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Abstract  23 

Understanding and quantifying the transmission of zoonotic pathogens is essential for 24 

directing public health responses, especially for pathogens capable of transmission between 25 

humans. However, determining a pathogen’s transmission dynamics is complicated by 26 

challenges often encountered in zoonotic disease surveillance, including unobserved sources of 27 

transmission (both human and zoonotic), limited spatial information, and unknown scope of 28 

surveillance. In this work, we present a model-based inference method that addresses these 29 

challenges for subcritical zoonotic pathogens using a spatial model with two levels of mixing. 30 

After demonstrating the robustness of the method using simulation studies, we apply the new 31 

method to a dataset of human monkeypox cases detected during an active surveillance program 32 

from 1982-1986 in the Democratic Republic of the Congo (DRC). Our results provide estimates 33 

of the reproductive number and spillover rate of monkeypox during this surveillance period and 34 

suggest that most human-to-human transmission events occur over distances of 30km or less. 35 

Taking advantage of contact-tracing data available for a subset of monkeypox cases, we find that 36 

around 80% of contact-traced links could be correctly recovered from transmission trees inferred 37 

using only date and location. Our results highlight the importance of identifying the appropriate 38 

spatial scale of transmission, and show how even imperfect spatiotemporal data can be 39 

incorporated into models to obtain reliable estimates of human-to-human transmission patterns.  40 

Author Summary 41 

Surveillance datasets are often the only sources of information about the ecology and 42 

epidemiology of zoonotic infectious diseases. Methods that can extract as much information as 43 

possible from these datasets therefore provide a key advantage for informing our understanding 44 
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of the disease dynamics and improving our ability to choose the optimal intervention strategy. 45 

We developed and tested a likelihood-based inference method based on a mechanistic model of 46 

the spillover and human-to-human transmission processes. We first used simulated datasets to 47 

explore which information about the disease dynamics of a subcritical zoonotic pathogen could 48 

be successfully extracted from a line-list surveillance dataset with non-localized spatial 49 

information and unknown geographic coverage. We then applied the method to a dataset of 50 

human monkeypox cases detected during an active surveillance program in the Democratic 51 

Republic of the Congo between 1982 and 1986 to obtain estimates of the reproductive number, 52 

spillover rate, and spatial dispersal of monkeypox in humans.  53 

Introduction 54 

Many recent infectious disease threats have been caused by pathogens with zoonotic 55 

origins, including Ebola, pandemic H1N1 influenza, and SARS- and MERS- Coronaviruses, and 56 

zoonotic pathogens are expected to be a primary source of future emerging infectious diseases 57 

[1–8]. By definition, zoonotic pathogens can transmit from animals to humans; those also 58 

capable of human-to-human transmission are of particular public health concern [5,9]. Infectious 59 

disease surveillance serves a crucial role for detecting and gathering information on zoonotic 60 

pathogens: data obtained through surveillance are often the primary resource available for 61 

informing public health management decisions [10]. Developing methods that improve our 62 

ability to infer information about a pathogen’s transmission dynamics from available 63 

surveillance data is therefore an essential frontier for understanding and ultimately combating 64 

these pathogens [11,12].  65 
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For zoonoses, three epidemiological measures are crucial for summarizing transmission 66 

dynamics and informing risk assessments. The first of these is the spillover rate, which indicates 67 

how frequently the pathogen is transmitted from the animal reservoir into humans and helps 68 

inform the total expected disease incidence [13]. The second measure describes the pathogen’s 69 

potential for further spread once in the human population and is commonly assessed using the 70 

reproductive number (R), which gives the average number of secondary human cases caused by 71 

an infectious individual [14,15]. Values of R greater than one indicate that the pathogen is 72 

capable of sustained (i.e. ‘supercritical’) transmission in humans. Pathogens with subcritical 73 

transmission (R less than one but greater than zero) can cause limited chains of transmission in 74 

humans after a zoonotic introduction, and they pose a risk of acquiring ability for supercritical 75 

transmission via evolutionary or environmental change [2,5,16]. The third epidemiological 76 

measure is the distance over which human-to-human transmission occurs, which informs how 77 

the disease will spread spatially and the risk of it being introduced into new populations. 78 

Combined, these three measures can help evaluate the current public health threat posed by the 79 

pathogen, the risk of future emergence, and the most effective approaches for disease 80 

management.  81 

Estimating epidemiological measures is a challenging task in any pathogen system, and 82 

the unique properties of zoonotic diseases can exacerbate these difficulties. Infectious disease 83 

surveillance often records temporal information and certain aspects of spatial information about 84 

human cases, but the underlying transmission events are seldom observed. In a zoonotic system, 85 

this means that an observed human infection could have been caused by a previous human case 86 

or by zoonotic spillover. Without intensive contact tracing, or sequence data in the case of fast-87 

evolving pathogens, quantifying the relative contribution of zoonotic versus human-to-human 88 
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transmission is a major challenge; identifying the source of infection for specific individuals is 89 

an even bigger one. 90 

Epidemiological analyses are often hindered by data truncation and unknown 91 

denominators [17,18]. In many disease surveillance systems, the total set of localities under 92 

surveillance (i.e. those that would appear in the dataset if a case occurred there) can be separated 93 

into ‘observed localities,’ which appear in the dataset because they reported one or more cases, 94 

and ‘silent localities,’ which have no cases during the surveillance period and therefore do not 95 

appear in the dataset. This form of truncation, where localities with zero cases are absent from 96 

the dataset, obscures the true scope of the surveillance effort. Without knowledge of the total 97 

number of localities under observation (the ‘unknown denominator’), accurately estimating the 98 

spillover rate and probability of human-to-human transmission between localities is not 99 

straightforward. Simply disregarding these silent localities in the analysis is the functional 100 

equivalent of selectively removing zeros from the dataset and can lead to problematic inference 101 

biases.  102 

Complicating inference efforts further is the fact that surveillance datasets often report 103 

the geographic location of cases only at a coarse resolution, obscuring information about a 104 

transmission process that occurs on a much finer scale [19–21]. Precise spatial information is 105 

often absent from historic datasets and data collected in remote or low-resource areas, replaced 106 

by the names of the locality and broader administrative units where the case occurred. For 107 

example, only the village name and the region and country to which the village belongs may be 108 

recorded in a dataset. Furthermore, linking a village name to spatial coordinates is often 109 

impossible when maps of the region do not exist or only unofficial local names are used. 110 

Although collecting exact spatial coordinates has become more practical in contemporary disease 111 
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surveillance, privacy and confidentiality concerns can arise in both human and agricultural 112 

contexts when data contains high-resolution spatial information [19,20,22–25], leading to data 113 

being reported in a non-localized manner. Methods that can use this inexact spatial information 114 

are especially needed for zoonotic diseases, where any additional information about the 115 

proximity of human cases to one another can improve the power to distinguish between human-116 

to-human transmission and zoonotic spillover. 117 

Despite these challenges, a series of research efforts have expanded our ability to 118 

estimate the transmission properties of zoonotic pathogens from case onset data. A key set of 119 

methods revolve around inferring R from the sizes of case clusters (a cluster is defined as a group 120 

of cases that occur in close spatiotemporal proximity to one another) or from the proportion of 121 

observed cases that were infected by zoonotic spillover [16,26–30]. However, these approaches 122 

either require detailed case investigations to determine whether a case was infected by a zoonotic 123 

or human source or assume that each cluster is caused by one single spillover event followed by 124 

human-to-human transmission. A likelihood-based approach for estimating R for human-to-125 

human transmission using only symptom onset dates of cases was introduced by Wallinga and 126 

Teunis [31]. This method was extended to apply to zoonotic systems by Lo Iacono et al. [32], but 127 

the extension requires that chains of exclusively human-to-human transmission can be identified, 128 

and is thus not applicable to many zoonotic surveillance systems where human and zoonotic 129 

transmissions are intermixed. A different approach was taken by White and Pagano [33], who 130 

introduced a different likelihood-based method that compares the observed number of cases on 131 

each day with the expected number, as calculated using the number and timing of previous cases. 132 

Though the White and Pagano approach was only applicable to human-to-human transmission, it 133 

was expanded by Kucharski et al. [34] to work in zoonotic spillover systems in scenarios where a 134 
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control measure, implemented at a known point in time, causes an abrupt reduction in spillover. 135 

A related approach that requires knowledge of the human and animal reservoir population sizes 136 

was also explored in Lo Iacono et al. [35]. Crucially, however, none of these methods 137 

incorporate information about the spatial location of cases to improve inference power or to 138 

estimate patterns of spatial spread. Spatial data is a powerful tool in transmission inference in 139 

single-species studies (e.g. [36–39]), but has largely been excluded from analyses of zoonotic 140 

transmission, which often implicitly assume homogenous mixing across the study area or that 141 

human-to-human transmission can only occur within a locality. One recent exception to this is 142 

the analysis by Cauchemez et al. [40], which includes transmission at several spatial levels.  143 

In this work, we present model-based inference methods that allow us to infer R, the 144 

spillover rate, and properties of spatial spread among humans from surveillance datasets with 145 

non-localized spatial information and an unknown total number of surveilled localities. Our 146 

approach builds on methods introduced by White and Pagano [33] and Kucharski et al. [34], but 147 

allows continuous spillover throughout the surveillance period and makes use of available spatial 148 

information on case location. While the method could be readily adjusted to incorporate more 149 

precise geographic information should it be available, in this study we focus on the more 150 

challenging scenario in which only the names of the locality and broader administrative units 151 

where a case occurred are known. To make use of this form of non-localized spatial data, our 152 

model considers two scales of spatial mixing and transmission (Fig 1A), reminiscent of the 153 

‘epidemics with two levels of mixing’ structure utilized in Ball et al. [41] and Demiris and 154 

O’Neill [42]. The first mixing level is the locality in which the case occurred, such as a village, 155 

conceptualized as a group of individuals geographically separated from other localities. We 156 

assume that individuals within the same locality have more frequent contact with one another 157 
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than with individuals from other localities, and therefore that infection is more likely to be 158 

transmitted within a locality. However, the total number of localities under surveillance is 159 

unknown because only localities with one or more cases appear in the dataset (the ‘unknown 160 

denominator’ problem discussed above). We refer to the second spatial level as the ‘broader 161 

contact zone.’ It describes a collection of localities that all occur within the same administrative 162 

unit and likely share some amount of human movement. When multiple types of administrative 163 

units of different sizes are reported in the dataset (e.g., districts, regions, provinces, etc.), the 164 

ideal choice for broader contact zone is the smallest administrative unit that contains inter-165 

locality human-to-human transmission events. If this scale is not known a priori, inferring the 166 

appropriate scale of administrative unit is necessary. 167 

 168 

Fig 1. Model schematic. A. The schematic illustrates the spatial scales considered in the model 169 

and the types of transmission that occurs at different scales. Human cases are represented in 170 

black if they were infected by zoonotic spillover, blue if they were infected by within-locality 171 

human-to-human transmission, and orange if infected by between-locality human-to-human 172 

transmission. Individuals who are not infected are colored gray and do not appear in the 173 

surveillance dataset. Similarly, if zero individuals in a locality are infected, that ‘silent locality’ 174 

does not appear in the dataset (represented by the gray locality in the broader contact zone). B. 175 

