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Prevalence of impetigo (skin sores) remains high in remote Australian Aboriginal communities,
Fiji, and other areas of socio-economic disadvantage. Skin sore infections, driven primarily in
these settings by Group A Streptococcus (GAS) contribute substantially to the disease burden
in these areas. Despite this, estimates for the force of infection, infectious period and basic
reproductive ratio — all necessary for the construction of dynamic transmission models — have
not been obtained. By utilising three datasets each containing longitudinal infection information
on individuals, we estimate each of these epidemiologically important parameters. With an eye
to future study design, we also quantify the optimal sampling intervals for obtaining information
about these parameters. We verify the estimation method through a simulation estimation study,
and test each dataset to ensure suitability to the estimation method. We find that the force of
infection differs by population prevalence, and the infectious period is estimated to be between
12 and 20 days. We also find that optimal sampling interval depends on setting, with an optimal
sampling interval between 9 and 11 days in a high prevalence setting, and 21 and 27 days for
a lower prevalence setting. These estimates unlock future model-based investigations on the
transmission dynamics of GAS and skin sores.
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1 Introduction 1

Infections with impetigo (commonly known as skin sores) remain highly prevalent in remote Australian 2

Aboriginal communities, as well as Fiji and areas of socio-economic disadvantage [3, 36]. Skin sore infections 3

in these settings are primarily caused by Staphylococcus aureus, and Group A Streptococcus (GAS). GAS 4

is associated with post-infectious sequelae such as acute rheumatic fever and rheumatic heart disease, of 5

which Australia has one of the highest recorded prevalences globally [3]. Despite a relatively high level of 6
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understanding about the specifics of the GAS bacterium [39, 30, 34, 9, 16], comparatively little is known 7

about the natural history of skin sore infection. Furthermore, what is known is often based on historical 8

studies from a generation prior and from a different, non-endemic, geographical region [12, 10, 24, 11]. We aim 9

to utilise a dynamic transmission model for skin sores to estimate two key quantities: the force of infection, 10

and the duration of infectiousness. In the absence of information relating to immunity post-infection, we 11

assume skin sore transmission follows the dynamics of the Susceptible-Infectious-Susceptible (SIS) model. 12

Calculation of these two key quantities will contribute to the development and parameterisation of models 13

which will in turn inform the design of intervention strategies aimed at reducing prevalence. 14

We analyse three separate datasets, all from remote Australian communities, documenting the infection 15

dynamics of skin sores in individuals. The first dataset consists of public health network presentation data 16

for 404 children under five years of age [19, 8, 26], collected as part of the East Arnhem Healthy Skin Project; 17

the second contains longitudinal data for 844 individuals from three rural Australian communities, collected 18

during household visits [25], and the third is comprised of survey visits for 163 individuals who participated 19

in a mass treatment program [5], of which the primary endpoint was control of scabies infection. To analyse 20

these data, we linearise the SIS model about the endemic equilibrium, and derive an expression for the 21

likelihood of the two model parameters. By utilising Markov chain Monte Carlo (MCMC) methods, we 22

obtain estimates of each of the force of infection, the duration of infectiousness, the basic reproductive ratio, 23

R0, and the prevalence of infection. Finally, by utilising optimal experimental design, the optimal sampling 24

strategy to inform estimation of these parameters for use in future studies is obtained. 25

2 The Susceptible–Infected–Susceptible model 26

We consider a stochastic representation of the Susceptible-Infectious-Susceptible (SIS) model [22]. In this 27

model, individuals are either susceptible (S) or infectious (I). The transition rate from susceptible to 28

infectious, known as the force of infection, and denoted λ = βI, where β is the transmissibility parameter, 29

is non-linear. This non-linearity is one of the key features of dynamic infectious disease models. However, 30

this means that to model a population of individuals, the state of each individual is required (to know the 31

prevalence, I). For the SIS model, the size of the required state space is N [21]. When constructing the 32

Markov chain representation of the SIS model then, the generator matrix, Q, is N × N , meaning that for 33

large numbers of individuals, computing the matrix exponential exp(Qt), is computationally intractable. 34

The result of this, then, is that performing inference with infectious disease models is challenging [29, 2, 27, 35

