IRF2-
targeting sgRNAs, the proportion of Th2s (CD62L+) was lower (3.81% and 2.02%) compared to 
non-targeting controls (3.46% and 7.71%) but higher compared to GATA3-targeting cells (1.26% 
and 0.892%; Fig. 3H, S10), consistent with the pooled screen results. Further, the proportion of 
Th1s (T-bet+) was higher in IRF2-targeting cells (10.5% and 8.02%) compared to non-targeting 
controls (0.87% and 1.93%) and GATA3-targeting cells (6.42% and 7.42%; Fig. 3H, S10). 
Interestingly, in Th2-polarized cells, there was not a change in the proportion of Th2 cells (Fig. 
S11). In contrast, in activated and Th2 polarized cells containing ARID5A-targeting sgRNAs, the 
proportion of Th2 cells are slightly higher (10.2% and 6.61%) and the proportion of Th1 cells 
remain unchanged (1.83% and 1.27%) (Fig. 3H, S11). These results recapitulate the pooled 
screen with IRF2 acting as a positive regulator and ARID5A as a negative regulator of Thss. 
Using a multiplexed pooled screening framework, we were able to harness the high resolution 
transcriptomic data to help elucidate and validate novel cell state regulators.  

Regulators interact to alter gene expression  

Activation and polarization of T cells is known to involve the genetic interaction of regulators 
through direct physical cooperation, competition, and feedback and feedforward regulation of 
gene expression (65–68). For example, BATF and JUN physically interact to regulate 
transcription in dendritic cells (DCs), T cells, and B cells by jointly interacting with IRFs to bind 
compound-binding AP-1–IRF consensus elements (AICEs) (69). However, a map of genetic 
interactions between regulators that specify T cell function remain uncharted, primarily due to 
insufficient scalable methods to test for genetic interactions in primary T cells.  

RNA interference or CRISPR perturbations followed by bulk RNA-seq allows us to study how 
genetic perturbations change gene expression on average across a population of cells. Detecting 
genetic interactions between regulators in this setting would require perturbing multiple 
regulators and observing non-additive changes in average expression, which is both 
experimentally and statistically intractable beyond a few regulators. By leveraging the ability to 
link genetic perturbations with their effects in many cells, we used SLICE followed by mux-seq 
to estimate the effects of CRISPR perturbations on the correlation between genes across cells to 
detect genetic interactions between regulators.  

Specifically, we sought to map genetic interactions by identifying mutually mediating pairs of 
regulators, defined as one regulator modifying the correlation between another regulator with a 
downstream gene. As an example, if knocking out R1 modifies the correlation between R2 and G, 
then directionality is established as R1 mediates the effect of R2  on G (Fig. 4A) and vice versa. If 
R1 and R2 mutually mediate each other’s effects on G, we call R1 and R2 a genetic interaction 
and R1, R2, and G as a regulator (R) pair - gene triplet. To statistically detect mediation, we 
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performed a likelihood ratio test between two linear mixed effect models, testing for the 
interaction term of R1 (presence of sgRNA targeting R1) and R2,exp (R2 expression) (Methods). A 
significant change in correlation between expression of R2,exp and a downstream gene suggests 
R1 mediates the effect of R2 on the downstream gene.  

We identify four different types of regulator interactions: 1) cooperative activation, where 
regulators and the target gene are positively correlated in WT cells and uncorrelated in KO cells; 
2) cooperative repression, where regulators and the target gene are negatively correlated in WT 
cells and uncorrelated in KO cells; 3) competitive activation, where regulators and the target 
gene are uncorrelated in WT cells and are positively correlated in KO cells; and 4) competitive 
repression, where regulators and target gene are uncorrelated in WT cells and are negatively 
correlated in KO cells (Fig. 4A). 