The possible sources of human infection, which in aggregate determine the number of new 176 

infections on day t, locality v. The number of cases arising from spillover and human-to-human 177 

transmissions follow Poisson distributions with means λZ and λ{s,w},{t,v}, respectively. 178 

 179 
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We tested the method against a variety of datasets simulated using different 180 

epidemiological parameters, offspring distributions for human-to-human transmission, and 181 

spatial transmission kernels. To assess the performance of the method, we compared the 182 

estimated and true values for epidemiological measures such as the reproductive number and 183 

spillover rate, and also examined how well the method was able to estimate the probable 184 

transmission source of each case. When silent localities were not accounted for, substantial 185 

biases arose in zoonotic spillover rate estimates. However, a modified method that accounts for 186 

these silent localities was successful in a wide range of circumstances. We therefore applied this 187 

‘corrected-denominator method’ to a dataset on human monkeypox cases from an active 188 

surveillance effort conducted in the Democratic Republic of the Congo (formerly Zaire) in the 189 

1980s [43] (Fig 2). Gaining insights to the disease dynamics of human monkeypox is particularly 190 

relevant given the recent increase in monkeypox incidence and outbreaks and the growing list of 191 

countries and regions reporting human monkeypox cases [44–51]. Using the high-coverage 192 

1980s surveillance dataset to quantify the pathogen’s transmission dynamics will improve our 193 

understanding of what drives its spread and lays the groundwork to assess what has changed over 194 

the past decades to give rise to observed increases. With the 1980s monkeypox surveillance 195 

dataset, we repeated the analyses using four different assumptions about the appropriate spatial 196 

scale to represent the ‘broader contact zone’ over which human-to-human transmissions take 197 

place and selected the preferred option using the deviance information criterion (DIC) method 198 

for model comparison. In the monkeypox dataset, contact-tracing data are available for a subset 199 

of the cases, providing a rare opportunity to compare inferred transmission sources with those 200 

suggested by epidemiological investigation. In addition, some localities were associated with 201 

known GPS coordinates, enabling us to estimate the spatial transmission kernel in greater detail. 202 
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As such, our monkeypox analysis yielded estimates of R and the spillover rate during the 1980s 203 

surveillance period, as well as insights into the spatial scale of human transmission of 204 

monkeypox. 205 

 206 

Fig 2. Map and time-series showing locations and dates of human monkeypox cases. The 207 

size of points on the map indicate the number of cases and the color of points corresponds to the 208 

region in which the cases occurred. Dark lines indicate region boundaries while light lines 209 

indicate the official boundaries for districts (though in the monkeypox surveillance dataset these 210 

are sometimes further divided into administrative subregions). 211 

 212 

Results 213 

Overview of the approach 214 

We first validated the inference framework using a simulation study, then applied the 215 

validated method to a dataset on human monkeypox cases to estimate key epidemiological 216 

parameters and the spatial scale of transmission. To generate simulated test datasets and perform 217 

parameter inference, we used a mathematical model of the zoonotic pathogen’s transmission into 218 

and among humans. The model tracks the number of human cases that occur in each locality on 219 

each day; infections can arise from spillover from the zoonotic reservoir or from human-to-220 

human transmission (Fig 1B). Three key parameters govern the behavior of the system. The 221 

spillover rate (λz) describes the average number of human cases caused by animal-to-human 222 

transmission (‘primary cases’) in each locality per day. The reproductive number of the pathogen 223 
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(R) determines the average number of (‘secondary’) cases caused by each infected human. And 224 

the spatial dispersal of the pathogen is controlled by the fraction of cases arising from human-to-225 

human transmission that occur in the same locality as the source case (σ) and the rules governing 226 

inter-locality transmission events. Two spatial scales of transmission are included in the model: 227 

within the locality of the case and between localities in the same broader contact zone. Using this 228 

model (described further in Methods 4.1) and values for the three parameters, the likelihood of 229 

observing Nt,v cases on each day t and locality v can be calculated. Markov chain Monte Carlo 230 

(MCMC) methods were used to infer posterior parameter distributions for a given dataset of 231 

cases.  232 

Robustness of model-based inference method 233 

Basic method (assumes the total number of localities under surveillance is known). To 234 

assess the accuracy and precision of our method’s estimates of spillover and transmission 235 

parameters, we simulated datasets with known parameter values and compared these true values 236 

with the inferred values. We investigated a range of R and λz values in the neighborhood of 237 

values previously estimated for monkeypox [16,52], with R ranging from 0.2 to 0.6 and λz 238 

ranging from 0.0001 to 0.0007 expected spillover events per locality per day (λz values 239 

correspond to 59 to 415 expected spillover events in the five year simulation period, across all 240 

localities). Transmission events between humans had a probability σ=0.75 of occurring within a 241 

locality and otherwise were equally likely between any localities in the same broader contact 242 

zone. We were interested in seeing how well the inference methods are able to use the spatial-243 

temporal arrangement of cases to estimate the true parameter values.  244 
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Across 125 simulations (25 simulations for each of five parameter sets), estimated values 245 

clustered around the true parameter values. The true value for R was included in the 95% 246 

credible interval (CI) 119 times (95.2%) and for λz was included 121 times (96.8%) (Fig 3A). On 247 

average, the posterior mean estimate of R differed from the true value by 8.6%; the analogous 248 

percent errors for λz and σ estimates were 6.3% and 7.0%, respectively (S1 Table).  249 

 250 

Fig 3. Comparison of true and inferred parameter values in simulation study. Within each 251 

color, large points outlined in black indicate the true parameter set and smaller points indicate the 252 

inferred parameter values from simulated datasets (lines show the 95% credible interval). 253 

Inferences were performed A) when the true number of localities under surveillance was known, 254 

B) when the true number was unknown and it was assumed that the number of observed 255 

localities was the total number of localities, and C) when the true number of localities was 256 

unknown and the corrected-denominator method was used to control for the locality observation 257 

process. 258 

 259 

However, this method assumes that the true number of localities under surveillance is 260 

known. In real-world situations, ‘silent’ localities that experience zero cases often do not appear 261 

in the dataset, resulting in an unknown true number of surveilled localities. We investigated 262 

possible biases in parameter estimates that could arise from assuming that the number of 263 

localities that reported one or more cases represents the total number of localities under 264 

surveillance. To do so, we used the same set of simulated datasets as described above, but 265 

removed knowledge about the number of silent localities. In these datasets, silent localities make 266 
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up between 21% and 85% of all localities under surveillance, with the proportion driven 267 

primarily by the spillover rate. Estimates for the reproductive number R were not strongly 268 

impacted (95.2% of the 95% CIs contained the true value with an average percent error of 8.4%), 269 

but the spillover rate λz was consistently overestimated (Fig 3B). The true value for λz was 270 

contained in none of the simulations’ 95% CIs and the posterior mean had an average percent 271 

error of 153% (S1 Table). 272 

To further investigate the effect of this data truncation (whereby localities with zero cases 273 

do not appear in the dataset), we performed inference assuming that the observed localities 274 

represented all, 1/2, or 1/5 of the total localities under surveillance. While this assumption had a 275 

relatively small impact on the estimated R, it greatly impacted the inferred λz (which is measured 276 

as the number of spillover events per locality per day and is therefore strongly affected by 277 

changes in the assumed number of localities) (S1 Fig). Assuming that a larger fraction of 278 

surveilled localities appear in the dataset resulted in substantially higher estimated spillover 279 

rates.  280 

Corrected-denominator method (conditions on the locality observation process). Because 281 

the total number of localities assumed to be under surveillance has a substantial impact on 282 

parameter estimates, we developed a modified version of the likelihood function that accounts 283 

for localities that were under surveillance but never observed in the dataset. This approach 284 

calculates the likelihood of the observed dataset conditional on the fact that only localities with 285 

one or more cases are included (details on the modified likelihood function can be found in 286 

Methods and S1 Text). 287 
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We tested the performance of the corrected-denominator method against simulated 288 

datasets, looking at the same parameter sets as in the first section. The inferred parameter values 289 

cluster well with their corresponding true values (Fig 3C): mean percent error in R estimates was 290 

8.4% and in λz estimates was 14.0%. Across the 125 simulations, the true parameter value was 291 

included in the 95% CI 116 times (92.8%) for R and 117 times (93.6%) for λz (S1 Table).  292 

Because an estimate of the true number of localities under surveillance would help 293 

determine the size of the population that could be detected for a given system, we assessed how 294 

well we could approximate this value. Given the number of localities with one or more cases and 295 

the mean parameter estimates, it is possible to calculate the expected total number of localities 296 

under surveillance (see S1 Text). Estimates of the true number of localities calculated for the 297 

simulated datasets center on the correct value (S2 Fig). The magnitude of estimate error is driven 298 

by the spillover rate, which largely determines the proportion of localities that are observed by 299 

surveillance. The mean percent error across simulations with spillover rate of 0.0001, 0.00036, 300 

and 0.0007 were 25.4%, 7.9%, and 2.4%, respectively, while simulations with spillover rates of 301 

0.004 and above almost always recorded at least one case in each locality during the five year 302 

surveillance period and therefore tended to estimate the exact true number of localities.  303 

Inferring the sources of transmission events. We investigated how well sampled transmission 304 

trees recovered the source of individual cases as well as higher-order measures, such as the 305 

fraction of cases originating from zoonotic, within-locality, and between-locality transmission. 306 

We tested our method using 125 simulated datasets, with 25 datasets simulated for each of five 307 

sets of true parameter values (these are the same datasets as discussed above, simulated with R 308 

between 0.2 and 0.6 and spillover rate between 0.0001 and 0.0007). Two hundred plausible 309 

transmission trees were sampled for each simulated dataset.  310 
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When comparing the overall fraction of cases attributed to each source type (zoonotic 311 

versus within-locality versus between-locality transmission), the sampled transmission trees 312 

closely match the true transmission patterns (Fig 4). On average, the difference between the true 313 

fraction of cases caused by zoonotic spillover and the fraction inferred in a tree was 0.022 314 

(standard deviation 0.018), the difference for within-locality transmission was 0.006 (standard 315 

deviation 0.005), and the difference for between-locality transmission was 0.022 (standard 316 

deviation 0.018).  317 

 318 

Fig 4. Comparison of the true and inferred fraction of transmissions from each source type. 319 

