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Abstract 50 

To visualize the personalized distributions of pathogens, chemical environments 51 

including microbial metabolites, pharmaceuticals, and their metabolic products within and 52 

between human lungs afflicted with cystic fibrosis, we generated 3D microbiome and 53 

metabolome maps of six explanted lungs from three cystic fibrosis patients. These 3D spatial 54 

maps revealed that the chemical environments are variable between patients and within the 55 

lungs of each patient. Although the patients’ microbial ecosystems were defined by the 56 

dominant pathogen, their chemical diversity was not. Additionally, the chemical diversity 57 

between locales in lungs of the same individual sometimes exceeded inter-individual variation. 58 

Thus, the chemistry and microbiome of the explanted lungs appear to be not only personalized 59 

but also regiospecific.  Previously undescribed analogs of microbial quinolones and antibiotic 60 

metabolites were also detected. Furthermore, mapping the chemical and microbial distributions 61 

allowed visualization of microbial community interactions, such as increased production of 62 

quorum sensing quinolones in locations where Pseudomonas was in contact with 63 

Staphylococcus and Granulicatella, consistent with in vitro observations of bacteria isolated 64 

from these patients. Visualization of microbe-metabolite associations within a host organ in 65 

early-stage CF disease in animal models will help elucidate a complex interplay between the 66 

presence of a given microbial structure, antibiotics, metabolism of antibiotics, microbial virulence 67 

factors, and host responses.  68 

 69 

Importance 70 

 Microbial infections are now recognized to be polymicrobial and personalized in nature. 71 

A comprehensive analysis and understanding of the factors underlying the polymicrobial and 72 

personalized nature of infections remains limited, especially in the context of the host. By 73 

visualizing microbiomes and metabolomes of diseased human lungs, we describe how different 74 

the chemical environments are between hosts that are dominated by the same pathogen and 75 
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how community interactions shape the chemical environment, or vice versa. We highlight that 76 

three-dimensional organ mapping are hypothesis building tools that allow us to design 77 

mechanistic studies aimed at addressing microbial responses to other microbes, the host, and 78 

pharmaceutical drugs. 79 

Introduction 80 

An increasing rate of infection from multi-drug resistant opportunistic pathogens has 81 

become a significant burden in recent years. Proliferation of these pathogens due to overuse of 82 

antibiotics, including those of last resort (1-4), is a threat to human health and is already 83 

associated with increased mortality (5, 6). One reason for indiscriminate use of broad-spectrum 84 

antibiotics and combination therapy in complex polymicrobial infections is the lack of knowledge 85 

with regards to how microorganisms interact with each other, the host, and their chemical 86 

environment, leading to strategies that target bacterial pathogens broadly. Herein, specific 87 

microbial pathways that are involved in detrimental microbe-microbe interactions (7), microbe-88 

host interactions (8) and microbe-drug interactions (9) can serve as new targets for targeted 89 

drug discovery. Thus, knowledge of such interaction-mediating microbial pathways and their 90 

prevalence will shape the future of drug discovery. In this regard, even though we have begun 91 

to appreciate the presence of multiple subpopulations by imaging community structures (10-12) 92 

and by genome sequencing (13-15), information about the specific microbial pathways in 93 

mediating the above mentioned interactions, molecular distribution of xenobiotic compounds, 94 

and how such distributions are associated with specific microbial structures within the context of 95 

a host is largely lacking.  96 

We developed a methodology to map microbial and metabolite distributions in a human 97 

lung in three dimensions to identify pathways that may be mediating microbial interactions and 98 

to visualize the distribution of antibiotics in relation to microbial community structure (16). These 99 

three dimensional organ maps allow visualization of chemical and microbial microenvironments 100 

and consequently, may provide better insights into complex processes that take place within a 101 
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host. Here we apply this methodology to elucidate spatial variation within and between the lungs 102 

of three individuals afflicted with cystic fibrosis (CF).  103 

CF is genetic disease caused by a mutation in the cystic fibrosis transmembrane 104 

conductance regulator (CFTR) gene that results in defects of the encoded CFTR protein. The 105 

primary function of CFTR protein is an ion channel that regulates liquid volume (mucus) on the 106 

epithelial cells through secretion of chloride ions and inhibition of sodium absorption. Sticky 107 

mucus accumulates in the upper airways and lungs of CF patients, and serves as growth 108 

medium for various microbes, including opportunistic pathogens, resulting in chronic and 109 

recurrent polymicrobial infections. In the 1930s, the life expectancy for someone diagnosed with 110 

CF was only several years (17). Due to advances in modern medicine, including the use of 111 

antibiotics and better clinical management of the disease, individuals with CF can now expect to 112 

live on an average into their forties even though most patients are waitlisted for organ transplant 113 

by the time they reach adulthood (18). Improved clinical management is partly made possible by 114 

better understanding of the polymicrobial nature of the infections of the lung and development of 115 

antibiotic-based clearance of chronic infections targeting the polymicrobial community (19). 116 

However, the virulence of pathogens in microbial lung diseases such as CF, pneumonia, 117 

tuberculosis, and chronic obstructive pulmonary disease is mostly studied in cultures derived 118 

from pulmonary secretions and by genome sequencing, which does not represent complex in 119 

vivo conditions. The failure in treating an infection in a complex organ such as human lung may 120 

simply stem from the inability to treat a localized infection foci which can then spread to the 121 

entire organ or become systemic as, for example, in case of infections caused by Burkholderia 122 

(13, 14, 20, 21). Understanding how the production of microbial small molecules involved in 123 

pathogenicity and community interactions varies with lung biogeography leading to infection hot-124 

spots will enable the development of targeted antimicrobials and improved drug delivery 125 

vehicles (14, 20, 22). Thus, CF presents an important test case for improving disease 126 
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management strategies for polymicrobial infections, given better understanding of community 127 

structures and chemical environments within the host. 128 

In this study, with patient consent, we mapped the chemical and microbial makeup of six 129 

explanted lungs, removed during surgery from three CF patients, by using 3D volume 130 

cartography to understand how microbes, microbial molecules, and medications are distributed 131 

and metabolized throughout the entire organ, providing insights into microbe-microbe 132 

interactions.  133 

 134 
Results and discussion 135 

The explanted lungs of three patients afflicted with CF were sectioned to inventory and 136 

map the associated microbiome and metabolome in three dimensions onto lung models built 137 

from CT-scans acquired prior to surgery (Methods) (16). To perform 16S rRNA gene analysis, 138 

the tissue sections were swabbed, enabling detailed inventory of bacterial DNA present within 139 

the patients’ lungs (Table 1). We refer to our analysis of 16S rRNA gene as inventory of the 140 

bacterial DNA and not the bacteria themselves, since lungs associated with CF are known to 141 

contain a significant amount of DNA from dead cells as well as extracellular DNA (23). In total, 142 

six lungs from three patients contained bacteria that spanned 40 genera (Supplementary Table 143 

1). Bar plots of the most frequently amplified genera and their relative abundances pooled for all 144 

anatomical locations are illustrated for each patient in Supplementary Figure 1. The relative 145 

abundances of these genera in individual sections of each patient is available through 3D maps 146 

(see below). The DNA of the most commonly occurring pathogenic organism in CF, 147 