We tested 37/140 of the most variably expressed regulators corresponding to total of 666 
possible regulator pairs and 1,456,542 possible R pair - gene triplets (Methods). For each 
regulator, we first identified a set of downstream genes whose correlations with the regulator 
were affected when the regulator was perturbed using the same linear mixed effect model (Fig. 
4A; Methods). For 33 of the 37 regulators (4 regulators each had a WT sgRNA), sgRNAs 
targeting the same regulator were more likely to identify the same downstream targets (P < 
0.005, Mann-Whitney U test, Fig. S12) with similar changes in correlation (R = 0.31, P = 
3.2x10-78; Fig. S13) compared to random (R = -0.004, P = 0.56). 

To identify R pair - gene triplets, we intersected downstream genes for each regulator pair (FDR 
< 0.1) and tested for mutual mediation. We identified 310 R pair - gene triplets (FDR < 0.05) 
where the regulators mutually mediated each other’s effect on the downstream gene, comprised 
of 194 unique regulator pairs (Fig. 4B; Table 5). 24 of the regulator pairs identified were among 
the 48 regulator pairs previously known to interact (hypergeometric test, P < 0.005) (70). 
Combining all candidate genetic interactions reveals a core gene regulatory network in the 
functionalization of primary T cell (Fig. 4C) that suggests JUN, MYC, XBP1, and STAT3/6 
forming a central hub with many overlapping interacting partners. To validate the predicted 
regulator interactions and their downstream targets, we searched for transcription factor binding 
sites (TFBSs) of the 31 transcription factor (TF) pairs upstream and downstream of each 
predicted downstream gene’s transcription start site (TSS) that exist the Homer database (71) 
(Methods). We found a greater proportion of downstream gene TSSs containing TFBSs for both 
TFs compared to random sampling of TF pair  - gene triplets (P < 0.05, Kolmogorov-Smirnov 
test across all windows, Fig. 4D).  

We detected both known and novel interactions between key regulators for T cell 
functionalization. We identified two possible targets of the previously mentioned BATF-JUN 
interaction, ATG14 and TMEM204. In addition, we identified an ETS1-STAT6 interaction, 
which is known to modulate cytokine responses in keratinocytes (69, 72). While ETS1 has been 
shown to interact with numerous genes, in particular those in the STAT family, involved in the 
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development and function of T cells (73),  our result specifically suggests STAT6 as an 
interacting partner.  

Amongst the candidate regulator interactions, we identified 23 pairs of cooperative activators, 29 
pairs of competitive activators, 109 pairs of competitive repressors, and 149 pairs of competitive 
activators (Fig. 4E). In one example of competitive interaction, compared to WT cells, GTF3A is 
more correlated with genes in cells expressing the CREM-targeting (cutsite: chr10:35179264) 
sgRNA and CREM is more correlated with genes in cells expressing the GTF3A-targeting 
(cutsite: chr13:27424803) sgRNA (Fig. 4F). CREM and GTF3A is an example of a competitive 
repressor pair that regulates the expression of CLUAP1, where CLUAP1 is negatively correlated 
with each regulator in KO cells but uncorrelated in WT cells (Fig. 4G). In another example, 
MYC and NFATC3 cooperatively interact to activate XRN1 (Fig. 4H) where XRN1 is positively 
correlated with each regulator in WT cells but not correlated in KO cells (FDR < 0.05). These 
results suggest that when a regulator is perturbed, downstream effects of other regulators become 
more prominent and this change can be harnessed to detect subtle interactions, often 
competitively activating interactions, between regulators. 

CRISPR perturbation modifies genetic effects on gene expression 

While the contribution of interindividual variability to the composition, expression and activation 
of CD4+ T cells ex vivo has been described by us (18, 19) and others (20, 74–79), little is known 
about the interindividual variability in CRISPR perturbed cells. Using a linear mixed model, we 
analyzed cells expressing each sgRNA to identify 125 genes whose expression were variable 
between individuals (interindividual genes, FDR < 0.2) across 79 sgRNAs (Fig. 5A, B; Table 7; 
Methods).  