For each of five parameter sets, 25 datasets were simulated and 200 transmission trees were 320 

sampled for each of these simulated datasets. A. Stacked bars show the true fraction of 321 

transmissions from zoonotic (bottom bar, medium-darkness), within-locality (middle bar, light 322 

color), and between-locality (top bar, darkest color). Points on the bars indicate the inferred 323 

values. If the fraction of transmissions for each source is perfectly inferred, points will lie exactly 324 

on the transition between bar colors. B. Box plots summarize the error in the inferred fraction of 325 

cases originating from each source type. The error size is small across all parameter sets, 326 

especially for within-locality human-to-human transmission. The upper whisker was calculated 327 

as min(max(x), Q3+1.5*IQR) and the lower whisker was calculated as max(min(x),Q1-1.5*IQR). 328 

 329 

The success at recovering individual transmission links was high overall but varied 330 

slightly depending on the true parameters underlying the simulation (S3 Fig). On average, 331 

sampled transmission trees inferred 85.9% of all sources correctly. Better performance was 332 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2019. ; https://doi.org/10.1101/677021doi: bioRxiv preprint 

https://doi.org/10.1101/677021
http://creativecommons.org/licenses/by/4.0/


16 

observed for lower spillover rates and lower R, presumably due to the fewer opportunities for 333 

misattribution of cases. Some transmission links were more likely to be captured than others: on 334 

average 90.9% and 90.1% of sampled trees correctly inferred links with zoonotic and within-335 

locality sources, respectively, but only 36.8% of trees correctly identified the source of between-336 

locality transmission events.  337 

Epidemiological insights into monkeypox 338 

Applying the corrected-denominator method to 1980s monkeypox surveillance data. 339 

Between 1982 and 1986, the active monkeypox surveillance program in the Democratic 340 

Republic of the Congo detected 331 human cases in 171 localities [43]. For each human case, we 341 

know the name of the locality as well as the district or administrative subregion (henceforth 342 

referred to simply as ‘district’) and region to which it belongs. However, the total number of 343 

localities that would have been detected by surveillance had they experienced a case is unknown. 344 

We therefore used the corrected-denominator method to generate estimates under four different 345 

assumptions about which administrative unit most suitably represents the broader contact zone. 346 

The country-level, region-level, and district-level models correspond to progressively smaller 347 

choices of broader contact zones, while the locality-level model assumes that all instances of 348 

human-to-human transmission occur within a locality. We anticipate that assuming an 349 

excessively large broader contact zone could result in overestimating R and underestimating λz if 350 

too many spurious human-to-human transmission events are inferred from pairs of cases that just 351 

happen to occur within a generation-time interval of one another, while assuming an 352 

inappropriately small broader contact zone could result in the opposite parameter biases if the 353 

model is unable to detect actual incidents of human-to-human transmission because the cases 354 

occur in different (assumed) broader contact zones. 355 
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In the monkeypox analysis, the size of the administrative unit used as the broader contact 356 

zone has a strong effect on the resulting parameter estimates (Fig 5A). When larger 357 

administrative units are assumed to represent the broader contact zone, a given pair of cases is 358 

more likely to belong to the same broader contact zone, giving the model more opportunities to 359 

infer inter-locality human-to-human transmission events and resulting in larger estimated 360 

reproductive number R and a smaller spillover rate λz. Mean values of the posterior distribution 361 

of R range from 0.29 when transmission is assumed to occur only within localities to 0.52 when 362 

transmission is assumed to occur among all localities in the country (Table 1).  363 

 364 

Fig 5. Assumptions about the broader contact zone and the total number of localities under 365 

surveillance affect parameter estimates for the monkeypox dataset. Estimates and 95% CIs 366 

for the reproductive number (R) and the spillover rate (λz) of the monkeypox dataset are shown 367 

for each of the four choices of spatial scale for the broader contact zone (locality = green, district 368 

= blue, region = purple, country = red). A. Inference performed using the corrected-denominator 369 

method that accounts for silent localities. Light background dots are draws from the posterior, 370 

larger dots designate the mean value, and bars indicate the 95% CI. B. Inference performed 371 

assuming that the fraction of localities under surveillance with one or more monkeypox cases (p) 372 

is 1/5, 1/2, or 1. For each assumption about the total number of localities, parameter estimates 373 

fall roughly along the line     
      

 
 (indicated by grey lines), where V is the true number 374 

of localities under surveillance, T is the duration of surveillance, and N is to total number of 375 

cases. The position of estimates along this line depends on the spatial model used. Note that the 376 

slope of each line is proportional to -1/p because V = (number of observed localities) / p. Dots 377 
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represent the mean posterior estimates and bars indicate the 95% CI. The four darker dots show 378 

the mean estimates from panel A. 379 

 380 

Table 1. District model performs best for the monkeypox dataset in DIC model 381 

comparisons.  382 

Approach for dealing with silent localities Model ΔDIC mean R mean λz mean σ 

 

Corrected-denominator method 

 

Locality 23.11 0.290 0.000387 1 

District 0.0 0.381 0.000309 0.696 

Region 5.88 0.418 0.000271 0.622 

Country 5.82 0.522 0.000188 0.464 

 

Assume all surveilled localities were 

observed 

 

Locality 21.98 0.272 0.000785 1 

District 0.0 0.372 0.000676 0.717 

Region 6.25 0.413 0.000633 0.656 

Country 10.92 0.479 0.000564 0.568 

 

Assume 1/2 of surveilled localities were 

observed 

 

Locality 17.06 0.290 0.000382 1 

District 0.0 0.381 0.000334 0.756 

Region 3.12 0.424 0.000311 0.684 

Country 6.79 0.488 0.000276 0.598 

 

Assume 1/5 of surveilled localities were 

observed 

 

Locality 15.05 0.310 0.000148 1 

District 0.0 0.395 0.000130 0.777 

Region 2.01 0.439 0.000121 0.704 

Country 5.34 0.500 0.000108 0.622 

Parameter inference for the monkeypox dataset was performed using four different approaches 383 

for dealing with the silent locality problem: the corrected-denominator method (which conditions 384 

on the observation process for localities under surveillance) and three assumptions about the 385 

fraction of localities under surveillance that were observed. For each of these approaches, 386 

inference was repeated using four choices for the broader contact zone and the DIC was 387 

calculated. Parameter estimates and ΔDIC values are shown. The model with lowest ΔDIC is 388 

preferred and is shown in bold text. 389 
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 390 

We used the mean parameter estimates obtained using each of the four broader contact 391 

zone assumptions to generate estimates of the expected total number of localities under 392 

surveillance. While only 171 localities were observed in the dataset, estimates of the total 393 

number of surveilled localities ranged from 337 (using the locality-level model) to 408 (using the 394 

country-level model). The district-level and region-level models generated similar estimates of 395 

351 and 366 total localities, respectively. 396 

Insights into how underlying assumptions drive monkeypox estimates. We investigated how 397 

different assumptions about the true number of localities and the spatial scale of human-to-398 

human transmission would affect the parameter estimates for the monkeypox system. To explore 399 

how the presence of silent localities affects results, we repeated the analysis using the basic 400 

method (which does not account for silent localities) under the assumption that the localities 401 

observed in the monkeypox dataset represent all, 1/2, and 1/5 of the total number of localities 402 

that were under surveillance. Furthermore, for each of these assumptions about the total number 403 

of localities under surveillance, we repeated the analysis using the four different choices of 404 

broader contact zone to determine how the assumed spatial scales of inter-locality transmission 405 

impacted inference results.  406 

Both the choice of broader contact zone and the assumed total number of localities have a 407 

large impact on estimates of R and λz (Fig 5B). As noted above, models assuming smaller 408 

broader contact zones allow fewer opportunities for human-to-human transmissions to be 409 

inferred, and these models estimate substantially lower R values and correspondingly higher 410 

spillover rates. In contrast, assuming that a smaller fraction of surveilled localities were observed 411 
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leads to slightly higher estimates of R and substantially lower estimates of λz because the 412 

presence of many silent localities drives the estimate of the number of spillover events per 413 

locality per day lower. Estimates of R are most strongly affected by the choice of broader contact 414 

zone, while estimates of λz are most strongly impacted by assumed fraction of localities 415 

observed. For all assumptions of broader contact zone and total number of localities, the means 416 

of the parameters’ posterior distributions fall along the line  417 

    
      

 
    ,        (1) 418 

where V is the true number of localities under surveillance, T is the number of days over which 419 

surveillance occurred, and N is to total number of cases in the monkeypox dataset. This 420 

relationship arises because the expected number of total cases is equal to the expected number of 421 

spillover events (V * T * λZ) multiplied by the total number of human cases expected to occur 422 

from each spillover event (1 / (1 – R) for 0<R<1). Each assumption about the total number of 423 

localities under surveillance corresponds to a separate line along which parameter estimates fall 424 

(Fig 5B). The position of the parameter estimates along this line depends on the spatio-temporal 425 

distribution of the N cases and the assumed spatial scale of human-to-human transmission.  426 

District-level broader contact zone preferred in model comparisons. To assess which broader 427 

contact zone assumption is most appropriate for the monkeypox system, we used the deviance 428 

information criterion (DIC) to perform model comparisons for the corrected-denominator 429 

method as well as for each assumption about the number of surveilled localities. For the 430 

corrected-denominator method, the district-level model had the best DIC score, followed by the 431 

region and country-level models (Table 1). The locality-level model received a much larger DIC 432 

value, indicating that the data strongly support models that allow transmission between localities. 433 
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Similarly, for each of the three assumptions about the true number of surveilled localities, the 434 

district-scale model performed best in DIC model comparisons (Table 1). 435 

Inferring the sources and distances of transmission events. We used the district-level 436 

corrected-denominator method to sample 20,000 transmission trees for the monkeypox dataset. 437 

The sampled transmission trees attributed an average of 60.8% (standard deviation of 2.2%) of 438 

cases to zoonotic spillover, 28.5% (standard deviation of 0.9%) of cases to within-locality 439 

human-to-human transmission, and 10.7% (standard deviation of 2.1%) of cases to between-440 

locality human-to-human transmission. For comparison, the results using the three other broader 441 

contact zone assumptions are shown in S4A Fig. Each model’s trees include a similar number of 442 

within-locality human-to-human transmission events, but increasing the spatial scale of the 443 

broader contact zone increases the number of inferred between-locality transmission events.  444 

To characterize the distance range over which inter-locality transmission occurs, we 445 

focused on links in the sampled transmission trees that occurred between cases with known GPS 446 

coordinates (280 out of 331 monkeypox cases had recorded GPS coordinates). The number of 447 

transmission events in each sampled tree that occurred over a certain distance was then compared 448 

to the number of transmission events expected to occur over each distance if transmission 449 

between all localities in a broader contact zone was equally likely (see Methods 4.3 for how this 450 