Pseudomonas aeruginosa, was detected at highest frequency throughout the lungs of patients 1 148 

and 3, whereas patient 2 was dominated by DNA from the emerging pathogen 149 

Stenotrophomonas. Even though the microbial population within CF-associated lungs can be 150 

heterogeneous (24), dominance of a single pathogen at end-stage CF disease has been 151 

described extensively in previous studies (25-27).  152 
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The PCoA analysis of microbiome data with weighted UniFrac distance showed 153 

clustering between both lungs of patient 1 and the right lung of patient 3 along the first two 154 

principal axes (Supplementary Figure 2a). Samples from the left lung of patient 3 clustered 155 

separately and the comparison of 10-most abundant OTUs further highlighted the differences 156 

between the microbial communities present in the left lung of patient 3 (Supplementary Figure 157 

2b and Supplementary Figure 3). Apart from the dominant pathogen, the overall microbiome 158 

between and within patients was different along the second and third axis (Supplementary 159 

Figure 2 c,d). The Canberra distance metric yielded less apparent but visible separation of 160 

patients’ microbiome data in PCoA space (Figure 1 a,b); in some cases this variation within 161 

patient’s own lungs was found to be greater than between patients (Figure 1b). A more 162 

homogeneous clustering patterns is observed in the 16S data when the unweighted UniFrac 163 

metric, a phylogenetically informed metric, was applied (Supplementary Figure 4). The 164 

differences arise due to the qualitative nature of unweighted UniFrac and the quantitative 165 

comparisons possible with the Canberra metric. 166 
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 167 
Figure 1. Principal coordinate plot of metabolome and microbiome from lungs of three 168 
patients in the study. Visualization was performed in the Emperor software using Canberra 169 
distance metric (28). a), b) PCoA plots of 16S rRNA sequencing and c), d) mass spectrometry 170 
data, respectively. 171 
 172 

To map the relative frequency of microbes onto the 3D lung models, we used our 173 

previously described methodology (16). The distribution of prevalent (Pseudomonas and 174 

Staphylococcus) and emerging (Stenotrophomonas and Achromobacter) microbes in the CF-175 

associated lungs is displayed in Figure 2. Although nearly uniform distribution of dominant 176 

pathogens (Pseudomonas in patients 1 and 3, Stenotrophomonas in patient 2) was observed, 177 

all other microbes were distributed unevenly, often relegated to niche spots. For example, 178 

Achromobacter was mainly localized in the apex of the right lung of patient 3 while 179 
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Staphylococcus was present in the lower lobe of both lungs of patient 1, at the apex of the lungs 180 

of patient 2 and in the middle and lower lobes of the lungs of patient 3. The dominant pathogen, 181 

Stenotrophomonas, showed uniform distribution in the lungs of the patient 2 and differential 182 

distributions in the lungs of patients 1 and 3 (Figure 2). A degree of stratification is expected 183 

based on the availability of oxygen: Achromobacter and Stenotrophomonas are strict aerobes 184 

whereas Staphylococcus and Pseudomonas are facultative anaerobes residing as biofilms in 185 

airway mucus of CF patients with the potential of undergoing anaerobic metabolism (29). 186 

Furthermore, patients 1 and 3 not only share the dominant pathogen, their microbial 187 

communities are also more similar to each other than either is to that of the patient 2 188 

(Supplementary Figure 3 and 5). Selection pressures from competing microbes and chemical 189 

microenvironments including antibiotic distributions, further leads to stratification of niches 190 

occupied by specific organisms. To compare the microbial and chemical environments, we next 191 

annotated the mass spectrometry data acquired on the tissue sections and mapped it onto the 192 

3D models of the lungs of these patients (see below).   193 
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 194 

Figure 2. Distribution of microorganisms. Distribution of Pseudomonas, Achromobacter, 195 
Staphylococcus, and Stenotrophomonas (right to left) are shown for all three patients. P1 - 196 
patient one, P2 - patient two and P3 - patient three, ND - not detected. Intensity scale is 197 
provided at the bottom right. Full visualizations of microbial maps can be accessed via links: 198 
patient 1, patient 2 and patient 3. 199 
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To annotate molecular ions detected using high resolution mass spectrometry (MS)-200 

based untargeted approach, molecular network analysis was performed using the Global 201 

Natural Product Social Molecular Networking (GNPS) infrastructure (30). Molecular networking 202 

allows for reduction and organization of the overwhelming amount of chemical information 203 

generated (in terms of mass spectra) in a high-resolution untargeted MS approach. The data 204 

reduction is performed by combining and displaying the identical MS/MS spectra as a single 205 

node and by displaying similar spectra as connected nodes (30, 31). Similarities in MS/MS 206 

spectra relate to similarities in chemical structures, so oftentimes such connected nodes 207 

represent chemical and biological transformations of a molecule. In this study, 676,451 MS/MS 208 

spectra were filtered and merged into consensus spectra, producing 9,874 nodes (Figure 3a). 209 

The patient-specific molecules were displayed by assigning a specific color to each patient in 210 

the molecular network analysis (Figure 3a). In addition to annotating known compounds, 211 

molecular networking revealed related molecules that differ by oxidation, methylation, 212 

acetylation, hydroxylation, glycosylation, chain length, and saturation of alkyl chains, which 213 

enabled identification of previously undescribed metabolites of administered pharmaceuticals 214 

and microbial quinolones, as described below for azithromycin and Pseudomonas aeruginosa 215 

quinolones. The frequency of detection of the antibiotics across patients’ samples is shown in 216 

Figure 3b, with corresponding clusters from the full network displayed for each antibiotic. The 217 

nodes in antibiotic cluster represent the metabolic transformations of the antibiotic. Thus, 218 

molecular networking provides a glimpse into metabolic processes. The resulting molecular 219 

network revealed that among three patients, remarkably, only about 27.6% of detected 220 

molecular features were shared, highlighting the diversity of chemistry present in diseased 221 

human lungs (Figure 3c). All three patients in this study had different mutations in the CFTR 222 

gene (see Materials and Methods) and patients 2 and 3 were also diagnosed with CF-related 223 

diabetes. Two of the three patients suffered from chronic infections by Pseudomonas 224 

aeruginosa. Thus, various factors may play a role leading to the observed chemical diversity, 225 
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which may arise from microbial (e.g., virulence and quorum sensing metabolites such as 226 

quinolones), host (e.g., bile acids, amino acids, sugars, eukaryotic lipids, fatty acids, sterols, 227 

peptides, immune-related molecules), and xenobiotic molecules. The diversity of these 228 

metabolites in CF sputum has been previously characterized and many of the same compounds 229 

were also found in the lung tissue in this study (32).  230 
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 231 
 232 
Figure 3. Molecular network analysis of all six lungs from three patients afflicted with CF. 233 
a) The molecular network is color coded by patients (patient 1 (blue), patient 2 (green), and 234 
patient 3 (orange). The network clusters corresponding to antibiotics are highlighted in boxes.  235 
b) The number of samples that contain a given consensus MS/MS spectra (represented as 236 
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node in Figure 3a) are plotted. The frequency of occurrence of antibiotics detected in this 237 
dataset is highlighted on the plot. The number of nodes in a cluster is reflective of detected 238 
transformations of the parent compound. The node of parent compound is highlighted by 239 
asterisks. The fragmentation patterns of the most frequently observed drug - azithromycin and 240 
its analogs are described in Supplementary Figure 7; the large number of nodes in Piperacillin 241 
cluster stems from its structural similarity to small peptidic compounds abundant in biological 242 
samples and its inherent chemical reactivity with biological molecules (33). c) Venn diagram of 243 
the overlap of consensus fragmentation spectra between three patients is shown. 244 
 245 

A Procrustes analysis of metabolomics data and 16S rRNA data with closed-reference 246 