23, 40, 28]. 36

When the dynamics of the SIS model are at (or close to) equilibrium, then the force of infection, λ, is 37

approximately constant. As such, we approximate the SIS model by a two-state process with a constant force 38
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of infection. By making this approximation, and assuming individuals are otherwise identical, it follows that 39

a Markov chain consisting of only two states is required, independent of the underlying population size. This 40

approximation has a straightforward likelihood calculation, which allows estimation in a Bayesian framework 41

and also the calculation of the optimal sampling interval for future study designs through the use of optimal 42

experimental design. 43

2.1 Linearisation of the SIS model 44

The standard SIS model can be described using two transitions, infection and recovery, and two parameters, 45

the transmissibility parameter, β, and the rate of recovery, γ (Table 1). Ignoring demographic processes, the 46

total number of individuals in the population is fixed. 47

One of the most important quantities in infectious disease modelling is the basic reproductive ratio, R0, 48

defined as the mean number of secondary infection events caused by a single infectious host, in an otherwise 49

susceptible population. The basic reproductive ratio functions as a threshold parameter, where if R0 ≤ 1, an 50

outbreak of disease will not occur, while if R0 > 1, then there is a non-zero probability of a disease outbreak 51

occurring. For the SIS model, the basic reproductive ratio is 52

R0 =
β

γ
.

The quasi-equilibrium solution of the SIS model is well known [21], and the endemic prevalence of disease 53

is 54

I∗ = 1− 1

R0
.

Let t be time of interest of the process. The force of infection, λ(t) is defined as, 55

λ(t) := βI(t).

At equilibrium, the prevalence is approximately constant, and so the force of infection can be approximated 56

by 57

λ(t) = βI∗ ≈ λ.

By performing this linearisation, it is assumed that the dynamics of disease are and remain at equilibrium. 58

It follows that we may consider a single individual. The generator matrix for the Markov chain for the 59

life-course of that individual is 60

Q =

−λ λ

γ −γ

 ,
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Table 1: Transitions of the SIS model. The force of infection is given by λ, the transmisibility
parameter β and the rate of recovery by γ.

State ∆ Rate

(S, I) (−1,+1) λ := βI
(S, I) (+1,−1) γ

and the matrix exponential of Q is 61

P (t) = eQt =
1

γ + λ

γ + λe−t(γ+λ) λ− λe−t(γ+λ)

γ − γe−t(γ+λ) λ+ γe−t(γ+λ)

 . (1)

The matrix in Equation (1), combined with an initial state and time t, gives the probability distribution for 62

the Markov chain. It is possible to calculate expressions for the equilibrium prevalence, I∗, and the basic 63

reproductive ratio, R0, in terms of λ and γ. Solving for the equilibrium distribution of the linearised SIS 64

model 65

πQ = 0,

gives the equilibrium prevalence 66

I∗ =
λ

λ+ γ
. (2)

From the standard SIS model, it is also known that the basic reproductive ratio, R0 = β/γ, and λ = βI∗. It 67

follows that the basic reproductive ratio, R0, is given by 68

R0 =
β

γ
=

λ

γI∗
,

and substituting Equation (2) gives 69

R0 =
λ+ γ

γ
. (3)

Given these simple closed form expressions for the key quantities of interest, it is possible to perform 70

estimation in a Bayesian setting, using interval-censored data. 71

3 Data 72

Three separate datasets collected in Australian Aboriginal communities are considered in this study: data 73

from public health network presentation (PHN) data on 404 children from birth to five years of age, collected 74

as part of the East Arnhem Healthy Skin Project; data for 844 individuals from three communities, collected 75

during household visits (referred to as the HH dataset); and data from 163 individuals who were observed for 76
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over 25 months as part of a mass treatment program in a single rural community (RC). Ethics approval for 77

reuse of existing data was obtained from The Human Research Ethics Committee of the Northern Territory 78

Department of Health and Community Services and Menzies School of Health Research (Ethics approval 79

number 2015-2516). Permission was also obtained from the custodians of each dataset. This project has been 80

conducted in association with an Indigenous Reference Group, as well as an ongoing stakeholder group which 81

contains Aboriginal Australian community members. Each dataset consists of longitudinal observations of 82

each individual, where their infection status is recorded at each observation. The times between presentations 83

are heavily right skewed in each dataset, with a median time to next presentation of 9 days for the PHN 84

data, 61 days for the HH data and 119 days for the RC data. The number of observations in total is also 85

highly variable with 13,439 observations in the PHN data, 4,507 in the HH data and 626 in the RC data. 86