‘null distribution’ was calculated).  451 

For all models allowing inter-locality transmission, more transmission events were 452 

inferred to occur across ≤ 30 kilometers than expected based on the null distribution (Fig 6, S4B 453 

Fig). For each inferred transmission tree, a binomial test was used to examine whether more 454 

transmissions were inferred to occur over ≤ 30 kilometers than expected based on the null 455 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2019. ; https://doi.org/10.1101/677021doi: bioRxiv preprint 

https://doi.org/10.1101/677021
http://creativecommons.org/licenses/by/4.0/


22 

distribution of transmission distances. Out of 20,000 sampled trees for each model, p-values of 456 

less than 0.1 were obtained in 93% of the district, 72% of the region, and 81% of the country-457 

level models’ trees. The median p-values for these three models were 0.007, 0.030, and 0.012, 458 

respectively (S5 Fig shows the full distributions of p-values obtained across all sampled trees).  459 

 460 

Fig 6. Distance of inferred inter-locality human-to-human transmission events. Shaded bars 461 

show the difference between the mean proportion of inter-locality human-to-human 462 

transmissions inferred to occur over a given distance by the district model and the proportion 463 

expected based on the spatial distribution of localities (the ‘null expectation’). Error bars show 464 

the standard deviation among all inferred transmission trees.  465 

 466 

Comparison of sampled transmission trees with contact-tracing data. Contact-tracing, where 467 

the contacts of a case were recorded and follow-up investigations determined whether or not the 468 

contacts had become infected, was done for a subset of monkeypox cases. Instances where a 469 

contact developed an infection are presumed to be instances of human-to-human transmission. 470 

For each of these epidemiologically contact-traced links, we looked at how frequently the 471 

sampled transmission trees for each model captured the transmission link. 472 

Of the 53 case pairs linked through contact tracing, an average of 79.5% (standard 473 

deviation of 4.2%) were recovered in each of the district model’s sampled transmission trees (Fig 474 

7A). The highest success was seen for pairs of epidemiologically-linked cases whose dates of 475 

symptom onset were between 7 and 25 days apart (Fig 7B). Although it is generally believed that 476 

the generation interval for human-to-human transmission of monkeypox is between 7 and 23 477 
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days [43,53], several case pairs that occurred more than 23 days apart were epidemiologically 478 

linked through contact-tracing. It is possible that these links, which were often missed in the 479 

sampled transmission trees, are not true instances of human-to-human transmission. Cases that 480 

occurred in different localities were also less likely to be linked in a sampled transmission tree, 481 

though even for these inter-locality pairs, the district-level model tended to perform better than 482 

the other three models (S6 Fig). The four models had similar success at recovering within-483 

locality links. In all models, when a link was incorrectly inferred, it frequently was inferred to 484 

originate from zoonotic spillover instead. Although the district model had the highest success at 485 

recovering contact-traced links, the sampled trees from all models recovered an average of >76% 486 

of contact pairs. 487 

 488 

Fig 7. Comparison of epidemiologically contact-traced links with sampled transmission 489 

trees. A. Circles (left axis) show the fraction of sampled trees that infer the epidemiologically-490 

traced source. Open circles represent inter-locality links while closed circles represent intra-491 

locality links. Crosses (right axis) indicate the probability that a link is instead inferred to have a 492 

zoonotic source. Results are shown for the model assuming the district-level broader contact 493 

zone. Links are sorted from lowest to highest success. B. The fraction of sampled transmission 494 

trees that recover a contact-traced link is influenced by the number of days between the symptom 495 

onset of source and recipient cases. Circles (left axis) show how often a given link was inferred 496 

as a function of the generation interval while the gray curve (right axis) shows the probability 497 

density for the generation interval assumed by the model.  498 

 499 
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Comparison of the transmission tree generated using only contact-tracing data with the 500 

trees created using the district-level and locality-level models highlights how much our 501 

perception of the transmission dynamics depends on assumptions about spatial spread (Fig 8). 502 

Most of the within-locality transmission links detected through epidemiological contact-tracing 503 

appear in the locality-level model’s tree, though the locality-level tree suggests substantially 504 

more human-to-human transmission events than captured in the contact-tracing tree. However, 505 

the locality-level tree misses all inter-locality links. The district-level model’s tree captures most 506 

of the links indicated by the locality-level tree, and also suggests that inter-locality transmission 507 

is occurring, though it has low power to determine exactly which case pairs are linked through 508 

inter-locality transmission.  509 

 510 

Fig 8. Comparison of monkeypox transmission trees created from contact-tracing, the 511 

locality-level model, and the district-level model. Points represent cases and edges indicate 512 

inferred transmission links between cases. Edge thickness corresponds to the frequency with 513 

which a given transmission link was inferred while edge color indicates whether a pair of linked 514 

cases occurred within the same (blue) or different (red) localities. The darkness of a point’s fill 515 

indicates how frequently the case was inferred to have a zoonotic source, so transmission links 516 

often go from black points (cases caused by zoonotic spillover) to white points (cases infected by 517 

a human source). 518 

 519 
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Sensitivity analyses 520 

We conducted a variety of sensitivity analysis tests using simulated datasets to assess 521 

how robust the method was over a range of parameter values and assumption violations (full 522 

descriptions are provided in S1 Text). The method continued to perform well even at very high 523 

spillover rates (S7 Fig, S2 Table) and when the offspring distribution used in simulations 524 

differed from the one assumed in the inference (S8 Fig, S3 Table). In some situations, assuming 525 

a larger broader contact zone than the one used for simulations could lead to an overestimation of 526 

R and an underestimation of λz (S4 and S5 Tables). This outcome is consistent with what was 527 

observed in the monkeypox analysis where assuming a larger spatial scale for the broader contact 528 

zone corresponded to a higher estimate of R and a smaller estimate of the spillover rate (Fig 5). 529 

When simulations were run with highly structured, non-homogeneous spillover, substantial 530 

biases in the inference results occurred because this spillover process gives rise to clusters of 531 

primary cases that the model mistakes as arising from human-to-human transmission (S9 Fig).  532 

Discussion 533 

Principal findings 534 

In this work, we developed and tested a method to infer fundamental epidemiological 535 

parameters and transmission patterns for zoonotic pathogens from epidemiological surveillance 536 

data with aggregated spatial information. When tested against simulated datasets, the method 537 

successfully recovered estimates of R and spillover rate close to the true values and also inferred 538 

the fraction of cases resulting from zoonotic, within-locality, and between-locality sources with a 539 

high degree of accuracy. The ‘unknown denominator problem’ that occurs when the total number 540 
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of localities under surveillance is unknown can cause large biases in parameter estimates, so we 541 

modified the inference method to account for this observational process and enable unbiased 542 

estimation in the presence of this common data gap. 543 

We applied the method to a rich surveillance dataset of human monkeypox in the Congo 544 

basin from the 1980s and found that human-to-human transmission of monkeypox between 545 

localities plays an important role in the pathogen’s spread. Of the four assumptions we tested for 546 

the spatial scale of the broader contact zone, the district-level model was best supported by DIC 547 

model comparisons and validation with contact-tracing. In addition, the signal of elevated inter-548 

locality transmission occurring over ≤ 30 kilometers suggests that most inter-locality 549 

transmissions occur in a relatively small neighborhood, consistent with the limited transportation 550 

infrastructure in the DRC. This further corroborates that the district-level model, which is the 551 

smallest spatial aggregation scale that still permits inter-locality transmission, is likely the most 552 

appropriate choice for capturing inter-locality transmission patterns of human monkeypox.  553 

The district-level model estimates a reproductive number for human monkeypox of 0.38 554 

(0.31-0.45 95% CI). This value is slightly higher than previous estimates of R for the 1980s DRC 555 

monkeypox dataset, which was estimated as 0.30 (90% CI 0.22-0.40) in Blumberg and Lloyd-556 

Smith [16], as 0.32 (90% CI 0.22-0.40) in Lloyd-Smith et al. [54], and as 0.28 in Jezek et al. 557 

[52]. There are several explanations for the higher estimate we obtained. The previous studies 558 

may have underestimated the reproductive number, particularly if contact-tracing or cluster 559 

formation methods were liable to miss transmissions that occurred between localities. Indeed, the 560 

estimate obtained using the locality-level model (R = 0.29) closely matches previous estimates. It 561 

is also possible that the district-level model may overestimate the amount of human-to-human 562 

transmission in the same way that the region- and country-level models picked up a higher signal 563 
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of human-to-human transmission than the district-level model due to their larger broader contact 564 

zone sizes. The size of the DRC’s districts and administrative subregions used for the district-565 

level model vary in size, but average around fifteen thousand square kilometers, or around one 566 

hundred forty kilometers across, encompassing a much greater distance than most human-to-567 

human transmission events likely occur over. We therefore expect that the true value of R is 568 

bounded by the estimates of the locality-level and the district-level models. 569 

In addition to providing an estimate of monkeypox’s reproductive number, the methods 570 

give insight into the frequency of spillover and the spatial scale of human-to-human 571 

transmission. The district-level model estimates a mean spillover rate of around 0.11 spillover 572 

events per locality per year, which corresponds to roughly one spillover event every nine years in 573 

each locality. It also estimated that around 70% of human-to-human transmissions occur within a 574 

locality. This finding contrasts with the assumption that human-to-human transmission occurs 575 

within a locality, which is commonly used to generate transmission clusters, and suggests that 576 

estimates generated using that assumption may substantially underestimate the amount of 577 

human-to-human transmission occurring in the system. The importance of inter-locality contacts 578 

has been reported for the neighboring country of Uganda, where a survey by le Polain de 579 

Waroux et al. [55] on rural movement and social contact patterns indicated that 12% of social 580 

contacts occurred outside participants’ village of residence. 581 

Among human monkeypox cases with recorded geographical coordinates, a clear signal 582 

emerged of higher rates of human-to-human transmission between localities ≤ 30 kilometers 583 

apart. This pattern seems reasonable given the infrastructure and general difficulty of 584 

transportation in the more remote regions of the DRC. It also suggests a similar pattern of 585 
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movement as found in the le Polain de Waroux et al. [55] survey. Their analyses indicate that 586 

90% of people who traveled outside their village of residence remained within 12 km.  587 

Spatial scale of transmission and aggregated spatial data 588 

The potential biases introduced when analyzing data reported at a course spatial scale 589 

have been explored in a wide range of contexts [56–58], yet the implications of using this type of 590 

spatial information to infer the transmission dynamics of an infectious disease is not obvious. 591 