OTU picking revealed a close association between the microbiome and metabolome in the lung 247 

samples (Mantel test r statistic = 0.45, P < 0.001, n = 277) (Supplementary Figure 6 (a,b)). This 248 

analysis suggests that the microbial composition of each sample in large part is associated with 249 

the corresponding chemical diversity. Additionally, Procrustes analysis performed on 250 

metabolomics and 16S rRNA with deblurred sOTUs (34) resulted in the same trend 251 

(Supplementary Figure 6 (c,d), Mantel test r statistic = 0.38, P < 0.001, n = 263). A PCoA plot of 252 

the metabolome data with Canberra distance showed that a vast chemical diversity exists not 253 

only between the patients (Figure 1c), but also within a patient's own lungs (Supplementary 254 

table 2). This suggests that the chemical makeup of the patients with CF disease is highly 255 

personalized and that a single CF lung contains unique chemical microenvironments that 256 

provide different niches for microbial pathogens to live in. While metabolic diversity between 257 

patients in relation to disease state is previously described (32, 35), mechanisms leading to 258 

such diversity within the lungs remain poorly understood. 259 

One of the additional benefits of an untargeted metabolomics analysis approach is the 260 

ability to track the medications that are taken by the patient, as medical records can oftentimes 261 

be incomplete and/or inaccurate due to lack of patient compliance, as well as to identify 262 

metabolic transformations of the medications. For example, in the present study, in addition to 263 

the prescribed medications from the clinical records (different antibiotics, bronchodilators, two 264 

medications for digestive health, medications given during surgery and over-the-counter 265 

medications that are used as cough suppressants), antihistamines and multiple over the counter 266 
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medications have been detected (Table 1). Detailed knowledge of extant exogenous 267 

compounds in tissues of interest is important, among other things, to evaluate their effect on the 268 

microbiome and microbial interactions for better understanding disease etiology. Another 269 

advantage of a molecular networking approach for untargeted metabolomics data analysis is 270 

that it allows for postulating structures for unknown compounds, nodes of which are connected 271 

to nodes of known compounds (annotation propagation), and is therefore very useful for 272 

identifying drug metabolites (Figure 3b). The distributions of drugs and the metabolites can then 273 

be evaluated by 3D cartography even in the absence of a stable isotope tracer. Using a 274 

molecular networking approach in this study, unknown metabolites that have never been 275 

reported before in blood or tissue of humans and animals were detected (Supplementary Figure 276 

7). The unknown metabolite of Azithromycin (m/z 382.26) is annotated as methylated-277 

azithromycin where the methylation, based on the analysis of the fragmentation data, occurs in 278 

the core macrolide ring structure of azithromycin and another unknown metabolite is proposed 279 

to have oxidation in the macrolide ring (Supplementary Figure 7). These modifications of core 280 

macrolide structure of azithromycin have not been described previously and their biological 281 

activities are unknown. Although these metabolites were not detected in in vitro cultures of 282 

microbes isolated from these patients in the presence of azithromycin, the possibility that these 283 

are microbially-derived warrants further investigation and cannot be ruled out.  Specific in vivo 284 

conditions may be necessary for regulation of microbial genes involved in antimicrobial 285 

metabolism.  286 
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Table 1. The medications detected in the MS data and time of administration prior to the day of 287 
lung explantation surgery. C refers to: “continuously administered” 288 
 289 

 290 
 291 
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As with the microbial heterogeneity, we have observed differences in metabolome 292 

distributions. Molecular networking and 3D volume cartography of the antibiotics revealed 293 

patient-specific metabolism and drug distributions (Figure 4 and Supplementary Figure 8). The 294 

distribution of antibiotics was also found to be different between the left and right lungs of the 295 

same patient. For example, the antibiotic Piperacillin and its metabolites were abundant in the 296 

upper lobes of the right lung of patient 3 but present in relatively lower abundance in the right 297 

lung of this patient (Figure 4). In patient 3, there was higher penetration of piperacillin in the 298 

upper and middle lobes and poor penetration in the lower lobes of both lungs. Similarly, the 299 

antibiotic Linezolid detected in patient 2 had lower relative abundance in the lower lobe of the 300 

right lung (Supplementary Figure 8). Overall, the drug metabolites largely follow the same 301 

distribution as parent drug except for the glucuronidated metabolite of sulfamethoxazole 302 

(Supplementary Figure 8), indicating that metabolism may not be a significant contributing factor 303 

for observed uneven distribution of detected antibiotics. Differential vascularization and tissue 304 

necrosis also contributes to non-uniform drug penetration in severe end-stage CF disease.  305 
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 306 

Figure 4. Distribution of selected antibiotics and the metabolites. P1 - patient 1, P2 - 307 
patient 2 and P3 - patient 3, ND - not detected. Intensity scale is provided at the bottom 308 
(distribution of additional antibiotics and their metabolites is provided in Supplementary Figure 309 
8).  Full visualizations of metabolite maps can be accessed via links: patient 1, patient 2 and 310 
patient 3. 311 
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To directly link microbiome and metabolome information and identify associations of 312 

compounds detected in the lung tissue with specific microbes, isolates from lungs of all patients 313 

were obtained from the clinical lab, cultured directly from swabs of the lung tissue, and MS data 314 

was acquired on the organic extracts of the in vitro cultures using the same protocol as 315 

employed for the tissue extracts. Molecular networking of MS/MS data from culture extracts and 316 

tissue extracts provided insights into which molecules are shared between microbes and the 317 

human host (Supplementary Figure 9). These molecules include microbe-specific virulence 318 

factors, as well as various other molecules such as lipids, fatty acids, amino acid metabolites, 319 

dipeptides and tripeptides. Similar to our previously reported observation for one CF lung of a 320 

single CF patient (16, 32), a larger diversity of quinolones was detected in cultured isolates as 321 

opposed to a smaller diversity of quinolones detected in the lung tissue of all patients dominated 322 

by Pseudomonas in this study, including a quinolone at m/z 268.170 that has never been 323 

reported before (Figure 5).  Based on MS1 and MS2 data, the structure of this quinolone is 324 

proposed to contain two double bonds in the alkyl side chain as opposed to single double bond 325 

found in unsaturated quinolones described in the literature (36) (Supplementary Figure 10). To 326 

gain further insight into the variation in the distribution of quinolones in the patients dominated 327 

with Pseudomonas, we investigated the distribution of quinolones directly within the lungs of 328 

these patients (Figure 5b and Supplementary Figure 11). Previously, we reported that the 329 

quinolones were prevalent at the upper lobe of the left lung of a single patient (16). In this study 330 

quinolones were found to be exclusively present at the upper lobe of lungs of patient 1 and only 331 

in the middle of the lungs of patient 3. This indicates that patients dominated by Pseudomonas 332 

show individualized phenotypes with respect to the expression of these quorum sensing 333 

molecules. Furthermore, rhamnolipids, the Pseudomonas’ biosurfactant, were not detected in 334 

the lungs of patient 1 and 3 in this study but were detected in our previous study (16). Patient-335 

specific production of rhamnolipids has been reported previously by culturing isolates in the 336 

laboratory but not directly from infected tissue (13). Such compartmentalization of microbial 337 
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activity within patients, as well as variation between patients is a hallmark of complexity that is 338 

inherent to polymicrobial infection in a complex organ; in the present case, a CF lung. Direct 339 

visualization of the individual phenotypes in diseased organs enables informed understanding of 340 

divergent evolution as well as the spatial molecular environment within a host.  341 
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 342 
Figure 5. Molecules produced by P. aeruginosa in patients 1 and 3. a) The molecular 343 
network cluster of quinolones detected in the lung tissue of patient 1 and 3 and in vitro microbial 344 
cultures of Pseudomonas isolated from sputum and the swabs collected from lung sections is 345 
shown. b) The distribution of the quinolone HHQ is shown in patients 1 and 3. All the other 346 
quinolones showed similar distributions in these patients (Supplementary Figure 11). c) Inset of 347 
the distribution of Pseudomonas, Staphylococcus, Granulicatella and the Pseudomonas 348 
quinolone NHQ in patient 3 suggestive of upregulation in quinolone production by 349 
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Pseudomonas in the regions where interactions of Pseudomonas with Staphylococcus, 350 
Granulicatella and possibly other microbes take place. In agreement with this observation, the 351 
production of HHQ and NHQ was also found to increase in co-cultures of Pseudomonas and 352 
Staphylococcus compared to Pseudomonas grown alone under identical conditions 353 
(Supplementary Figure 12).  354 
 355 