Kernel density estimates of the distribution of time until the next presentation, with the observed data 87

overlayed, are shown in Figure 1. The suitability of each of these datasets for inferring the force of infection, 88

λ, rate of recovery, γ, and the basic reproductive ratio, R0 is investigated in Section 4.3. It is worth noting 89

specifically that the PHN data contains information only on children from birth to five years of age, while 90

the other two datasets contain information on individuals of all ages. Prevalence of skin sores is known to 91

be age-dependent [35] and so by not modelling any age-structure, we are ignoring these differences. 92

3.1 Data Structure 93

Recall that the datasets which are considered consist of longitudinal observations for each individual, with 94

an individual’s infection status being noted as either susceptible or infected at each point. The observation 95

is not continuous in nature, with the individual’s infection status only being known at each sampling point. 96

Data of this form are known as interval-censored, or panel data. Interval-censored data are common in 97

epidemiology, and inference in a frequentist setting is well established [18]. Let the state of individual i at 98

observation j be Xi,j , and the time at which the jth observation is made be ti,j . The likelihood for a single 99

individual, i, can be evaluated as 100

Li(λ, γ) =
∏
j

PXi,j ,Xi,j+1
(ti,j+1 − ti,j),

which is the relevant entry of the P matrix in Equation (1), evaluated at the time difference between 101

observations, ti,j+1 − ti,j . It follows that the likelihood for the entire population is 102

L(λ, γ) =
∏
i

Li(λ, γ). (4)
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It is important to note that the likelihood in Equation (4) has assumed what is known as ignorable sampling 103

times. That is, the sampling times are chosen independently of the outcome of the process. When sampling 104

times are chosen in advance, as they were in the HH and RC datasets, then the sampling times have been 105

proven to be ignorable [18]. For the PHN data, observations were made under what is termed a doctor’s 106

care scheme, whereby the next observation time is chosen at the current observation time, and based on an 107

individual’s disease state at that time. The sampling times are proven to be ignorable if the following two 108

conditions are true [15]: 109

• The probability of individual i being in a given disease state ui,j at time ti,j , given all infection history 110

until this point, Hi,j−1, is independent of whether an examination is carried out at this time and past 111

examination times, and 112

• The conditional distribution of the jth observation time, ti,j = P (Ti,j = ti,j |Hi,j−1), where Ti,j is the 113

random variable representing the time of the jth infection for individual i, is functionally independent 114

of the transmission parameters. 115

The first of these conditions effectively means that the probability that an individual is either susceptible 116

or infectious at time tj , given all past information, is independent of tj , and all past examinations. As 117

treatment is prescribed by a doctor’s visit, it is possible that this condition is violated. However, the dataset 118

does not contain information on the form of treatment administered meaning that it cannot be assumed 119

that the administered treatment is for skin sores, and almost 60% of presentations to the clinic contain 120

no information on skin sores (and so one could assume that the primary reason for the visit is not skin 121

sores). Further, it is noted that the estimate of infectious period in any modern setting will be augmented 122

by treatment. As such, it is assumed that the first condition is true. The second condition means that the 123

next observation time is conditionally independent of the transmission process. This condition is assumed 124

to be true here due to the high frequency of presentation in this dataset, even when an individual does not 125

have skin sores. It is important to note that it has been proven impossible to test whether or not a sampling 126

scheme is ignorable. The analysis proceeds on the basis that all sampling schemes in the given data are 127

ignorable, but it is noted that this may not be the case. 128

Both the force of infection, λ, and the infectious period, γ are estimated in a Bayesian context using 129

Markov chain Monte Carlo estimation (MCMC). The MCMC is performed using the No-U-Turn sampler 130

implemented in Stan [37], using 10,000 iterations for 4 chains, for a total of 40, 000 iterations. The code used 131

to perform this estimation is available at http://github.com/MikeLydeamore/TMI/. 132
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Figure 1: Distribution of time between presentations for each of the three datasets — PHN, HH
and RC — with the time between observations overlayed.