When spatial information is only reported at the level of large spatial zones like districts, regions, 592 

or countries, no finer-scale information is available to inform which human cases transmitted 593 

infection to one another between different localities. Here we explored how the size of these 594 

spatial zones would affect inference for the monkeypox system by repeating the analysis using 595 

spatial information at the district, region, or country resolution. The large differences in 596 

parameter estimates generated under different broader contact zone assumptions in the 597 

monkeypox analysis illustrates how sensitive inference results can be to the spatial scale 598 

assumed for human-to-human transmission, and suggests that reporting spatial data at too large a 599 

scale or ignoring inter-locality transmissions can lead to substantial estimate biases.  600 

In the context of monkeypox in the DRC, analysis of simulations using the exact 601 

geographic coordinates reported for 80% of localities in the monkeypox surveillance dataset 602 

replicated the increasing estimates of R and decreasing estimates of spillover rate as the spatial 603 

aggregation scale increased (S4 and S5 Tables). However, the magnitude of the effect in 604 

simulated datasets was smaller than in the monkeypox analysis. This could be a result of the 605 

particular assumptions about inter-locality transmission patterns used in the simulations, but it 606 

also opens the question of whether outside large-scale factors such as seasonality or fluctuations 607 
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in surveillance effort might induce temporal autocorrelation among unlinked human cases, 608 

giving rise to temporal clustering of cases that the model interprets as human-to-human 609 

transmission.  610 

This analysis serves to emphasize the importance of selecting an appropriate spatial scale 611 

and using caution when interpreting results obtained using spatially aggregated data. Many 612 

methods implicitly assume a certain scale of spatial transmission, often ignoring the possibility 613 

of longer-range transmissions, so careful consideration of whether that scale is appropriate for 614 

the system is essential.  615 

In general, recording precise spatial locations of cases is vital for increasing the 616 

inferential power of modeling analyses. Developing methods that maintain spatial information 617 

without risking a breach in confidentiality is a nontrivial challenge, but progress has already been 618 

made in generating possible solutions such as geographic masking or the verified neighbor 619 

approach [59,60].  620 

Model assumptions and future directions 621 

In this work, we assumed that the spillover rate was homogenous through time and space, 622 

but more complex disease dynamics in the reservoir or spatiotemporal heterogeneity in animal-623 

human contacts may cause nontrivial deviations from this assumption in real-world systems. Of 624 

particular concern is the possibility that outbreaks in the reservoir could cause periods of 625 

amplified local spillover, which could create a clustering pattern of human cases potentially 626 

indistinguishable from human-to-human transmission. Without information about disease 627 

dynamics in the reservoir, accounting for this heterogeneous spillover will be challenging, but 628 
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certain types of pathogen dynamics, such as seasonal epidemics or expanding wave-fronts of 629 

infection, could be incorporated into the model structure.  630 

Similarly, spatially and temporally variable surveillance intensity could potentially mimic 631 

the signal of human-to-human transmission clusters and result in overestimates of the 632 

reproductive number. Future surveillance programs could help mitigate this challenge by 633 

recording a measure of surveillance effort undertaken at each location and time.  634 

This work assumes that R is constant across all localities; however, to obtain a full picture 635 

of pathogen emergence risk, it may be necessary to consider the heterogeneity in transmission 636 

intensity among different human populations, as well as the interplay between where R is highest 637 

versus where spillover tends to occur [61]. In some zoonotic systems, for instance, spillover 638 

predominantly occurs into remote villages and towns that are in close proximity to forested 639 

regions. However, we generally expect these villages to have lower levels of human-to-human 640 

transmission than the more densely-packed cities [62–64]. A pathogen may even be incapable of 641 

supercritical spread until it reaches such a city. Therefore, to assess the probability a pathogen 642 

will successfully emerge and to determine which populations to target with control measures, it 643 

may be necessary to establish not only the spillover rate and R across different populations, but 644 

also the rate of dispersal of the pathogen between those populations [61].  645 

Several assumptions may need to be modified when applying this method to other 646 

zoonotic systems. Because we assume that the source of human-to-human transmission events 647 

will show symptoms before the recipient, the likelihood function can treat human cases as 648 

occurring independently conditional on preceding cases. For zoonotic diseases in which infected 649 

individuals frequently transmit the pathogen before showing symptoms (or when asymptomatic 650 
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cases contribute non-negligibly to transmission), the likelihood expression would need to be 651 

modified substantially, and the lack of independence between cases might make a simulation-652 

based inference approach necessary.  653 

We assume that sufficiently few infections occur relative to the population size that 654 

depletion of susceptible individuals does not affect transmission dynamics. While appropriate 655 

when there are few human infections or in the early stages of invasion, this assumption could 656 

bias estimates if applied in a system with sufficiently high levels of human infection or where 657 

transmission occurs primarily among highly clustered contacts, such as individuals within a 658 

household. We also note that in the monkeypox example we are estimating the effective 659 

reproductive number, which takes into account existing population immunity. If the goal instead 660 

were to establish the basic reproductive number (the reproductive number for the pathogen in a 661 

fully susceptible human population), accounting for past exposure to the pathogen or other cross-662 

immunizing pathogens or vaccines would be necessary.  663 

The current methods assume that all human cases that occur during the surveillance 664 

period inside the surveillance area are observed. This assumption is plausible for the analysis of 665 

the 1980s monkeypox dataset, given the unusually high resources and experience level of this 666 

surveillance effort in the aftermath of the smallpox eradication program and the use of serology 667 

to detect missed cases retrospectively [43]. However, most zoonotic surveillance systems operate 668 

with limited resources and have a much lower detection rate. Ignoring unobserved cases will lead 669 

to underestimation of the spillover rate, while the effect on estimation of R will depend on the 670 

nature of the surveillance program. For instance, in the chain-size analyses of Ferguson et al. 671 

[28] and Blumberg and Lloyd-Smith [16], R is underestimated when the detection probability of 672 

each case is independent of one another or when right-censoring occurs but overestimated when 673 
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a detected case triggers a retrospective investigation that detects all cases in that transmission 674 

chain.  675 

Conclusions 676 

This work expands our ability to assess and quantify important zoonotic pathogen traits 677 

from commonly available epidemiological surveillance data, even in the absence of exact spatial 678 

information or a complete count of localities under surveillance. We anticipate that these 679 

methods will have greatest value in the common circumstance when the source of cases, 680 

particularly whether a case came from an animal or human source, cannot be readily established. 681 

In such situations, the ability to infer the pathogen’s reproductive number, spillover rate, and 682 

spatial spread patterns from available surveillance data, will greatly enhance our understanding 683 

of the pathogen’s behavior and could provide valuable insights to help guide surveillance design 684 

and outbreak response.  685 

Methods 686 

Model 687 

In broad terms, the model describes the probability of observing a set of symptom onset 688 

times and locations of human cases given the timing and location of previous cases and 689 

parameters that underlie the transmission process. Human infections can arise from either 690 

animal-to-human transmission (‘zoonotic spillover’) or human-to-human transmission (Fig 1B). 691 

Human-to-human contact occurs more frequently within a locality than between localities, but 692 

can still occur between localities that belong to the same broader contact zone (Fig 1A).  693 
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All sources of infection are assumed to generate new cases independently of one another. 694 

The number of human cases that become symptomatic on each day in each locality caused by 695 

zoonotic spillover is assumed to follow a Poisson distribution with mean λz. For simplicity and 696 

because reservoir disease dynamics are rarely well characterized, we assume the Poisson process 697 

is homogenous through time and across localities, but this assumption could be modified for a 698 

system where more information is available about the reservoir dynamics (e.g., [34]). New 699 

infections can also arise from contact with infected humans. The number of new infections that 700 

become symptomatic on day t in locality v caused by an infectious individual who became 701 

symptomatic on day s in locality w is assumed to be a Poisson-distributed random variable with 702 

mean λ{s,w},{t,v}.  703 

Aggregating cases caused by all sources of infection (both human and zoonotic), the total 704 

number of new cases on day t in locality v is a Poisson-distributed random variable with mean 705 

      ∑ ∑ ,      *   + *   +-
 
   

   
              (2) 706 

where   is the number of localities under surveillance and      is the number of cases with 707 

symptom onset on day s in locality w.   708 

The mean of the Poisson random variable describing human-to-human transmission, 709 

λ{s,w},{t,v}, depends on the reproductive number of the pathogen in humans, the generation time 710 

distribution, and the coupling between localities: 711 

 *   + *   +       (   )   (   )        (3) 712 

where R is the reproductive number of the pathogen; g(t-s) is the generation time distribution, 713 

which gives the probability that a secondary case becomes symptomatic t-s days after the index 714 
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case shows symptoms; and H(v,w) describes the amount of transmission between localities v and 715 

w and takes values between zero (if no transmission can occur between localities v and w) and 716 

one (if all cases arising from an infected individual in locality v arise in locality w). The 717 

generation time g(t-s) is assumed to follow a negative binomial distribution. For this study, we 718 

used a mean of 16 days and a dispersion parameter of 728.7 (calculated by fitting a negative 719 

binomial distribution to observed generation interval counts for smallpox presented in Fig. 2b of 720 

[65]), which is consistent with previous estimates of the generation time for both smallpox and 721 

monkeypox [43,53,65,66].  722 

The factor that describes the amount of transmission that occurs between localities v and 723 

w (H(v,w)) could reflect Euclidean distance, travel time, inclusion in different spatial zones, or 724 

any other available measurement. To accommodate the imperfect spatial information available 725 

for many zoonotic surveillance systems, this study focused on developing methods for the 726 

situation when only a locality name and an aggregated spatial zone (such as district or country) is 727 

reported for cases, rather than an exact position. We assume that inter-locality transmission 728 

occurs only among localities within the same broader contact zone (Fig 1A). Because 729 

transmission will be greater within a locality than between localities, a proportion σ of secondary 730 

cases are assumed to occur in the same locality as the source case and a proportion (1- σ) of 731 

secondary cases are assumed to occur amongst the outside localities that are within the same 732 

broader contact zone as the source case. This outside transmission is assumed to be divided 733 

equally among all localities within the index case’s broader contact zone:  734 

 (   )   {

                       

                         
(   )

(    )
               

         (4) 735 
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where Zv indicates the broader contact zone of locality v and  v is the total number of localities 736 

in the broader contact zone of locality v. For a given locality v, the sum of H(v,w) across all w 737 

equals one. To observe the effect of assuming different broader contact zones, the monkeypox 738 

case study was repeated under four different assumptions about the spatial scale of human-to-739 

human transmission: locality, district, region, and country-level. 740 

Model inference 741 

Likelihood function. Using the model described above, a likelihood function was used to 742 

evaluate a parameter set (θ = {R, λz, σ}) given the data (D = Nt,v cases observed on each day t and 743 

locality v): 744 

 ( | )  ∏ ∏
          

    