 356 
The spatial co-distribution of microorganisms, antibiotics and microbial molecules were 357 

investigated to establish microbe-metabolite interactions. Although the presence of a single 358 

dominant pathogen renders correlation analysis rather uninformative, several trends have been 359 

observed. In particular, the distribution of certain microorganisms such as Staphylococcus and 360 

Granulicatella were found to be associated with the distribution of quinolones produced by 361 

Pseudomonas in patient 3, as shown for NHQ in Figure 5c. We have recently shown that 362 

Staphylococcus aureus isolated from a CF patient increases quinolone and biofilm production 363 

by co-isolated Pseudomonas in vitro (37). Similarly, mixing cultures of the Pseudomonas and 364 

Staphylococcus isolated from patient 3 in this study showed increased production of HHQ and 365 

NHQ when compared to Pseudomonas grown alone under identical conditions (Supplementary 366 

Figure 12a). This observation indicates that the production of quinolone molecules is in part also 367 

modulated by microbial interactions present in a polymicrobial infection. The complexity of these 368 

microbial interactions is further increased as antibiotics cause perturbations of microbial 369 

communities reflected by suppression of the virulence factors. Variation in production of 370 

quinolones by patient isolates of Pseudomonas was observed upon exposure to sub-MIC 371 

concentrations (Supplementary Figures 12b). This, and the other observations reported here 372 

support the hypothesis that not only are genetic changes responsible for changing metabolism, 373 

but microbial interactions in conjunction with multiple other factors including sub-MIC 374 

concentrations of antibiotics and perhaps other xenobiotics may also play a role and call for the 375 

design of specific studies investigating these phenomena in multiple patient isolates. Thus, it is 376 

reasonable to hypothesize that both specific microbial interactions in the lungs and differential 377 

abundances of antibiotics could result in metabolic divergence, creating isolated regions of 378 
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enhanced biofilm formation and tissue damage that is often observed in CF patients by chest X-379 

rays and CT-scans. Application of advanced techniques such as Ultra-High-Resolution 380 

Computed Tomography in conjunction with the approach presented here could be a focus of 381 

future studies (38).   382 

 383 

Conclusion 384 

Cystic fibrosis is a devastating genetic disease which affects tens of thousands of people 385 

worldwide. In this work, we presented the findings of spatial distributions of microbes, 386 

medications, and their metabolites throughout lungs of three patients afflicted with CF. We have 387 

found that although the microbiome is predominantly patient-specific, the chemical differences 388 

between locations within patient’s own lungs may be greater than inter-patient variations. In-389 

depth analyses revealed differential drug penetration, metabolism of prescribed medications, 390 

and microbial compartmentalization resulting in metabolic divergence governed by local 391 

microbial interactions. Mapping of microbial communities and localized chemistries allowed for 392 

visualization of interactions among community members, such as production of quinolones by 393 

Pseudomonas when present in a community structure with other microbes such as 394 

Staphylococcus or Granulicatella. Visualization of such local infection loci highlight the 395 

importance of development of effective drug delivery approaches. Considering recent advances 396 

in the development of small-scale robots (as small as few micrometers) that can non-invasively 397 

access confined spaces (39), targeted access of internal tissues as well as precision delivery of 398 

drug payloads may become feasible in the near future. In general, a paradigm shift of 399 

considering localized regions of divergent microbial and chemical distributions is an important 400 

next step for effective disease management of polymicrobial infections. 401 

  402 
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Supplementary Figures and Tables: 403 

 404 
Supplementary Figure 1. The bar charts of taxonomic summary of all samples for each patient 405 
is shown. The legend for 9 most abundant taxa is shown. The complete taxonomic summary is 406 
available in Supplementary table 1. The complete description of all OTU’s for each individual 407 
sections are available through spatial maps: patient 1, patient 2 and patient 3. 408 
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 409 
Supplementary Figure 2. PCoA plot on Weighted Unifrac distance of 16S rRNA data from three 410 
patients is shown (40). a) and b) first and second principal component is shown. c) and d) 411 
second and third principal component is shown.  412 
 413 
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 414 
 415 
Supplementary Figure 3. Top 10 most abundant OTUs and their ranks (1 most abundant;  416 
10 least abundant) according to host and sampling site. Columns  417 
represent OTUs and are labeled according to their taxonomic  418 
classification and their Greengenes identifier. Rows represent the sites  419 
and are hierarchically clustered based on the rank vectors. 420 
 421 
 422 
 423 
 424 

 425 
 426 
Supplementary Figure 4. Unweighted UniFrac PCoA plot of the 16S data. a) Ordination colored 427 
by subject identifier. b) Ordination colored by subject identifier and sampling site. 428 
 429 
 430 
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 431 
Supplementary Figure 5. Weighted UniFrac distances from Patient 1 to Patients 2 and 3. 432 
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 433 
Supplementary Figure 6. Procrustes plots generated using principal component analysis of 434 
Canberra distance metric for untargeted metabolomics data and 16s rRNA sequencing data. 435 
a),b) - Emperor visualization plots of metabolomics and closed-reference picked OTUs. c),d) -  436 
Emperor visualization plots of metabolomics and deblurred sOTUs.  437 
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 438 
Supplementary Figure 7. The mass spectral analysis for azithromycin and its proposed 439 
metabolites is shown. 440 
 441 
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 442 
 443 
Supplementary Figure 8. Distribution of antibiotics and its metabolites in patients. a) patient 1, b) 444 
patient 2 and c) patient 3.  445 
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 446 
 447 
Supplementary Figure 9. Molecular network analysis of all six lungs from three patients and 448 
microbial isolates. The molecular network is color coded by sample source. 449 
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 450 
 451 
Supplementary Figure 10. a) The extracted ion chromatograms (EIC), b) mass spectrum and 452 
structures of quinolones NHQ, HHQ, NHQ-C9:1db, NHQ-C9:2db (proposed) are shown. The 453 
position of additional double bond for NHQ-C9:2db is not known and is putatively drawn. c) The 454 
structures of fragments described previously in the literature for NHQ, HHQ and NHQ-C9:1db40 455 
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and the proposed structures for fragments corresponding to NHQ-C9:2db are enclosed in 456 
brackets. 457 
 458 

 459 
Supplementary Figure 11. Distribution of quinolones that are common to patients 1 and 3. 460 
  461 
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 462 
Supplementary Figure 12. Bar graphs of plots of area under the curves normalized to total ion 463 
current (error bars indicate standard deviation from mean values of three independent 464 
experiments (n = 3)). a) Quinolone production by Pseudomonas aeruginosa in single culture 465 
and in mixed culture with Staphylococcus aureus is shown. PS1 represents cultures were mixed 466 
in the ratio 1:1 and PS10 represents a ratio of 1:10, where S. aureus culture was diluted 10 fold. 467 
b) Production of quinolone NHQ in response to antibiotic exposure by Pseudomonas 468 
aeruginosa isolated from patient 3. Each color represent different concentrations of antibiotics. 469 