 

However, interindividual variability can be attributed to genetic, environmental and technical 
confounding effects. To identify the genetic contribution, we performed an expression 
quantitative trait loci (eQTL) analysis using a linear mixed model that includes a genetic 
covariate term (Fig. 5A; Methods). Because of the limited number of samples, we significantly 
reduced the multiple testing burden by only testing for SNPs +/- 100 kb around a TSS with a 
minor allele frequency > 0.4 and only highly expressed genes per sgRNA (on average 1,891 
genes). We found a total of 88 eQTLs (in cis) across cells expressing all sgRNAs (permutation 
FDR < 0.2) corresponding to 84 genes (eGene) (Fig. 5B). To assess the robustness of these 
results, we performed two quality check analyses. First, genes previously reported to have an 
eQTL in activated CD4+ T cells (18) and with significant interindividual variability were more 
statistically significant than those that were not (Fig. 5B). Second, the variance explained by 
genetics was correlated with and expectedly less than the variance due to interindividual 
variation amongst eGenes (R = 0.19, P = 0.03, Fig. 5C).  
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We next assessed  eQTLs detected in KO versus WT cells. Overall, eQTL effect sizes were more 
correlated between cells expressing sgRNAs targeting the same regulator (R = 0.24, P = 0.003) 
than between cells expressing a random pair of sgRNAs (R = 0.09, P = 0.2), suggesting genetic 
effects specific to each knockout (Fig 5D). For the regulators that exist in the Homer database 
(71), we found that genes harboring binding sites for 10 regulators are more likely to be eQTLs 
(as indicated by more significant P) (Fig. 5E). On average, genetics explained 64% and 56% of 
the variability in KO and WT cells respectively (Fig. 5F). Finally, we found eQTLs were more 
likely to be detected in KO cells (22% of KO vs. 14% of WT sgRNAs; hypergeometric P = 0) 
(Fig. S14). These results support that in vitro genetic perturbations by CRISPR/Cas9 can 
uncover effects of natural genetic variation undetectable in unperturbed cells.  

The increased power to detect genetic effects on gene expression only in KO cells could be due 
to a change in the trans environment or regulator-genetic interactions (cis x trans epistatic 
interaction) (Fig. 5G). If the activity of a regulator has an additive effect on gene expression, 
then ablating the regulator will decrease the overall variance of gene expression thereby 
increasing the genetic contribution to gene expression (Fig. 5F, S15-17). Supporting this model, 
80 out of the 88 eQTLs had lower standard errors in KO cells compared to WT cells (Fig. S16). 
If the activity of a regulator multiplicatively interacts with genetic variants (epistasis), then 
ablating the regulator should change the genetic effect on gene expression. To identify instances 
of epistasis, we fit a linear mixed model testing for cis (SNP) x trans (sgRNA presence or 
absence) interactions (Fig. 5G). We found statistical evidence for epistasis for 48 out of 88 
eQTLs (FDR < 0.05), where the sgRNA is more likely to interact with the eQTL than a random 
SNP (Fig. 5H). These results suggest that CRISPR/Cas9 ablation of a regulator can uncover both 
additive and epistatic effects from standing genetic variation on gene expression. 

As an illustrative example, we found evidence for an epistatic interaction between IRF1-
targeting (cutsite: chr5:132487047) sgRNA  and genetic variant (rs1885125) to regulate MCM9 
expression (Fig. 5H). IRF1 (also known as interferon regulatory factor 1) has previously been 
shown to regulate T cell activation (80–82), particularly driving Th1 polarization (83). Two 
independent epigenetic analyses suggest IRF1 binding at the MCM9 promoter (Fig. S18). First, 
in K562 cells, there is an IRF1 ChIP-seq peak 142 bp upstream from rs1885125, containing four 
SNPs in LD (D’ > 0.97). Second, the Homer database (71) predicted an IRF1 binding site 595 bp 
upstream from rs1885125 using an IRF1 ChIP-seq in peripheral blood mononuclear cells, which 
is flanked by rs4946371 (D’ > 0.98). These results support  the interaction between a genetic 
variant in a cis regulatory element of MCM9 and the trans factor, IRF1, to account for 47% of 
MCM9 expression variability. All together, these results suggest that CRISPR perturbations can 
uncover interindividual variation in gene expression and in some cases, epistatically interact with 
natural standing variation to modulate the variability of gene expression. 