     

 
       

         (5) 745 

where T is the number of days surveillance was conducted and V is the total number of localities 746 

under surveillance.  747 

While this approach works well when the total number of surveilled localities is known 748 

(see Fig 3A), localities often only appear in the dataset if they have reported cases; as a result we 749 

may not know the total number of localities under surveillance. Ignoring localities with zero 750 

cases can lead to biased parameter estimates (see Fig 3B). We explored several alternative 751 

approaches to account for these silent localities; the preferred approach rescales the likelihood 752 

function to reflect that localities with zero cases are not included in the data. Several 753 

approximations are made in this approach to estimate unknown parameters and improve 754 

computational tractability. The details of the derivation for the model are given in S1 Text, and 755 

the final likelihood function is: 756 
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    ,    (6) 757 

where W is the number of observed localities (localities with one or more cases) and E[V] is the 758 

expected number of localities given the parameter values and the number of observed localities.  759 

Parameter estimation. Markov chain Monte Carlo (MCMC) was used to obtain the posterior 760 

distributions of the model parameters. The fraction of transmissions occurring within a locality 761 

(σ) and the reproductive number (R) were given uniform priors on zero to one. The expected 762 

number of spillover events per locality per day (λz) was given a uniform prior with a lower bound 763 

of zero and an upper bound selected to be far above the converged posterior distribution (ranging 764 

from 0.0075 to 1, see S10 Fig for comparison of spillover priors and posterior distributions).  765 

The chains were run for 100,000 steps, with a burn-in of 20,000. They satisfied visual 766 

inspection for convergence. In addition, the Gelman and Rubin multiple sequence diagnostic was 767 

evaluated for three parallel chains from each of the models for the monkeypox dataset [67]. The 768 

Gelman-Rubin potential scale reduction values were less than 1.00033 across all models, 769 

indicating that the chains have converged close to the target distribution [68].  770 

DIC model comparisons 771 

For the monkeypox dataset, four assumptions about the choice of broader contact zone 772 

were compared using the deviance information criterion (DIC). This approach combines a 773 

complexity measure, used to capture the effective number of parameters in each model, with a 774 

measure of fit in order to perform model comparisons. Models are rewarded for better 775 

‘goodness-of-fit’ to the data and penalized for increasing model complexity. Similarly to the 776 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2019. ; https://doi.org/10.1101/677021doi: bioRxiv preprint 

https://doi.org/10.1101/677021
http://creativecommons.org/licenses/by/4.0/


37 

well-known Akaike information criterion (AIC) model comparisons, models with smaller DIC 777 

values are preferred. As a rule of thumb, a difference between models’ scores of four or more 778 

generally indicates that the model with the larger value is ‘considerably less’ well supported by 779 

the empirical evidence [69]. The values necessary to calculate the DIC can be readily obtained 780 

from the MCMC output [70].  781 

Transmission tree reconstruction 782 

The origin of cases (zoonotic spillover, intra-locality human-to-human transmission, or 783 

inter-locality human-to-human transmission) and the distances of inter-locality human-to-human 784 

transmission events (when case localities are known) can be established given a particular 785 

transmission tree. To gain estimates of these measures, trees were sampled based on the model 786 

and the parameter posterior distributions. From the MCMC output (representing draws from the 787 

posterior distribution), d1 sets of parameter estimates were drawn to create d1 transmission-788 

probability matrices (P). The entry Pij describes the probability that individual i was infected by 789 

individual j. The diagonal values of the matrix represent the probability a case originated from 790 

zoonotic spillover. For a case i observed to occur on day t in locality v, the probability that case j 791 

was the source of case i (Pij) was taken to be the proportion of µt,v (the expected total number of 792 

cases on that day and locality; defined in equation 2) contributed by case j. By sampling d2 793 

transmission trees from each of these transmission-probability matrices, we calculated the 794 

proportion of cases that resulted from spillover, within-locality transmission, and between-795 

locality transmission in each sampled tree. When testing the method using 125 simulated 796 

datasets, 200 sampled transmission trees were generated for each dataset, with d1 =20 and d2 797 

=10. For the monkeypox dataset, 20,000 transmission trees were generated with d1 =200 and d2 798 

=100. 799 
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For inferred inter-locality human-to-human transmission events in the monkeypox 800 

dataset, if the GPS coordinates were known for both localities in a transmission pair, the 801 

transmission distance was calculated using the gdist function in the R package Imap [71]. The 802 

‘null distribution,’ used for comparing the number of inferred inter-locality transmission events 803 

with the number expected to occur if spatial location played no role in transmission, was 804 

calculated by pooling all cases for which locality GPS coordinates are known, sampling all inter-805 

locality pairs permitted by the model, and recording the distance between the localities in each 806 

pair. 807 

Simulation of test datasets 808 

To test the effectiveness of the methods, datasets with known parameter values were 809 

simulated using the model explained above. Simulations were run over 1825 days 810 

(approximately 5 years) and 325 surveilled localities. The localities were assumed to be 811 

partitioned across thirty districts and six regions, with the distribution of localities across districts 812 

and regions similar to that observed for the monkeypox dataset. The generation time interval (the 813 

number of days between symptom onset of the source and recipient cases) was assumed to 814 

follow a negative binomial distribution with a mean of 16 days and a dispersion parameter of 815 

728.7 (as described above), with a maximum generation time interval of 40 days. A number of 816 

parameter sets, as well as different underlying model structures, were used for simulations (S6 817 

Table). Simulation parameters were chosen to approximate the monkeypox dataset, with σ set at 818 

0.75, R ranging from 0.2 to 0.6, and λz ranging from 0.0001 to 0.1. Unless otherwise specified, 819 

simulations were performed assuming the district-level model. Details on the models used for 820 

sensitivity analyses that use the exact spatial location of cases or allow highly structured and 821 

non-homogenous spillover patterns are provided in S1 Text.  822 
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Monkeypox data  823 

Data on human monkeypox cases in the Democratic Republic of the Congo (DRC), 824 

formerly ‘Zaire,’ were collected as part of an intensive surveillance program supported by the 825 

World Health Organization. During the peak surveillance period, between 1982 and 1986 [72], 826 

data on 331 cases of laboratory-confirmed human monkeypox were recorded (see Fig 2, S1 827 

Data) [43]. As part of field investigations, mobile teams visited the locality of a monkeypox case 828 

to collect information about the case, such as the date of fever and rash onset (for this study, the 829 

symptom onset date was taken to be the fever onset date; if the date of onset was not recorded, 830 

the rash onset date was used instead), as well as to identify individuals who had had close contact 831 

with the case [52,73]. If one of these contacts developed monkeypox within 7 to 21 days of first 832 

exposure, the presumptive source case was recorded (S2 Data) [43,73].  833 

Between 1982 and 1986, human monkeypox cases were observed in 171 distinct 834 

localities, distributed among 30 districts and administrative subregions (simply referred to as 835 

‘districts’) and 6 regions. The total number of localities that could have been detected by 836 

surveillance is unknown. Of the 171 observed localities, GPS coordinates are available for 136 837 

localities (which corresponds to 280 out of 331 cases). The district, region, and country of a 838 

locality were always recorded.  839 

  840 
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Supporting information captions 1078 

 1079 

S1 Text. Additional information on methods. Supplementary text describing the corrected-1080 

denominator likelihood, the estimation of the total number of localities under surveillance, the 1081 

simulation methods, and the sensitivity analyses. 1082 

 1083 

S1 Fig. Effect of assumed fraction of localities observed on parameter estimates. The true 1084 

parameter values are indicated by a large black dot and while smaller points indicate the inferred 1085 

values from 25 simulated datasets (lines show the 95% credible interval). For each dataset, 1086 

inference was performed assuming that 1/5, 1/2, and all of the localities under surveillance were 1087 

observed. For these simulations, the true percentage of localities observed ranged from 46% to 1088 

57%, with a mean of 52%. 1089 

 1090 

S2 Fig. Estimated number of localities under surveillance (calculated given the number of 1091 

observed localities and the estimated parameter values). Large colored dots indicate the 1092 

estimated number of localities under surveillance for each simulated dataset while the smaller 1093 

dots show the number of localities observed in the dataset. The true number of localities is 1094 

represented by the horizontal dashed line. Each color corresponds to a different parameter set 1095 

used for simulations. 1096 

 1097 
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S3 Fig. Accuracy of inferred transmission trees at inferring the correct source of cases. For 1098 

each simulated dataset (25 simulations for each of 5 parameter sets), 200 transmission trees were 1099 

drawn. Points show the mean fraction of cases inferred correctly in a sampled transmission tree 1100 

and bars indicate the standard deviation.  1101 

 1102 

S4 Fig. Inferred sources of monkeypox cases. A. The fraction of cases inferred to have 1103 

originated from each source using each of the four spatial models (locality-green, district-blue, 1104 

region-purple, country-red). B. Difference in the proportion of inter-locality human-to-human 1105 

transmissions inferred by the models to occur over a given transmission distance versus expected 1106 

based on the spatial distribution of localities. The p-values indicate the probability of observing 1107 

as many or more transmissions over distances of ≤ 30 kilometers based on the null model (i.e. 1108 

assuming distance plays no role in determining which localities are linked by inferred 1109 

transmission events). The median p-value of sampled transmission trees is given, and the full 1110 

distribution of p-values can be seen in S5 Fig. 1111 

 1112 

S5 Fig. The distribution of p-values obtained across sampled transmission trees. P-values 1113 

obtained from a binomial test examining whether the number of transmission events inferred to 1114 

occur across thirty or fewer kilometers is greater than that expected based on the null 1115 

distribution. Each p-value corresponds to a sampled transmission tree. 1116 

 1117 
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S6 Fig. Comparison of epidemiologically contact-traced links with sampled transmission 1118 

trees. Circles (left axis) show the fraction of sampled trees that infer the epidemiologically-1119 

traced source. Open circles represent inter-locality links while closed circles represent intra-1120 

locality links. Bars (right axis) indicate the probability that a link is instead inferred to have a 1121 

zoonotic source. Results are shown for models that use the country-level (red), region-level 1122 

(purple), district-level (blue), and locality-level (green) broader contact zones. Links are sorted 1123 

from lowest to highest success in the district model. 1124 

 1125 

S7 Fig. Effect of increasing spillover rate on parameter estimate success. Within each color, 1126 

large points outlined in black indicate the true parameter set and smaller points indicate the 1127 

inferred parameter values from 25 simulated datasets (lines show the 95% credible interval). 1128 

Warmer colors correspond with higher spillover rates. Note the log-scale x-axis. 1129 

 1130 

S8 Fig. Parameter estimate residuals for data simulated using a negative binomial versus 1131 