4 Analysis 133

We first start by verifying the methodology through the use of a simulation estimation study, whereby individ- 134

uals are simulated from the linearised SIS model, and attempt to recover parameters through the estimation 135

routine detailed in the previous section. Then, the estimation method is applied to the observational data. 136

4.1 Verification of methodology 137

There are multiple sources of stochastic variability in this setting, including the underlying population which 138

is observed, the realisation from the observation distribution and the MCMC method itself. The first two of 139

these potential causes for variation are investigated in detail here. 140

To investigate the variability in the underlying population, the estimation procedure is performed on 141

64 randomly generated populations from the linearised SIS model, and each of the 400 members of each 142

simulated population are observed once daily for one year. This high frequency of observation means that 143

the only source of meaningful variability is that which comes from the linearised SIS model. The top row 144

of Figure 2 shows the marginal posterior estimates for the force of infection, λ, the rate of recovery, γ, 145

and the basic reproductive ratio, R0, for populations simulated using λ = 1/60 and γ = 1/20. Each violin 146

plot shows an individual (marginal) posterior distribution for the parameter of interest from a randomly 147

selected population, while the boxplot shows the variability of the posterior mean for each parameter over 148

all 64 realised populations. The within-simulation variability is relatively high, even in this case with daily 149
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observation. However, the method estimates each parameter well and in an unbiased manner. 150

Next, potential variability in the observation distribution is considered. Again, a population of 400 151

individuals is simulated, and each simulated individual observed at times drawn from the observation dis- 152

tribution obtained from the PHN dataset (shown in Figure 1) over a time horizon of 1 year (Figure 2(B)). 153

It is satisfying that although the sampling interval in the PHN dataset is notably longer than the daily 154

case shown in Figure 2(A), the estimation method is still able to recover the simulated parameters. This 155

suggests that oversampling the population gives little benefit to estimates of the parameters. Comparatively, 156

it makes sense that if the sampling interval is too large, then no information will be gained. An example 157

of this phenomenon is shown in Figure 3, where 20 samples are made of the population, separated by some 158

sampling interval. The figure shows that a short sampling interval and a relatively short time horizon means 159

that information about the parameters is difficult to recover. Similarly, a long sampling interval increases 160

the variance in the parameter estimates. This suggests that there exists some optimal sampling interval. 161

This concept will be returned to in Section 5. 162

4.2 Verification of linearisation procedure 163

Having established that parameters can be re-estimated from the linearised model, we now look to verify 164

whether the linearisation of the SIS model is valid. To do this, an individual-based implementation of the 165

full (non-linearised) SIS model is used. The chosen parameters are β = 0.067 and γ = 1/20 (giving λ = 1/60 166

and an endemic prevalence of 25%), and 300 individuals. The Markov chain is seeded with 125 infected 167

individuals, which is close to the equilibrium of this system. The population is simulated from the full SIS 168

model, and the estimation is performed using the linearised model. Figure 4 shows results from 64 realised 169

populations, under the observation distribution from the PHN dataset. The recovery rate, γ, is estimated 170

accurately and with relatively small variance. The force of infection, λ, is somewhat underestimated on 171

average with a relative error in the mean of 15%, although the variability is large. This underestimate 172

carries over to the estimate of the basic reproductive ratio, R0. 173

The results are visually similar to those shown in Figure 2 under the same observation distribution. 174

Thus, it is concluded linearisation of the SIS model is valid when the dynamics are near equilibrium. 175

4.3 Verification of presentation distributions 176

Before estimating the force of infection, λ, and the rate of recovery, γ, for the three datasets discussed, the 177

frequency of presentations must be checked to determine if they are sufficient for use with the method. Figure 178

5 shows a simulation estimation study using the presentation distributions from the PHN and HH datasets. 179

Both datasets give good estimates. When considering the RC dataset, recall the presentation distributions 180
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Figure 2: Marginal posterior distributions for the force of infection, λ, the rate of recovery γ, and
the basic reproductive ratio, R0, from 8 randomly generated populations from the linearised SIS
model under two different observation distributions. The mean of each distribution is given by
the white circle. The boxplot at the bottom of each panel represents the means of 64 marginal
posteriors. The true value which was used to generate each population is represented by the blue
line (λ = 1/60, γ = 1/20). The two different observation distributions are (A): Observed daily
over 1 year and (B) observed according to the empirical presentation distribution from the PHN
data over 1 year. Both observation distributions yield good estimates of the simulated parameters.
The observation distribution from the RC dataset was tested, but has not been visualised as the
estimates were far from the true values (See Figure 3).
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Figure 3: Variance in the estimates of the force of infection, λ, and the rate of recovery, γ, for a range
of sampling intervals. Estimates were performed on 64 realisations of the simulated populations,
each with parameters λ = 1/60 and γ = 1/20. Each realisation contains 20 observations from the
simulated population.