Discussions 
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CD4+ T cells serve diverse roles in the adaptive immune system by dynamically responding to 
extracellular signals in their microenvironment. While the gene regulatory networks governing 
these responses have been extensively studied in mice, the topology and parameters of these 
networks, including how they vary across individuals, have not been mapped in humans. To 
address these gaps, we present the first large scale, multiplexed single cell RNA-seq study of 
activated primary CD4+ T cells isolated from 9 donors across CRISPR perturbations targeting 
hundreds of candidate regulators.  

Activated CD4+ T cells are heterogeneous, capturing cell states reminiscent of canonical helper 
subtypes (e.g. Th1, Th2, etc), cytotoxic phenotypes, and broad activation or cell cycle. We find 
that cells expressing WT sgRNAs are more likely to be Tnaive cells while those expressing KO 
sgRNAs are more likely to promote polarization into a differentiated state (e.g. Th1/2 cells), 
exemplified by the identification ARID5A as a negative regulator of Th2 polarization. We expect 
that the application of our approach to cells differentiated or polarized under specific conditions 
(e.g. toward a Th2 phenotype) rather than broad activation (e.g. anti-CD3/CD28 activation) can 
further refine the mapping of gene regulatory programs that control T cell differentiation, 
polarization and maintenance.  

The identification of gene gene interactions is experimentally and combinatorially challenging in 
primary cells. By exploiting coexpression patterns between single cells, we devised a new 
approach based on differential correlation analysis to detect interactions between pairs of 
regulator during T cell activation and polarization. Using this approach, we reconstructed a gene 
regulatory network for T cell activation that includes known interactions (e.g. JUN, MYC, XBP1, 
STAT) and previously unreported interactions such as between ETS1 and STAT6, which may be 
involved in the propagation of T cell cytokine signaling. By increasing the number of cells 
profiled using multiplexed workflows (30, 84) and the number of genetic perturbations through 
higher multiplicity of infection (85), future integration of genome engineering and single cell 
transcriptomics would allow for refined mapping and causal reconstruction (86) of gene 
regulatory networks in specific low frequency T cell subsets (e.g., Th1/2, Tnaive).(86) 

Although epistatic interactions involving naturally segregating variants have been identified in 
model organisms, there has been been limited success in identifying these interactions using 
observational studies in humans due to limited power (87–89). Our genetic-multiplexed approach 
allowed us to identify genes that are interindividual variable in CRISPR perturbed primary 
human cells and in some cases, pinpoint the genetic variants that likely mediate the variability. 
Akin to reducing the trans contribution of gene expression through in vitro perturbations(18–20, 
90) or computational adjustments (91), we provide evidence of decreased gene expression 
variance in CRISPR perturbed cells thus increasing the ability to detect cis genetic effects. 
Surprisingly, we also found that some CRISPR perturbations can modify the effects of genetic 
variants on gene expression epistatically reminiscent of gene by environment effects detected by 
in vitro perturbation of cells (18–20, 90). Thus, a comprehensive perturbative-QTL analysis 
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using CRISPR/Cas9 is a compelling alternative strategy to large observational studies for 
mapping genetic interactions that involve standing genetic variants in primary human cells. 

Our work provides the first view into the heterogeneity of activated CD4+ T cells at the single 
cell resolution across pooled CRISPR perturbations and individuals. We identify  candidate 
regulators of T cell polarization and two classes of genetic interactions. By harnessing natural 
and CRISPR genome engineering, we can begin to efficiently dissect gene regulatory networks 
and identify genetic interactions in primary human cells.   
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Figure 1: CRISPR perturbation screen in activated CD4+ T cells across donors. 