Poisson offspring distribution. Because the inference method assumes a Poisson offspring 1132 

distribution, we compared the inference successes for datasets simulated assuming a Poisson 1133 

offspring distribution versus datasets simulated assuming a negative binomial offspring 1134 

distribution. The residuals in parameter estimates for 25 simulations are shown for A) the 1135 

reproductive number and B) the spillover rate. 1136 

 1137 
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S9 Fig. Strongly heterogeneous spillover causes bias in parameter estimates. The true 1138 

parameter value is indicated by the large dot while smaller points indicate the inferred values 1139 

from 25 simulated datasets (lines show the 95% credible interval). Simulations were conducted 1140 

to mimic pockets of zoonotic disease moving through the reservoir population. To capture the 1141 

idea that, at any given time, only a small subset of localities might be experiencing high levels of 1142 

spillover while the rest of the localities experienced no spillover, the simulations assumed that 1143 

every 25 days a new set of three localities experienced the full force of spillover for the entire 1144 

system. This gave rise to clusters of primary cases, which tend to be misclassified as human-to-1145 

human transmission events by our inference approach, which assumes homogeneous spillover 1146 

rates. 1147 

 1148 

S10 Fig. Comparison of prior and posterior distributions for spillover rate λz. Black bars 1149 

represent posterior distribution while red lines mark limits of the uniform prior distribution. One 1150 

representative simulation is shown for each of the nine parameter sets. Notice that the posterior 1151 

distribution is always relatively far from upper bound of the prior. 1152 

 1153 

S1 Table. Comparison of inference method success over the same simulated datasets. 1154 

 1155 

S2 Table. Success of the corrected denominator inference method for datasets simulated 1156 

with increasing spillover rates. 1157 

 1158 
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S3 Table. Success of the corrected denominator inference method for datasets simulated 1159 

with different offspring distributions. 1160 

 1161 

S4 Table. Comparison of parameter estimates inferred using models of increasing spatial 1162 

scale – data simulated using the ‘nearest five neighbors’ inter-locality transmission rule 1163 

where localities take the same GPS coordinates as in the DRC monkeypox surveillance dataset 1164 

(true R is 0.36, true spillover rate is 0.00036; mean parameter estimates from inference on 25 1165 

simulated datasets). 1166 

 1167 

S5 Table. Comparison of parameter estimates inferred using models of increasing spatial 1168 

scale – data simulated assuming inter-locality transmission can occur between any localities 1169 

located within 30 km of one another, where localities take the same GPS coordinates as in the 1170 

DRC monkeypox surveillance dataset (true R is 0.36, true spillover rate is 0.00036; mean 1171 

parameter estimates from inference on 25 simulated datasets). 1172 

 1173 

S6 Table. Description of datasets simulated. 1174 

 1175 

S7 Table. Parameter descriptions. 1176 
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S1 Data. Case records. For all individuals included in the analyses, records the case 1178 

identification number, the locality identification number, the day of surveillance when disease 1179 

onset occurred (the first day of fever when known, otherwise the first day of the rash), the names 1180 

of the district and region where the case occurred, and masked GPS coordinates of the locality. 1181 

The geographic masking technique known as ‘donut masking’ was used to obscure the exact 1182 

location of cases and preserve privacy. For each locality with a recorded location, two random 1183 

values were drawn: the first determines the direction and the second determines the distance 1184 

from the original point. The new location is within 0.1 degrees from the original point but not 1185 

closer than 0.02 degrees.  1186 

 1187 

S2 Data. Contact-tracing links. Each row provides the case identification numbers for a pair of 1188 

cases that was identified as a probable transmission link through epidemiological contact-tracing.  1189 

 1190 

  1191 
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Fig 1 
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Fig 2 
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Fig 3 
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Fig 4 
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Fig 5 
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Fig 6 
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Fig 7 
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Fig 8 

 

 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2019. ; https://doi.org/10.1101/677021doi: bioRxiv preprint 

https://doi.org/10.1101/677021
http://creativecommons.org/licenses/by/4.0/


65 

S1 Text. Supplementary material on methods 

Corrected denominator method: Derivation for the conditional likelihood 1192 

function 1193 

The model described in the main text tells us that the number of new human cases on day 1194 

t in locality v follows a Poisson distribution with mean 1195 

      ∑ ∑ ,      *   + *   +-
 
   

   
              (1) 1196 

which represents the sum of the expected numbers of cases caused by spillover and all previous 1197 

human cases (S7 Table provides a description of parameters). Based on this model, the 1198 

likelihood of a set of parameters (θ = {R, λz, σ}) given surveillance data (        cases 1199 

observed on each day t and locality v) is:  1200 

 ( | )  ∏ ∏
          

    

     

 
       

          (2) 1201 

A challenge in applying this likelihood function to surveillance data arises when the total 1202 

number of localities under surveillance, V, is unknown. Instead, we observe W localities that 1203 

have one or more observed cases. If we re-arrange the product functions in the likelihood 1204 

function, it becomes more apparent that we are taking the product of the likelihood for each 1205 

locality:  1206 

 ( | )  ∏ ∏
          

    

     
 
       

          (3) 1207 

However, because we only observe localities with one or more cases in the surveillance data, we 1208 

need that conditioning to be reflected in the likelihood. In other words, we now want to express 1209 

the likelihood of a particular time-series of cases in a locality conditional on that locality having 1210 
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one or more cases. This can be done for each locality by multiplying its component of the 1211 

likelihood by the inverse of the probability (q) of having one or more cases: 1212 

 ( | )  ∏
∏

 
         

    

     
 
   

 
    

   .      (4) 1213 

It is now necessary to calculate the probability a surveilled locality experiences one or 1214 

more cases. This probability is equivalent to one minus the probability of no cases occurring at a 1215 

locality during the surveillance period. The following section explains how the probability of 1216 

zero cases occurring at a given locality (here denoted p) is calculated.  1217 

For zero cases to occur in a locality, there must be no zoonotic spillover into that locality 1218 

as well as no human-to-human transmission from an outside locality. The zoonotic component is 1219 

relatively straightforward to calculate, as it is simply the probability of zero spillover events on 1220 

each of the T days (which equals      ). The probability of no transmission from an outside 1221 

human source is a bit more complicated and can be broken down by the generation of the outside 1222 

case to avoid double-counting. The generation of a case indicates how many human-to-human 1223 

transmission events occurred leading to the case. We refer to cases resulting from zoonotic 1224 

spillover as primary cases. Individuals infected by primary cases are second generation cases, 1225 

individuals infected by second generation cases are third generation cases, etc. For there to be no 1226 

cases in a locality, no transmission may have occurred into that locality from outside cases in any 1227 

generation: 1228 
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The number of cases caused by a given case (of any generation) in the target locality is 1229 

described by a Poisson distribution with expected value equal to  
(   )

(    )
, where Vw is the 1230 

number of localities within the target locality’s broader contact zone. Because each case 1231 

transmits disease independently of one another (conditioned on the previous cases), the 1232 

probability that no generation i cases cause infections in the target locality is  
  

(   )

(    )
  , where 1233 

ni is the total number of i
th

 generation cases within the broader contact zone (given knowledge 1234 

that none of the cases from previous generations transmitted to the target locality). Incorporating 1235 

this information, the probability of observing zero cases in a locality (p) becomes: 1236 

          ∏  
  

(   )

(    )
   

         1237 

            
  

(   )

(    )
 ∑   
 
           (5) 1238 

We next need to calculate estimates for the expected values of each of the ni. The 1239 

expected number of primary cases in the entire broader contact zone (given that no spillover 1240 

events occurred into the target locality) is the expected number of spillover events per locality 1241 

(  ) multiplied by the number of localities under consideration (    ), multiplied by the 1242 

number of surveillance days (T). For subsequent case generations, we can calculate the expected 1243 

number of cases in generation i+1 as the number of cases caused by the i
th

 generation in their 1244 
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own localities plus those caused in the      other possible localities (there are      other 1245 

possible localities because the case’s current locality and the target locality have already been 1246 

counted): 1247 

 ,    -      .    ∑
(   )

(    )

    
   /      1248 

                   
(      )

(    )
            (6) 1249 

If we approximate the values of ni with  [ni], we get  1250 

 ,    -     (    ) 0  
(      )

(    )
1
 

      (7) 1251 

Returning to our estimation of p, we can approximate ni values with  [ni] and get 1252 

          
  

(   )

(    )
 ∑  ,  -
 
                                            1253 
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       (      )                                      1256 
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       (      )                                              (8) 1257 

With some additional algebraic simplification, we can insert this value in the original equation: 1258 
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This expression still includes the parameter   , though fortunately the sensitivity of results to the 1260 

value of this parameter is relatively low. We therefore approximate    using the expected 1261 

number of localities under surveillance in the broader contact zone. This calculation is explained 1262 

in the following section.  1263 

Estimating total number of localities under surveillance 1264 

We wish to use the estimated parameter values for R, λz, and σ in conjunction with the 1265 

number of observed localities in a broader contact zone (Ww) to estimate the total number of 1266 

localities under surveillance in that broader contact zone (Vw). If we let q be the probability a 1267 

locality is observed (has one or more cases during the surveillance period), then we expect Vw *q 1268 

≈ Ww. From the section above, we approximate q = 1-p as: 1269 

      
       

     (   )(    )

       (      )      (10) 1270 

So we estimate Vw as the value that satisfies the equation: 1271 

    (    
       

     (   )(    )

       (      ))          (11) 1272 

Simulation methods 1273 

Simulations with exact spatial locations 1274 

Although the model assumes that inter-locality transmission with a broader contact zone 1275 

is equal between all locality pairs, we expect that the actual amount of shared transmission 1276 

between two localities is strongly influenced by the distance between those localities. We 1277 

conducted two simulations using localities with set geographic locations and inter-locality 1278 
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transmissions depending on the spatial relationship of the localities. We took the 178 GPS 1279 

records available from monkeypox surveillance in the DRC during the 1980s and simulated 1280 

transmission across localities with the same coordinates and the same district and region 1281 

boundaries. Two types of inter-locality transmission rules were explored. In the first of these, 1282 

inter-locality transmissions were assumed to occur equally into a source locality’s five closest 1283 

neighbors. In the second set of simulations, inter-locality transmissions from a source locality 1284 

were assumed to occur equally among all outside localities within 30 km of the source locality.  1285 

Simulations with highly structured and non-homogeneous spillover patterns 1286 

To illustrate how highly structured and non-homogeneous spillover could bias parameter 1287 

estimates, we simulated an extreme case of a zoonotic epidemic traveling through time and 1288 

space. We imagined that disease dynamics in the reservoir would occur in a single location for 1289 