470 
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 Supplementary Table 1. Taxa summary table 471 

 472 
  473 
  474 
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Supplementary Table 2. Percentage of shared mass spectrometry features between left and 475 
right lungs of all patients. This percentage was calculated by taking the features that overlap in 476 
comparison to the total number of features associated with each pair of lungs. 477 
 478 

 P1 P1 P2 P2 P3 P3 

Left Right Left Right Left Right 

P1 Left 100 88.02 75.71 76.92 70.46 72.7 

P1 Right 88.02 100 71.67 72.39 74.01 76.73 

P2 Left 75.71 71.67 100 89.46 67.91 70.54 

P2 Right 76.92 72.39 89.46 100 70.35 72.74 

P3 Left 70.46 74.01 67.91 70.35 100 91.56 

P3 Right 72.7 76.73 70.54 72.74 91.56 100 

 479 
  480 
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Materials and Methods. 481 

Tissue collection and processing.  To map the microbiome and metabolome of explanted 482 

lungs in 3D, the lungs of three patients were obtained in close coordination with the patient’s 483 

physician and the surgical team. This work was approved by the University of California 484 

Institutional Review Board (project #081500) and informed consents were obtained prior to 485 

tissue collection. The CFTR mutation in Patient 1 was dF508/G551D with no clinical diabetes, in 486 

patient 2 was dF508/3120+1G>A with observed clinical diabetes and in patient 3 was 487 

dF508/dF508 with observed clinical diabetes. The general workflow for tissue sectioning is 488 

described previously (16). Briefly, both the right and left lungs for subject 1, 2, and 3 were 489 

collected. The tissue sectioning was performed at the hospital under the guidance of a 490 

pathologist. The lungs were first sliced horizontally. The anatomical orientation of each slice was 491 

recorded. Every alternate slice starting from apex of the lung was further sub-sectioned into 492 

small sections 1-2 cm3 in size maintaining the recorded orientation. Each of the sub-sectioned 493 

tissue pieces were swabbed with sterile soft foam swabs moistened with Tris-EDTA, pH 7.4. 494 

The swabs were stored in 96-well bead plate provided in the PowerSoil®-htp 96 Well Soil DNA 495 

Isolation Kit. The plate was placed on dry ice prior and during the collection. The individual 496 

tissue pieces were stored in glass jars placed on dry ice. The samples were kept frozen at ˗80 497 

ºC until further processing. Bacterial DNA was isolated from the swabs using the PowerSoil®-498 

htp 96 Well Soil DNA Isolation Kit following the manufacturer’s instructions and was subjected to 499 

prokaryotic ribosomal 16S rRNA-based sequencing using the standardized Earth Microbiome 500 

Protocol (http://www.earthmicrobiome.org/emp-standard-protocols/). Amplicons were cleaned, 501 

pooled and then sequenced on an Illumina MiSeq. Because lungs were obtained at different 502 

times, the sequences analyzed for this study were obtained from a total of two individual 503 

sequencing runs (sequencing run 1: patients 1-2, sequencing run 2: patient 3). The sequencing 504 

runs were performed at the University of California San Diego Institute for Genomic Medicine 505 

Center. For untargeted metabolomics analysis, the tissue sections were weighed and extracted 506 
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with 1 mL/g of tissue with a 2:2:1 mixture of ethyl acetate, methanol and water. An aliquot of 150 507 

µL of the extract was dried for each tissue section and analyzed by MS. 508 

 509 

MS data acquisition. The tissue extracts and extracts of bacterial isolates from the subjects 510 

cultured on sheep blood agar and MacConkey agar were resuspended in 80% methanol 511 

containing 1µM sulfadimethoxine and analyzed with a UltiMate 3000 UHPLC system (Thermo 512 

Scientific) using a KinetexTM 1.7 µm C18 reversed phase UHPLC column (50 X 2.1 mm) and 513 

Maxis Q-TOF mass spectrometer (Bruker Daltonics) equipped with ESI source. The column was 514 

equilibrated with 2% solvent B (98% acetonitrile, 0.1% formic acid in LC-MS grade water with 515 

solvent A as 0.1% formic acid in water) for 1 min, followed by a linear gradient from 2% B to 516 

100% B in 10 min, held at 100% B for 2.5 min. A small wash segment was employed to wash 517 

the column (100% B for 0.5 min, 100%-10 % B in 0.5 min) following which the column was kept 518 

at 2% B for A min at a flow rate of 0.5 mL/min throughout the run. MS spectra were acquired in 519 

positive ion mode in the range of 50-2000 m/z. A mixture of 10 µg/mL of each sulfamethazine, 520 

sulfamethizole, sulfachloropyridazine, sulfadimethoxine, amitriptyline, and coumarin-314 was 521 

run after every eight injections for quality control. An external calibration with ESI-L Low 522 

Concentration Tuning Mix (Agilent technologies) was performed prior to data collection and 523 

internal calibrant Hexakis(1H,1H,3H-tertrafluoropropoxy)phosphazene was used throughout the 524 

runs. The capillary voltage of 4500 V, nebulizer gas pressure (nitrogen)  of 2 bar, ion source 525 

temperature of 200 °C, dry gas flow of 9 L/min source temperature, spectral rate of 3 Hz for MS1 526 

and 10 Hz for MS2 was used. For acquiring MS/MS fragmentation, the 10 most intense ions per 527 

MS1 were selected and collision induced dissociation energy given in Table 1 was used. Basic 528 

stepping function was used to fragment ions at 50% and 125% of the CID calculated for each 529 

m/z from Table 1 with timing of 50% for each step. Similarly, basic stepping of collision RF of 530 

550 and 800 Vpp with a timing of 50% for each step and transfer time stepping of 57 and 90 µs 531 

with a timing of 50% for each step was employed. MS/MS active exclusion parameter was set to 532 
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3 and released after 30 seconds. The mass of internal calibrant was excluded from the MS/MS 533 

list using a mass range of m/z 921.5–924.5. The data was deposited in the online repository 534 

namely MassIVE and is available under the id MSV000079652 and MSV000079398. 535 

The microbial isolates of Pseudomonas aeruginosa, Staphylococcus aureus and 536 

Stenotrophomonas maltophila from the patients were obtained from the Center of Advanced 537 

Clinical Medicine, UC San Diego. The culturing of the isolates and the extractions were 538 

performed as described previously (16). The MS data was collected using the same conditions 539 

as described above for lung tissue. 540 

 541 

LC-MS/MS data analysis. All mzXML files were cropped with an m/z range of 50.00 to 542 

2,000.00 Da and RT range of 0.5 - 18.5 min. Feature extraction was performed using MZmine2 543 

(http://mzmine.sourceforge.net/) with a signal height threshold of 5.0e3 (41). The mass 544 

tolerance was set to 10 ppm, and the maximum allowed retention time deviation was set to 0.01 545 

min. For chromatographic deconvolution, the local minimum search algorithm was used with a 546 

minimum relative peak height of 1% and a minimum retention time range of 0.01 min. The 547 

maximum peak width was set to 1 min. After isotope peak removal, the peak lists of all samples 548 

were aligned with the above-mentioned retention time and mass tolerances. After the creation of 549 

a feature matrix containing the feature retention times and the exact mass and peak areas of 550 

the corresponding extracted ion chromatograms, the metadata of the samples were added. The 551 

signal intensities of the features were normalized (probabilistic quotient normalization [PQN]) 552 