(A) Experiment overview. (B) Unbiased identification of candidate regulators from transcript 
abundance (top) and accessibility of binding sites (bottom) in activated CD4+ T cells (18). 
Targeted regulators are in red and all other regulators in the human genome are in black. (C) 
Data processing overview of 10X single-cell RNA-sequencing, sgRNA amplicon sequencing, 
and target loci DNA sequencing. (D) Total number of cells expressing each sgRNA per donor. 
(E) Observed distribution of cells with 1-4 sgRNA (black bars) and expected Poisson 
distributions at an MOI of 0.5 (pink), 1 (green), 1.25 (blue), and 2 (purple). (F) For each sgRNA, 
cutting efficiency (inset) is estimated as the ratio of indel frequency at the targeted locus (y-axis) 
and sgRNA frequency in the pool (x-axis).(G) For each wildtype (WT: blue) and knockout (KO: 
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black) sgRNA, ratio (inset) of cutting efficiency (y-axis) and the proportion of cells expressing 
the sgRNA (x-axis). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 21, 2019. ; https://doi.org/10.1101/678060doi: bioRxiv preprint 

https://doi.org/10.1101/678060


 

23 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 21, 2019. ; https://doi.org/10.1101/678060doi: bioRxiv preprint 

https://doi.org/10.1101/678060


 

24 

Figure 2: Heterogeneity of activated CD4+ T cells. 

(A) UMAP of activated CD4+ T cells. Each color represents an identified Leiden cluster. (B) 
Number of cells per cluster, colors correspond to the populations in (A). (C) Feature plots of 
normalized expression in UMAP coordinates of CD27 (naive T; top left), GNLY (Tcyto; top right), 
IFNG (Th1; bottom left), and IL5 (Th2; bottom right). (D) Log fold-change (with respect to all 
other clusters) of top 10 positively differentially expressed (DE) genes (row) per cluster 
(column). (E) For each cluster, correlation of  average log fold-change of DE genes to sorted 
bulk RNA sequencing transcriptomes (22) (x-axis) versus -log10(FDR) (y-axis). (F) Cluster 
proportions (y-axis) across nine donors (x-axis). Each color corresponds to the population in (A).  
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Figure 3. Regulator perturbations drive T cell polarization and maintenance 

(A) Boxplot of fold change in expression of regulator targeted by sgRNA (left) and random gene 
(right) in cells expressing each sgRNA. (B) Distribution of transcriptomic correlations between 
cells expressing KO sgRNAs targeting the same gene (dark grey), WT sgRNAs (blue) and 
random sgRNA (light grey). (C) Proportion of KO (black) and WT (blue) cells per cluster. * 
indicates FDR < 0.05 and ** indicates FDR < 1e-6. (D) Clustered heatmap of sgRNA 
enrichment or depletion (z-score) across clusters. Red indicates a positive z-score and blue 
indicates a negative z-score. (E) Density of KO cells expressing sgRNA targeting ARID5A 
ARID5A-targeting (cutsite: chr2:96551631; top),  IRF2-targeting (cutsite: chr4:184418577; 
middle), and WT (top) sgRNAs in UMAP space. (F) Proportion of cells expressing ARID5A-
targeting (cutsite: chr2:96551631; top) or IRF2-targeting (cutsite: chr4:184418577; bottom) in 
Tnaive and Th2 clusters. (G) Empirical cumulative distribution function (ECDF) of the estimated 
diffusion pseudotime of cells expressing sgRNA IRF2-targeting (cutsite: chr4:184418577; 
orange), cells expressing sgRNA ARID5A-targeting (cutsite: chr2:96551631; blue), and all cells 
(green). The shape of the ECDF reflects the enrichment of the guide along the pseudotime axis. 
(H) FACS validation. Distribution of cells expressing Th2 marker CD62L+  (top 3 panels) and 
Th1 marker T-bet+ (bottom 3 panels) electroporated with non-targeting control sgRNAs (grey), 
GATA3-targeting sgRNAs (red and orange), IRF2-targeting sgRNAs (light and dark green), or 
ARID5A-targeting sgRNAs (light and dark purple). 
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Figure 4. Perturbations and single cell analysis reveal transcription factor interactions 