Figure 4: Marginal posterior distributions for the force of infection, λ, the rate of recovery γ,
and the basic reproductive ratio, R0, from 8 randomly generated populations from the full (non-
linearised) SIS model under the empirical observation distribution from the PHN data, over 1 year.
The mean of each distribution is given by the white circle. The boxplot at the bottom of each
panel represents the means of 64 marginal posteriors. The true value which was used to generate
each population is represented by the blue line (λ = 1/60, γ = 1/20). The simulated parameters
are recovered successfully.
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shown in Figure 1. The RC dataset has a much wider sampling interval compared to the PHN and HH 181

datasets. It is suspected that this presentation distribution may not hold sufficient information to recover 182

the parameters of interest. However, as the prevalence is observed at each survey visit, estimating the basic 183

reproductive ratio, R0, may still be possible. Figure 6 shows the prior distributions, with samples from the 184

posterior distribution overlayed, under the observation distribution from the PHN dataset (panel A) and 185

the RC dataset (panel B). Under the observation distribution from the PHN data, the posterior distribution 186

samples are tightly clustered, with variance much smaller than in the prior distributions. Indeed, estimates 187

are so localised relative to the prior that the samples appear to be overlayed in the figure. Comparatively, 188

when the observation distribution is that seen in the RC dataset, the posterior samples are strongly correlated 189

with a wide variance, indicating that this dataset does not have sufficient sampling frequency to separately 190

estimate both the force of infection, λ, and the rate of recovery, γ. However, the posterior distribution 191

samples align with the simulated prevalence (and thus the basic reproductive ratio, R0). The RC dataset 192

can still be used to estimate these quantities. 193

Having verified the suitability of each of the datasets to this estimation method, the next step is to 194

estimate each of the force of infection, λ, the rate of recovery, γ, the prevalence of disease and the basic 195

reproductive ratio, R0. 196

4.4 Estimation from Data 197

For the PHN and HH datasets, relatively similar estimates for the infectious period, 1/γ (12 days for the 198

PHN dataset, and 20 days for the HH dataset) are obtained. However, notably different estimates for the 199

force of infection, λ, were obtained. In the PHN dataset, the mean force of infection is estimated at 1/20.21, 200

while in the HH dataset, the estimate is 1/202.07 — an order of magnitude different. This difference follows 201

through to estimates of the basic reproductive ratio, R0 (1.60 vs 1.10), and the prevalence, estimated to be 202

37.5% in the PHN dataset and only 9% in the HH dataset. For the RC dataset, R0 is estimated to be 1.42, 203

and the prevalence to be 26.9%. Point estimates of prevalence in all three study locations have been reported 204

previously (Table 2)[1, 25, 5], at 35.6% in the region in which the PHN dataset was collected, 13.1% in the 205

region where the HH dataset was collected and 35% in the region where the RC dataset was collected. These 206

prevalence estimates align closely with the estimates obtained using our method. 207

5 Prospective Sampling Strategies 208

Thus far, the focus has been only on previously collected datasets from which to estimate parameters. If 209

the sole aim of a study was to collect data to best estimate these parameters, then the natural question 210

to ask is when should individuals be sampled? Aided by the simple structure of the linearised SIS model, 211
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Figure 5: Marginal posteriors for the force of infection, λ, the rate of recovery γ, and the basic
reproductive ratio, R0, from 8 randomly generated populations from the linearised SIS model under
two different observation distributions. The mean of each distribution is given by the white circle.
The boxplot at the bottom of each panel represents the means of 64 marginal posteriors. The true
value which was used to generate each population is represented by the blue line (λ = 1/60, γ =
1/20). The two different observation distributions are taken from the (A): PHN dataset (1 year)
and (B) HH dataset (1 year).
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Figure 6: Prior distribution (concentric rings) with 20,000 samples from the posterior distribution
(black points) overlayed from a randomly generated population under the observation distribution
from (A) the PHN dataset, and (B) the RC dataset. The red line is the set of parameter values
which give the true prevalence in the simulated population. In panel (A), the samples are tightly
clustered with variance far smaller than the prior distribution. In panel (B), the samples are highly
correlated, and with high variance, indicating the two parameters of interest cannot be uniquely
determined, but their ratio (and so R0) can.