(42).  553 

 554 

Statistical analysis was carried out as follows: QIIME 1.9.1 was used to perform principal-555 

coordinate analysis (PCoA) (beta_diversity.py, a Canberra distance metric in Adkins form). The 556 

PCoA plots were visualized in EMPeror (28). 557 

 558 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2019. ; https://doi.org/10.1101/676148doi: bioRxiv preprint 

https://doi.org/10.1101/676148
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 

Molecular networking. The molecular network was created using the online workflow at GNPS 559 

platform. The data was then clustered with MS-Cluster with a parent mass tolerance of 0.1 Da 560 

and a MS/MS fragment ion tolerance of 0.1 Da to create consensus spectra. Further, consensus 561 

spectra that contained less than 3 spectra were discarded. A network was then created where 562 

edges were filtered to have a cosine score above 0.7 and more than 4 matched peaks. The 563 

edges between two nodes were kept in the network if and only if each of the nodes appeared in 564 

each other's respective top 10 most similar nodes. The spectra in the network were then 565 

searched against GNPS's spectral libraries. All matches kept between network spectra and 566 

library spectra were required to have a score above 0.7 and at least 4 matched peaks. The 567 

molecular networks and the parameters used are available at the links below: 568 

The molecular network and parameters for the patient data are available at: 569 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=6f92a21af31d4569bcdb3cce803c600c  570 

The molecular network and parameters for the patient data and data acquired on cultured 571 

microbial isolates are available at: 572 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=45d70e56faae4081bbba1f7a9ce38019  573 

In total, 1776 of the nodes were annotated (7.8%) which is higher than the typical rate of 574 

annotations of 1.8% annotated in an untargeted metabolomics experiment (30). This is likely 575 

because many of the reference MS/MS libraries in the public domain are populated from studies 576 

of human samples and also contain most of therapeutics used in the clinic.  The error rate of 577 

these annotations have been assessed by the GNPS community; with the scoring settings used 578 

to obtain the annotations, 1% of which are deemed  incorrect, for 4% not enough information is 579 

available and 4% could be an isomer or correct, while 91% is presumed correct (30).  580 

 581 

16S rRNA gene analysis. As described above, sequences were obtained over the course of 582 

two months through two independent sequencing runs. The samples for patient 1 and patient 2 583 

were sequenced in one batch and samples for patient 3 were sequenced separately. Each set 584 
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of sequences were processed and analyzed using Qiita (43). First, the sequencing runs were 585 

quality trimmed and filtered using default parameters, resulting in 15,629,914 sequences with a 586 

mean length of 150 nucleotides. Next, trimmed sequences (at 150 nucleotides) were clustered 587 

into operational taxonomic units (OTUs) using the closed reference OTU picking method at 97% 588 

sequence similarity. UCLUST was the underlying clustering algorithm and Greengenes (August 589 

2013 release) was the reference database used (44). This resulted in 340 samples with a mean 590 

of 25,078 sequences per sample. After rarefaction at 3,369 sequences per sample 277 samples 591 

were used for downstream analyses, including the creation of taxonomy summaries and in the 592 

calculation of the UniFrac and Canberra (Adkins form) distances. The most abundant OTU for 593 

patient 2 was identified as unclassified genus in the family Xanthomonadaceae. BLAST analysis 594 

of the sequence corresponding to this OTU from patient 2 revealed that it belongs to the genus 595 

Stenotrophomonas. As controls, a total of 49 wells (either containing blank swab or empty well) 596 

were interleaved between each of the two sampling sites (left and right lung) of the three 597 

subjects. The vast majority of the samples (72%) yielded zero sequences. The remaining 14 598 

samples had a non-zero amount of sequences. Of these, 7 samples were represented by under 599 

4 sequences, a negligible amount compared to the 3,500 sequences per sample used for 600 

analysis. And the last 7 samples were represented by over 6,000 sequences each. Although the 601 

last sample set was processed without any DNA, the well-to-well contamination during the DNA 602 

extraction step yielded these sequences. We removed these samples since the DNA is 603 

biological and not representative of a type of actionable contamination (45, 46). 604 

 605 

For statistical analysis, QIIME2 (47) was used to perform PCoA (Canberra (in Adkins form), 606 

weighted, and unweighted UniFrac distances  (weighted UniFrac distances (48)) and Procrustes 607 

analysis with metabolomics data. The PCoA and Procrustes plots were visualized in EMPeror 608 

(28).  The Mantel test was used to calculate r2 scores between mass spectrometry and for both 609 
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closed-reference and deblur 16S rRNA gene analysis data using scikit-bio’s 0.5.5 Mantel’s test 610 

implementation. 611 

3D lung model generation and visualization. The procedure for creation and visualization of 612 

3D models has been previously described (16). Briefly, the CT- scan images obtained from the 613 

radiology department at the Hillcrest hospital in San Diego were combined to create a 3D lung 614 

model and exported in the .stl format using InVesalius 3.0. The extraneous pixels corresponding 615 

to the chest and back of each model were manually deleted using the 3D modelling software 616 

Geomagic Wrap. The relative abundances of detected microbes and molecules were plotted on 617 

to these models using a modified version of the `ili software available at 618 

http://mingwangbeta.ucsd.edu/public/ili/ (16, 49). 619 

 620 

Data availability statement. All data presented in this manuscript is publically available. The 621 

metabolomics data was deposited in the online repository namely MassIVE and is available 622 

under the id MSV000079652 and MSV000079398. The molecular network analysis and 623 

parameters for the patient data are available at: 624 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=6f92a21af31d4569bcdb3cce803c600c  625 

The molecular network analysis and parameters for the patient data and data acquired on 626 

cultured microbial isolates are available at: 627 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=45d70e56faae4081bbba1f7a9ce38019  628 

All raw and processed 16S amplicon sequencing data and metadata are available with Qiita 629 

study identification 10169 and as EBI study with accession no. ERP110498. 630 

All figures in this manuscript have associated raw data, which is available through above 631 

described accession numbers. 632 

 633 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2019. ; https://doi.org/10.1101/676148doi: bioRxiv preprint 

https://doi.org/10.1101/676148
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 

Code availability Statement. The code for 3D mapping via the browser tool github `ili is 634 

available at `https://github.com/mwang87/ili and the tool is accessed via the link 635 

http://mingwangbeta.ucsd.edu/public/ili/ 636 

Acknowledgements. We thank Amnon Amir from the Cancer Research Institute, Sheba 637 

Medical Center, Israel for assisting in the analysis of deblurred data used in this article.  638 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2019. ; https://doi.org/10.1101/676148doi: bioRxiv preprint 

https://doi.org/10.1101/676148
http://creativecommons.org/licenses/by-nc-nd/4.0/


43 

References 639 

1. Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, Vlieghe E, Hara 640 
GL, Gould IM, Goossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, 641 
Ombaka E, Peralta AQ, Qamar FN, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, 642 
Wright GD, Brown ED, Cars O. 2013. Antibiotic resistance-the need for global solutions. 643 
Lancet Infect Dis 13:1057-98. 644 

2. Shallcross LJ, Davies DS. 2014. Antibiotic overuse: a key driver of antimicrobial 645 
resistance. Br J Gen Pract 64:604-5. 646 

3. Ventola CL. 2015. The antibiotic resistance crisis: part 1: causes and threats. P T 40:277-647 
83. 648 

4. Mollenkopf DF, Stull JW, Mathys DA, Bowman AS, Feicht SM, Grooters SV, Daniels JB, 649 
Wittum TE. 2017. Carbapenemase-Producing Enterobacteriaceae Recovered from the 650 
Environment of a Swine Farrow-to-Finish Operation in the United States. Antimicrob 651 
Agents Chemother 61:e01298-16. 652 