25 days before moving to a new spot, in an extreme form of a traveling zoonotic epidemic. For 1290 

each 25 day period, three localities (selected to be in the same district when possible) would be 1291 

selected to experience all of the spillover in the entire system. Aside from this extreme spillover 1292 

pattern, the simulation followed the district-level model.  1293 

Sensitivity analyses 1294 

Sensitivity of parameter inference to elevated or heterogeneous spillover 1295 

To test whether a high rate of spillover would inundate the system with so many cases 1296 

that the temporal clustering patterns resulting from human-to-human transmission could be 1297 

obscured, we simulated datasets with spillover rates up to 0.1. This value corresponds with an 1298 

expected 59,312.5 spillover events during the five year simulation, which corresponds to an 1299 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2019. ; https://doi.org/10.1101/677021doi: bioRxiv preprint 

https://doi.org/10.1101/677021
http://creativecommons.org/licenses/by/4.0/


71 

average of 36.5 per year in each locality. At this rate of spillover, there is an average of only ten 1300 

days between spillover events, a shorter period than the mean generation time for human-to-1301 

human transmission events, which was sixteen days. Across the range of spillover rates tested, 1302 

the method did very well at both point estimates and capturing the true parameter values within 1303 

the 95% CI (an average of 94.3% of CIs included the true value of R and 94.9% included the true 1304 

value of λz; S7 Fig, S2 Table). As the spillover rate increased from 0.0001 to 0.1, estimates of R 1305 

tended to improve (posterior means closer to true value and smaller CIs). While the absolute 1306 

error on estimates of λz increased as spillover rate increased, the relative error tended to decrease. 1307 

As such, it appears that elevated spillover rates, far from obscuring patterns, may actually 1308 

correspond with improved estimates, presumably due to the increased inference power resulting 1309 

from a larger number of cases.  1310 

Spillover is unlikely to occur homogeneously through time and space in real-world 1311 

settings. As an illustration of the potential effect this occurrence could have on parameter 1312 

estimates, we simulated an extreme case (see ‘Simulations with highly structured and non-1313 

homogeneous spillover patterns,’ above) where spillover occurs into three localities at a time. 1314 

The parameter inference results for this situation were strongly biased (S10 Fig). 1315 

Sensitivity of parameter inference to offspring distribution assumptions 1316 

The model used in this study assumes that the number of new cases caused by an 1317 

infectious individual follows a Poisson distribution, but previous work suggests that the offspring 1318 

distribution is often better characterized by a negative binomial distribution, which allows for a 1319 

greater amount of variation between individuals [1]. We simulated datasets using a negative 1320 

binomial offspring distribution (using a dispersion parameter k=0.58 in accordance with previous 1321 
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estimates for monkeypox from [1]) and examined how well our inference method, which 1322 

assumes a Poisson offspring distribution, estimated the true parameter values. Estimates for these 1323 

datasets were only marginally less accurate than estimates for datasets generated with a Poisson 1324 

offspring distribution (with an average percent error of 10.9% as opposed to 8.2% for R and of 1325 

11.6% as opposed to 10.4% for spillover rate estimates) (S8 Fig, S3 Table). As such, there are 1326 

unlikely to be strong biases introduced from a mis-specified offspring distribution for the 1327 

monkeypox dataset, though this bias could increase if applied to pathogens with more extreme 1328 

transmission variance.  1329 

Sensitivity of parameter inference to broader contact zone assumption 1330 

To examine how assuming different broader contact zones would affect inference results, 1331 

we compared parameter estimates obtained under three choices of broader contact zones for data 1332 

simulated under two inter-locality transmission rules. We simulated disease spread in a system 1333 

where localities were placed in the same arrangement as seen in 178 localities with GPS 1334 

coordinates included in the monkeypox surveillance system, district and region arrangement 1335 

were the same as in the 1980s surveillance, and human-to-human transmission could occur either 1336 

between a locality and its five closest neighbors or between localities located within 30 km of 1337 

one another. Inference results again showed increasing estimates of R and decreasing estimates 1338 

of spillover rate as the size of the assumed broader contact zone increased (S4 and S5 Table). 1339 

  1340 
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S1 Fig 
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S2 Fig 
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S3 Fig 
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S4 Fig 
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S5 Fig 
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S6 Fig 
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S7 Fig 
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S8 Fig 

 A          B 

 

 

  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2019. ; https://doi.org/10.1101/677021doi: bioRxiv preprint 

https://doi.org/10.1101/677021
http://creativecommons.org/licenses/by/4.0/


82 

S9 Fig 
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S10 Fig 
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S1 Table 

 R λz σ 

Inference 

Approach 

Fraction 

of 

95%CIs 

include 

true value 

Average 

error size 

Average 

percent 

error 

Fraction 

of 

95%CIs 

include 

true value 

Average 

error size 

Average 

percent 

error 

Fraction 

of 

95%CIs 

include 

true value 

Average 

error size 

Average 

percent 

error 

True number of 

localities known 

95.2% 

(119/125)  

0.0293 8.6% 96.8% 

(121/125) 

1.99E-05 6.3% 96.0% 

(120/125) 

0.0522 7.0% 

Assume all 

localities are 

observed 

95.2% 

(119/125) 

0.0288 8.4% 0.0% 

(0/125)  

3.30E-04 153.0% 94.4% 

(118/125) 

0.0575 7.7% 

Corrected 

denominator 

method (account 

for silent 

localities) 

92.8% 

(116/125) 

0.0298 8.4% 93.6% 

(117/125)  

3.59E-05 14.0% 88.0% 

(110/125) 

0.0665 8.9% 
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S2 Table 

 R λz σ 

True λz 
value 

Fraction 

of 95% 

CIs 

include 

true 

value 

Average 

error size 

Average 

percent 

error 

Average 

width of 

CI 

Fraction 

of 95% 

CIs 

include 

true 

value 

Average 

error size 

Average 

percent 

error 

Average 

width of 

CI 

Fraction 

of 95% 

CIs 

include 

true 

value 

Average 

error size 

Average 

percent 

error 

Average 

width of 

CI 

0.0001 96% 

(24/25) 

0.0458 12.7% 0.226 96% 

(24/25) 

3.54 E-

05 

35.4% 1.75 E-

04 

88% 

(22/25) 

0.1094 14.58% 0.395 

0.00036 92% 

(23/25) 

0.0279 7.8% 0.137 88% 

(22/25) 

3.68 E-

05 

10.2% 1.72 E-

04 

84% 

(21/25) 

0.0587 7.83% 0.239 

0.0007 100% 

(25/25) 

0.0213 5.9% 0.108 96% 

(24/25) 

3.85 E-

05 

5.5% 2.06 E-

04 

88% 

(22/25) 

0.0493 6.57% 0.187 

0.004 88% 

(22/25) 

0.0173 4.8% 0.068 96% 

(24/25) 

1.04 E-

04 

2.6% 4.71 E-

04 

100% 

(25/25) 

0.0255 3.39% 0.122 

0.007 92% 

(23/25) 

0.0121 3.4% 0.060 96% 

(24/25) 

1.27 E-

04 

1.8% 7.05 E-

04 

92% 

(23/25) 

0.0261 3.49% 0.113 

0.04 92% 

(23/25) 

0.0121 3.4% 0.050 92% 

(23/25) 

7.50 E-

04 

1.9% 3.15 E-

03 

96% 

(24/25) 

0.0215 2.87% 0.100 

0.1 100% 

(25/25) 

0.0071 2.0% 0.038 100% 

(25/25) 

1.12 E-

03 

1.1% 5.90 E-

03 

100% 

(25/25) 

0.0134 1.79% 0.082 
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S3 Table 

 R λz σ 

Offspring 

distribution 

Fraction of 

95% CIs 

include 

true value 

Average 

error size 

Average 

percent 

error 

Fraction of 

95% CIs 

include 

true value 

Average 

error size 

Average 

percent 

error 

Fraction of 

95% CIs 

include 

true value 

Average 

error size 

Average 

percent 

error 

Poisson 91.7% 

(55/60) 

0.0289 8.0% 93.3% 

(56/60) 

3.76E-05 10.4% 83.3% 

(50/60) 

0.0649 8.7% 

Negative 

binomial 

(k=0.58) 

86.7% 

(52/60) 

0.0393 10.9% 90.0% 

(54/60) 

4.18E-05 11.6% 91.7% 

(55/60) 

0.0555 7.4% 
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S4 Table 

Model used for 

inference 

mean R mean λz 

District 0.314 0.000346 

Region 0.323 0.000343 

Country 0.354 0.000328 
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S5 Table 

Model used for 

inference 

mean R mean λz 

District 0.348 0.000385 

Region 0.357 0.000355 

Country 0.379 0.000334 
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S6 Table 

Inter-locality transmission rule Offspring distribution True R True λz # datasets 

simulated 

Broader contact zone: district-level Poisson 0.36 0.00036 60 

Broader contact zone: district-level Poisson 0.2 0.00036 25 

Broader contact zone: district-level Poisson 0.6 0.00036 25 

Broader contact zone: district-level Poisson 0.36 0.0001 25 

Broader contact zone: district-level Poisson 0.36 0.0007 25 

Broader contact zone: district-level Poisson 0.36 0.004 25 

Broader contact zone: district-level Poisson 0.95 0.007 25 

Broader contact zone: district-level Poisson 0.36 0.04 25 

Broader contact zone: district-level Poisson 0.36 0.1 25 

Broader contact zone: district-level NBinom (k=0.58) 0.36 0.00036 60 

Broader contact zone: district-level Poisson 0.01 0.00036 (intensity 

heterogeneous through 

time and space) 

25 

Localities have same spatial coordinates as 

recorded for DRC monkeypox localities, inter-

locality transmission with closest 5 neighbors 

Poisson 0.36 0.00036 25 

Localities have same spatial coordinates as 

recorded for DRC monkeypox localities, inter-

locality transmission with neighbors within 30 km 

Poisson 0.36 0.00036 25 
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S7 Table 

Symbol Description 

     Expected number of cases observed on day t, in locality v 

     Actual number of cases observed on day t, in locality v  

  Actual number of cases observed across all localities over the course of surveillance 

  Total number of localities under surveillance 

   Total number of localities under surveillance in the broader contact zone of locality w 

  

Number of localities with one or more cases (the number of localities that appear in the 

surveillance dataset) 

   Number of localities with one or more cases in the broader contact zone of locality w  

  Duration of surveillance: number of days surveillance was conducted 

   Spillover rate: the expected number of spillover events per day in a given locality  

 *   + *   + 
The expected number of new infections that become symptomatic on day t in locality v caused 

by an infectious individual who became symptomatic on day s in locality w 

R 
Reproductive number: the average number of secondary cases caused by an infectious 

individual  

σ 

Within-locality transmission proportion: the fraction of cases arising from human-to-human 

transmission that occur in the same locality as the source case 
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