Table 2: Parameter estimates for the force of infection, λ, and the infectious period, 1/γ from the
three different datasets. Note this method estimates the rate of recovery, γ, but the infectious
period is reported here for clarity.

Dataset Parameter [units] Mean 95% CI

PHN Force of infection (λ) [1/days] 0.049 (0.042, 0.059)
Infectious period (γ−1) [days] 12.19 (10.23, 14.55)

R0 1.60 (1.56, 1.65)
Prevalence 37.5% (31.0, 39.4)

Literature [1] Prevalence 35.6% (32.9, 38.3)

HH Force of infection (λ) [1/days] 0.0049 (0.0040, 0.0062)
Infectious period (γ−1) [days] 19.97 (16.19, 24.56)

R0 1.10 (1.09, 1.11)
Prevalence 9.1% (8.3, 10.0)

Literature [25] Prevalence 13.1% Not provided

RC R0 1.42 (1.34, 1.51)
Force of infection (λ) — Not identifiable

Infectious period (γ−1) — Not identifiable
Prevalence 29.6% (25.4, 33.8)

Literature [5] Prevalence 35% Not provided
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Table 3: Optimal sampling strategies (in days) using the posterior distributions obtained from the
PHN and HH datasets, as well as the union of these two posterior distributions. Two sampling
strategies are considered: variable, where the time between each observation is allowed to vary, and
fixed.

Data Source Interval Optimal Design (days)

PHN Variable (12.9, 12.3, 10.4, 12.0, 10.3, 12.5, 12.5, 9.1, 11.3, 10.6, 11.6, 13.2)
Fixed 9.9

HH Variable (18.1, 23.0, 30.5, 31.1, 31.6, 27.8, 30.0, 31.7, 30.0, 30.6, 32.6, 29.4)
Fixed 24.2

Combined Variable (16.2, 23.5, 24.3, 32.0, 28.2, 26.6, 31.6, 29.2, 28.2, 28.1, 30.8, 33.9)
Fixed 23.4

this question may be answered through optimal experimental design [13]. We take the approach of robust 212

optimal experimental design, under the ED-optimality criterion [31, 33]. Let δ = (δ1, . . . , δn−1) define an 213

n-sampling design with spacing δi, i = 1, . . . , n − 1 between subsequent observations. Then, the optimal 214

sampling design, δ∗, is given by 215

δ∗ = argmax
δ

∫
det(I(δ,θ))p(θ)dθ, (5)

where θ = {λ, γ}, I(δ,θ) is the Fisher Information matrix, det is the determinant operator, and p(θ) is the 216

prior distribution. Note that the optimal sampling interval, δ∗, is dependent on the prior distribution, p(θ). 217

Two designs are considered for each dataset. The first is termed the variable sampling interval, where the ith 218

sampling interval, δi, is unrestricted, and n = 11 design spacings are chosen. Although this design strategy 219

is optimal over a 12 visit design, adhering to the varying intervals may be difficult from an implementation 220

perspective. A more practical strategy, and the second considered here, is termed the fixed sampling interval, 221

where δi = δ, ∀i. This is equivalent to considering n = 1 design spacing, as the population dynamics are 222

assumed to be at equilibrium throughout the study. 223

The integral in Equation (5) is approximated using a Monte Carlo estimate with 5,000 samples. Each 224

individual is observed 12 times. We use the induced natural selection heuristic for finding optimal strategies 225

[32]. For detail on the algorithm inputs and evidence of convergence, see Appendix C. 226

5.1 Recommended sampling strategies 227

We calculate the optimal strategy using the posterior distributions obtained from the PHN dataset, HH 228

dataset and the union of the these two posterior distributions as the prior distribution in Equation (5). The 229

results for both the variable interval strategy and the fixed interval strategy are shown in Table 3. 230