(A) Cartoon of detecting genetic interactions between regulators by comparing magnitude of 
correlation between KO and WT cells. In cooperative activation, magnitude of positive 
correlation decreases; in cooperative repression, magnitude of negative correlation decreases; in 
competitive activation, magnitude of positive correlation increases; in competitive repression, 
magnitude of negative correlation increases. (B) Number of genes downstream of each 
interacting regulator pair. (C) Network of interaction regulators known to affect T cell function. 
Solid line indicates known interactions; dashed indicates predicted interactions; dotted indicates 
known but undetected interactions. The colored edges indicate the number of downstream genes. 
(D) Ratio of identified target genes with both predicted binding sites to those without (y-axis) 
within a window size around the TSS (x-axis).  (E) Distribution of regulator interactions found 
by subtype. (F) On top, distribution of magnitude of correlations between CREM and 
downstream genes for WT cells (blue) and GTF3A (cutsite: chr13:27424803) KO cells (green). 
On bottom, distribution of magnitude of correlations between GTF3A and downstream genes for 
WT cells (blue) and CREM-targeting (cutsite: chr10:35179264) KO cells (orange). (G) CLUAP1 
expression versus CREM expression in GTF3A-targeting (cutsite: chr13:27424803) KO cells in 
(top) and GTF3A expression in CREM-targeting (cutsite: chr10:35179264) KO cells (bottom). 
(H) XRN1 expression versus MYC expression in NFATC3-targeting (cutsite: chr16:68122059) 
KO cells (top) and NFATC3 expression in MYC-targeting (cutsite: chr8:127738942) KO cells 
(bottom), illustrating an example of cooperative activation. For (G) and (H), trend lines reflects 
the coefficients fitted by the linear mixed effects model.  
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Figure 5: CRISPR perturbation modifies genetic effects on gene expression 

(A) Cartoon of interindividual variation of gene expression (left) and possible genetic causes due
to a SNP located in the cis regulatory region (right). Size of the arrow corresponding to the
amount of gene expression for each donor. (B) eQTL QQ-plot. Each point represents an eGene
empirical P value across sgRNAs (black), and those that are also interindividual genes (orange)
and previously identified CD4+ eGenes (teal). X-axis: expected P values. Y-axis: observed P
values. Red dashed line is null. (C) Scatter plot of variance explained by interindividual (x-axis)
and genetic (y-axis) variation, per eGene. (D) Scatter plot of eQTL effect sizes between pairs of
sgRNAs targeting the same gene (black) or not (gray). (E) -log10 Mann-Whitney P (y-axis) of
observing the ranked order of genes harboring binding sites for each regulator. Black is observed
and tan is for permuted binding sites, and regulators in red have an eQTLs. (F) Genetic variance
explained of significant eQTLs (y-axis) in KO and WT cells (x-axis). (G) Cartoon depicting
genetic ablation impact on the effects of a donor with a C and another with a T allele on gene
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expression. If the regulator has an additive effect on gene expression in WT (first cartoon), then 
regulator absence changes the trans environment (second cartoon). If regulator interacts with a 
cis regulatory element to have a multiplicative effect (third cartoon), then regulator absence 
changes the effect of the SNP (fourth cartoon). (H) Variance explained by cis x trans interaction 
for our eQTLs (y-axis) and a random SNP interaction (x-axis). In black are significant 
interactions. (I) Normalized MCM9 expression (y-axis) is subsetted by donor genotype (x-axis) 
at rs1885125 in IRF1-targeting (chr5:132487047, red), IRF1-targeting (chr5:132487119, 
orange), and WT (grey) cells. 
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