5. de Kraker ME, Stewardson AJ, Harbarth S. 2016. Will 10 Million People Die a Year due to 653 
Antimicrobial Resistance by 2050? PLoS Med 13:e1002184. 654 

6. Woolhouse M, Waugh C, Perry MR, Nair H. 2016. Global disease burden due to 655 
antibiotic resistance - state of the evidence. J Glob Health 6:010306. 656 

7. Venkataraman A, Rosenbaum MA, Werner JJ, Winans SC, Angenent LT. 2014. Metabolite 657 
transfer with the fermentation product 2,3-butanediol enhances virulence by 658 
Pseudomonas aeruginosa. ISME J 8:1210-20. 659 

8. Nougayrede JP, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G, Buchrieser 660 
C, Hacker J, Dobrindt U, Oswald E. 2006. Escherichia coli induces DNA double-strand 661 
breaks in eukaryotic cells. Science 313:848-51. 662 

9. Chankhamjon P, Javdan B, Lopez J, Hull R, Chatterjee S, Donia MS. 2019. Systematic 663 
mapping of drug metabolism by the human gut microbiome.  doi:10.1101/538215 %J 664 
bioRxiv:538215. 665 

10. Valm AM, Mark Welch JL, Rieken CW, Hasegawa Y, Sogin ML, Oldenbourg R, Dewhirst 666 
FE, Borisy GG. 2011. Systems-level analysis of microbial community organization 667 
through combinatorial labeling and spectral imaging. Proc Natl Acad Sci U S A 108:4152-668 
7. 669 

11. Stacy A, Everett J, Jorth P, Trivedi U, Rumbaugh KP, Whiteley M. 2014. Bacterial fight-670 
and-flight responses enhance virulence in a polymicrobial infection. Proc Natl Acad Sci U 671 
S A 111:7819-24. 672 

12. Mark Welch JL, Rossetti BJ, Rieken CW, Dewhirst FE, Borisy GG. 2016. Biogeography of a 673 
human oral microbiome at the micron scale. Proc Natl Acad Sci U S A 113:E791-800. 674 

13. Jorth P, Staudinger BJ, Wu X, Hisert KB, Hayden H, Garudathri J, Harding CL, Radey MC, 675 
Rezayat A, Bautista G, Berrington WR, Goddard AF, Zheng C, Angermeyer A, Brittnacher 676 
MJ, Kitzman J, Shendure J, Fligner CL, Mittler J, Aitken ML, Manoil C, Bruce JE, Yahr TL, 677 
Singh PK. 2015. Regional Isolation Drives Bacterial Diversification within Cystic Fibrosis 678 
Lungs. Cell Host Microbe 18:307-19. 679 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2019. ; https://doi.org/10.1101/676148doi: bioRxiv preprint 

https://doi.org/10.1101/676148
http://creativecommons.org/licenses/by-nc-nd/4.0/


44 

14. Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Beck JM, Huffnagle GB, Curtis 680 
JL. 2015. Spatial Variation in the Healthy Human Lung Microbiome and the Adapted 681 
Island Model of Lung Biogeography. Ann Am Thorac Soc 12:821-30. 682 

15. Chung H, Lieberman TD, Vargas SO, Flett KB, McAdam AJ, Priebe GP, Kishony R. 2017. 683 
Global and local selection acting on the pathogen Stenotrophomonas maltophilia in the 684 
human lung. Nat Commun 8:14078. 685 

16. Garg N, Wang M, Hyde E, da Silva RR, Melnik AV, Protsyuk I, Bouslimani A, Lim YW, 686 
Wong R, Humphrey G, Ackermann G, Spivey T, Brouha SS, Bandeira N, Lin GY, Rohwer F, 687 
Conrad DJ, Alexandrov T, Knight R, Dorrestein PC. 2017. Three-Dimensional Microbiome 688 
and Metabolome Cartography of a Diseased Human Lung. Cell host & microbe 22:705-689 
716 e4. 690 

17. Aurora P, Wade A, Whitmore P, Whitehead B. 2000. A model for predicting life 691 
expectancy of children with cystic fibrosis. Eur Respir J 16:1056-60. 692 

18. Szwed A, John A, Gozdzik-Spychalska J, Czainski W, Czerniak W, Ratajczak J, Batura-693 
Gabryel H. 2018. Survival of Patients with Cystic Fibrosis Depending on Mutation Type 694 
and Nutritional Status. Adv Exp Med Biol 1023:65-72. 695 

19. Caverly LJ, Zhao J, LiPuma JJ. 2015. Cystic fibrosis lung microbiome: opportunities to 696 
reconsider management of airway infection. Pediatr Pulmonol 50 Suppl 40:S31-8. 697 

20. Bumann D. 2015. Heterogeneous host-pathogen encounters: act locally, think globally. 698 
Cell Host Microbe 17:13-9. 699 

21. Zlosnik JE, Zhou G, Brant R, Henry DA, Hird TJ, Mahenthiralingam E, Chilvers MA, Wilcox 700 
P, Speert DP. 2015. Burkholderia species infections in patients with cystic fibrosis in 701 
British Columbia, Canada. 30 years' experience. Ann Am Thorac Soc 12:70-8. 702 

22. Whiteson KL, Bailey B, Bergkessel M, Conrad D, Delhaes L, Felts B, Harris JK, Hunter R, 703 
Lim YW, Maughan H, Quinn R, Salamon P, Sullivan J, Wagner BD, Rainey PB. 2014. The 704 
upper respiratory tract as a microbial source for pulmonary infections in cystic fibrosis. 705 
Parallels from island biogeography. Am J Respir Crit Care Med 189:1309-15. 706 

23. Rogers GB, Marsh P, Stressmann AF, Allen CE, Daniels TV, Carroll MP, Bruce KD. 2010. 707 
The exclusion of dead bacterial cells is essential for accurate molecular analysis of 708 
clinical samples. Clin Microbiol Infect 16:1656-8. 709 

24. Willner D, Haynes MR, Furlan M, Schmieder R, Lim YW, Rainey PB, Rohwer F, Conrad D. 710 
2012. Spatial distribution of microbial communities in the cystic fibrosis lung. ISME J 711 
6:471-4. 712 

25. Goddard AF, Staudinger BJ, Dowd SE, Joshi-Datar A, Wolcott RD, Aitken ML, Fligner CL, 713 
Singh PK. 2012. Direct sampling of cystic fibrosis lungs indicates that DNA-based 714 
analyses of upper-airway specimens can misrepresent lung microbiota. Proc Natl Acad 715 
Sci U S A 109:13769-74. 716 

26. Coburn B, Wang PW, Diaz Caballero J, Clark ST, Brahma V, Donaldson S, Zhang Y, 717 
Surendra A, Gong Y, Elizabeth Tullis D, Yau YC, Waters VJ, Hwang DM, Guttman DS. 718 
2015. Lung microbiota across age and disease stage in cystic fibrosis. Sci Rep 5:10241. 719 

27. Quinn RA, Whiteson K, Lim YW, Zhao J, Conrad D, LiPuma JJ, Rohwer F, Widder S. 2016. 720 
Ecological networking of cystic fibrosis lung infections. NPJ Biofilms Microbiomes 2:4. 721 