Under the constraint of equal observation intervals, and restricted to whole days any sampling interval 231

between 9 days and 11 days gives a Fisher Information within 97% of the maximum for the PHN dataset. 232
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Comparatively, for the HH dataset, any sampling interval between 21 days and 28 days gives a Fisher 233

Information within 97% of the maximum. Combining the two posterior distributions, any sampling interval 234

between 21 and 28 days is within 97% of the maximum. However, it should be noted that a sampling interval 235

of 23.4 days achieves only 30% of the maximum Fisher information possible in the PHN dataset, but 99% of 236

the maximum in the HH dataset. This highlights the importance of specifying the optimal sampling strategy 237

according to the specific scenario. 238

Interestingly, the optimal design spacing for the fixed strategy is not the minimum of the optimal design 239

spacing for the variable strategy. We propose the following hypothesis for this phenomenon: when the 240

observation interval is allowed to vary, we can effectively ‘spend’ a single observation close to the previous 241

in order to potentially gain a lot of information. However, in the fixed interval strategy, this option is not 242

available, and so to avoid ‘wasting’ observations, a more conservative strategy becomes the optimal. 243

To understand the difference in the optimal sampling times, recall that the expression in Equation 244

(5) maximises the Fisher Information, which through the Cramer–Rao lower bound, can be thought of as 245

minimising the variance of the parameter estimates [6]. This estimate inherently depends on the under- 246

lying parameters of the system: when events (i.e., infection and recovery) are happening slowly (i.e., low 247

prevalence) then sampling should happen less often, while when events are happening frequently (i.e., high 248

prevalence), then sampling should happen more often. In the case where little prior information about the 249

system is available, then it may be more appropriate to adopt a ‘conservative’ sampling strategy, which here 250

is the faster of the two presented strategies. Doing this yields a Fisher Information of 53% of the maximum 251

for the HH dataset. The conservative strategy is presented in Appendix D. Overall, the conservative strategy 252

generally gives good estimation accuracy (up to 10% error in a simulation-estimation study), and so is a 253

viable ‘catch-all’ strategy in the absence of prior information such as the prevalence. 254

6 Conclusion 255

We have provided the first model-based estimates for the duration of a skin sore infection (between 12 and 20 256

days), the force of infection and basic reproductive ratio (1.1 to 1.6) in three different settings. Furthermore, 257

the optimal sampling interval for future strategies has been determined, assuming that a study’s primary 258

goal is to estimate the force of infection and duration of infectiousness. 259

Previous work on the duration of skin sore infection has calculated the lifetime of a single sore on an 260

individual under observed treatment to be less than 7 days [4]. However, the lifetime of a single sore is 261

unlikely to be the same as the period for which an individual is infectious, due to the presence of multiple 262

sores on a single individual. By performing the estimation in a modelling framework, the interval-censored 263

nature of the data has been incorporated. Although the frequentist version of this estimation technique has 264
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been utilised in other disease settings [14, 17], to our knowledge this is the first time these quantities have 265

been computed for skin sores. 266

These results have been calculated using a linearised SIS model, in which the transmission rate has been 267

assumed to be constant, and disease dynamics are at equilibrium. This assumption has allowed some simple 268

analytic results which are often not able to be determined for traditional infectious disease dynamic models. 269

However, it is important to note that the assumption of equilibrium dynamics is likely to be violated in real- 270

world settings, particularly in the event of mass drug administration. Mass drug administration has been 271

implemented in these communities in the past [1, 20], and was ongoing during the period of data collection 272

in the RC dataset, although skin sores was not the primary outcome of the program in the RC setting [5]. It 273

is also important to note that the SIS model structure, by construction, does not incorporate any period of 274

immunity, or other potential disease states. Carriage (i.e. infected but not showing symptoms), in particular 275

has been demonstrated for skin sore infections in the past [25, 11] and inclusion of carriage in models has 276

been shown to substantially change intervention outcomes [7]. However, without longitudinal carriage data 277

related to skin infection, or clear evidence of the contribution of carriage to infectiousness, quantifying the 278

impact in these settings is challenging. 279

In the populations in which these data were collected, treatment is routinely administered for skin sores. 280

Thus, this estimate of the infectious period is influenced by treatment, and so is likely to be lower than 281

the natural infectious period. Quantification of the impact of treatment is an important research question. 282