28. Vazquez-Baeza Y, Pirrung M, Gonzalez A, Knight R. 2013. EMPeror: a tool for visualizing 722 
high-throughput microbial community data. Gigascience 2:16. 723 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2019. ; https://doi.org/10.1101/676148doi: bioRxiv preprint 

https://doi.org/10.1101/676148
http://creativecommons.org/licenses/by-nc-nd/4.0/


45 

29. Hassett DJ, Cuppoletti J, Trapnell B, Lymar SV, Rowe JJ, Yoon SS, Hilliard GM, Parvatiyar 724 
K, Kamani MC, Wozniak DJ, Hwang SH, McDermott TR, Ochsner UA. 2002. Anaerobic 725 
metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically 726 
infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug 727 
targets. Adv Drug Deliv Rev 54:1425-43. 728 

30. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, 729 
Kapono CA, Luzzatto-Knaan T, Porto C, Bouslimani A, Melnik AV, Meehan MJ, Liu WT, 730 
Crusemann M, Boudreau PD, Esquenazi E, Sandoval-Calderon M, Kersten RD, Pace LA, 731 
Quinn RA, Duncan KR, Hsu CC, Floros DJ, Gavilan RG, Kleigrewe K, Northen T, Dutton RJ, 732 
Parrot D, Carlson EE, Aigle B, Michelsen CF, Jelsbak L, Sohlenkamp C, Pevzner P, Edlund 733 
A, McLean J, Piel J, Murphy BT, Gerwick L, Liaw CC, Yang YL, Humpf HU, Maansson M, 734 
Keyzers RA, Sims AC, Johnson AR, Sidebottom AM, Sedio BE, et al. 2016. Sharing and 735 
community curation of mass spectrometry data with Global Natural Products Social 736 
Molecular Networking. Nat Biotechnol 34:828-837. 737 

31. Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY, Kersten RD, van der Voort M, 738 
Pogliano K, Gross H, Raaijmakers JM, Moore BS, Laskin J, Bandeira N, Dorrestein PC. 739 
2012. Mass spectral molecular networking of living microbial colonies. Proc Natl Acad 740 
Sci U S A 109:E1743-52. 741 

32. Quinn RA, Phelan VV, Whiteson KL, Garg N, Bailey BA, Lim YW, Conrad DJ, Dorrestein PC, 742 
Rohwer FL. 2016. Microbial, host and xenobiotic diversity in the cystic fibrosis sputum 743 
metabolome. ISME J 10:1483-98. 744 

33. Whitaker P, Meng X, Lavergne SN, El-Ghaiesh S, Monshi M, Earnshaw C, Peckham D, 745 
Gooi J, Conway S, Pirmohamed M, Jenkins RE, Naisbitt DJ, Park BK. 2011. Mass 746 
spectrometric characterization of circulating and functional antigens derived from 747 
piperacillin in patients with cystic fibrosis. J Immunol 187:200-11. 748 

34. Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech Xu Z, Kightley EP, 749 
Thompson LR, Hyde ER, Gonzalez A, Knight R. 2017. Deblur Rapidly Resolves Single-750 
Nucleotide Community Sequence Patterns. mSystems 2:e00191-16. 751 

35. Quinn RA, Lim YW, Mak TD, Whiteson K, Furlan M, Conrad D, Rohwer F, Dorrestein P. 752 
2016. Metabolomics of pulmonary exacerbations reveals the personalized nature of 753 
cystic fibrosis disease. PeerJ 4:e2174. 754 

36. Lepine F, Milot S, Deziel E, He J, Rahme LG. 2004. Electrospray/mass spectrometric 755 
identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by 756 
Pseudomonas aeruginosa. J Am Soc Mass Spectrom 15:862-9. 757 

37. Frydenlund Michelsen C, Hossein Khademi SM, Krogh Johansen H, Ingmer H, Dorrestein 758 
PC, Jelsbak L. 2016. Evolution of metabolic divergence in Pseudomonas aeruginosa 759 
during long-term infection facilitates a proto-cooperative interspecies interaction. ISME 760 
J 10:1323-36. 761 

38. Kakinuma R, Moriyama N, Muramatsu Y, Gomi S, Suzuki M, Nagasawa H, Kusumoto M, 762 
Aso T, Muramatsu Y, Tsuchida T, Tsuta K, Maeshima AM, Tochigi N, Watanabe S, 763 
Sugihara N, Tsukagoshi S, Saito Y, Kazama M, Ashizawa K, Awai K, Honda O, Ishikawa H, 764 
Koizumi N, Komoto D, Moriya H, Oda S, Oshiro Y, Yanagawa M, Tomiyama N, Asamura 765 
H. 2015. Ultra-High-Resolution Computed Tomography of the Lung: Image Quality of a 766 
Prototype Scanner. PLoS One 10:e0137165. 767 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2019. ; https://doi.org/10.1101/676148doi: bioRxiv preprint 

https://doi.org/10.1101/676148
http://creativecommons.org/licenses/by-nc-nd/4.0/


46 

39. Hu W, Lum GZ, Mastrangeli M, Sitti M. 2018. Small-scale soft-bodied robot with 768 
multimodal locomotion. Nature 554:81-85. 769 

40. Lozupone CA, Hamady M, Kelley ST, Knight R. 2007. Quantitative and qualitative beta 770 
diversity measures lead to different insights into factors that structure microbial 771 
communities. Appl Environ Microbiol 73:1576-85. 772 

41. Pluskal T, Castillo S, Villar-Briones A, Oresic M. 2010. MZmine 2: modular framework for 773 
processing, visualizing, and analyzing mass spectrometry-based molecular profile data. 774 
BMC Bioinformatics 11:395. 775 

42. Dieterle F, Ross A, Schlotterbeck G, Senn H. 2006. Probabilistic quotient normalization as 776 
robust method to account for dilution of complex biological mixtures. Application in 1H 777 
NMR metabonomics. Anal Chem 78:4281-90. 778 

43. Gonzalez A, Navas-Molina JA, Kosciolek T, McDonald D, Vazquez-Baeza Y, Ackermann G, 779 
DeReus J, Janssen S, Swafford AD, Orchanian SB, Sanders JG, Shorenstein J, Holste H, 780 
Petrus S, Robbins-Pianka A, Brislawn CJ, Wang M, Rideout JR, Bolyen E, Dillon M, 781 
Caporaso JG, Dorrestein PC, Knight R. 2018. Qiita: rapid, web-enabled microbiome 782 
meta-analysis. Nat Methods 15:796-798. 783 

44. Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. 784 
Bioinformatics 26:2460-1. 785 

45. Eisenhofer R, Minich JJ, Marotz C, Cooper A, Knight R, Weyrich LS. 2019. Contamination 786 
in Low Microbial Biomass Microbiome Studies: Issues and Recommendations. Trends 787 
Microbiol 27:105-117. 788 

46. Minich JJ, Sanders JG, Amir A, Humphrey G, Gilbert J, Knight R. 2019. Quantifying and 789 
understanding well-to-well contamination in microbiome research.  doi:10.1101/577718 790 
%J bioRxiv:577718. 791 

47. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, 792 
Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, 793 
Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, 794 
Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows 795 
analysis of high-throughput community sequencing data. Nat Methods 7:335-6. 796 

48. Lozupone C, Knight R. 2005. UniFrac: a new phylogenetic method for comparing 797 
microbial communities. Appl Environ Microbiol 71:8228-35. 798 

49. Protsyuk I, Melnik AV, Nothias LF, Rappez L, Phapale P, Aksenov AA, Bouslimani A, 799 
Ryazanov S, Dorrestein PC, Alexandrov T. 2018. 3D molecular cartography using LC-MS 800 
facilitated by Optimus and 'ili software. Nat Protoc 13:134-154. 801 

 802 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2019. ; https://doi.org/10.1101/676148doi: bioRxiv preprint 

https://doi.org/10.1101/676148
http://creativecommons.org/licenses/by-nc-nd/4.0/