Within these studies, diagnosis of skin infections was actively sought and treatment recommended. However, 283

actual uptake of treatment was not recorded. Nonetheless, treatment was probably more common than 284

outside of the study context, meaning that our estimate of the infectious period is likely an underestimate 285

of the infectious period outside of the study context. 286

There are a number of key differences between the three datasets considered. The PHN dataset only has 287

observations of children under five years of age. Extrapolation from this dataset to the entire population 288

should be performed with caution as the prevalence of skin sores appears to be age-specific [35], although 289

the relative similarity of the estimates of the infectious period from the HH data (in which the general 290

population was studied) does provide some reassurance of the estimated numbers. Further, sampling times 291

in the PHN dataset were not fixed in advance, but were rather driven by patients or health professionals. It 292

has been assumed these sampling times are ignorable, but further investigation into this assumption may be 293

warranted. 294

As well as estimation of key parameters for models of skin sores transmission, information about future 295

experimental designs has also been provided. Although the optimal sampling interval is a function of both the 296

force of infection and the infectious period, being able to calculate this interval provides helpful information 297
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to improve the efficiency of future study designs, or evaluation of disease control programs. 298

These parameter estimates unlock future model-based investigations for skin sores. By providing esti- 299

mates for both the force of infection and the duration of infectiousness, more complex models which include 300

covariates such as scabies, non-homogenous contact patterns, and population mobility can be considered, 301

and the impact of treatment strategies in these settings can be evaluated. It is our hope that these models 302

will lead to the development of innovative disease control measures, the application of which will reduce the 303

burden of skin disease and health inequalities. 304

Data accessibility: The observation times for individuals, fitted posterior distributions for each dataset, 305

and the optimisation algorithm are given in the supplementary material. Simulation algorithms and estima- 306
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A MCMC Diagnostics 430

Here information relating to the diagnostics of the MCMC procedure is provided. Figure 7(A) shows that 431

the posterior distributions from the PHN data have converged far from the prior distributions (which were 432

N ∼ (0.5, 0.5)), and Figure 7(B) shows that the chains are well mixed. The same conclusion can be drawn 433

from Figure 8 for the HH dataset and for the RC dataset in Figure 9. 434

B Derivation of the Fisher Information matrix 435

The Fisher Information matrix is a representation of the amount of information that is contained in a model 436

with parameters θ, about some observable value. The Fisher Information matrix is defined as, 437

Iij = E
[
∂l(θ)

∂θi

∂l(θ)

∂θj

]
.

Under some regularity conditions (which are assumed to be true), this is equivalent to, 438

Iij = −E
[
∂2l(θ)

∂θiθj

]
.

For the linearised SIS model, the Fisher Information matrix can be analytically determined and evaluated 439

rapidly for a wide range of values for the time between each observation, δ. Here, only the case of a single 440
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Figure 7: MCMC diagnostics for the PHN dataset. (A): Posterior density estimates of the force of
infection, λ, and the rate of recovery, γ. The solid red line is a 95% credible interval, the dashed
line a 99% credible interval. (B): Autocorrelation plots of the parameter values, for each of the
chains.
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Figure 8: MCMC diagnostics for the HH dataset. (A): Posterior density estimates of the force of
infection, λ, and the rate of recovery, γ. The solid red line is a 95% credible interval, the dashed
line a 99% credible interval. (B): Autocorrelation plots of the parameter values, for each of the
chains.
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Figure 9: MCMC diagnostics for the RC dataset. (A): Posterior density estimates of the force of
infection, λ, and the rate of recovery, γ. The solid red line is a 95% credible interval, the dashed
line a 99% credible interval. (B): Autocorrelation plots of the parameter values, for each of the
chains.
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individual is considered, but note that extension to N individuals simply results in the Fisher Information 441

being multiplied by N , as there is an assumption that all individuals are identical. 442

Define the function, 443

φS(δi,θ) =
λ− λe−δ(γ+λ)

γ + λ
,

to be the probability that an individual is infected at time δi, given they were susceptible at time 0. Similarly, 444

define, 445

φI(δi,θ) =
λ+ γe−δ(γ+λ)

γ + λ
,

to be the probability that an individual is infected at time δi, given they were infected at time 0. For 446

convenience, supress the dependence on θ while deriving the Fisher Information matrix. 447

The likelihood function in Equation (4) can then be expressed as 448

L(δi,θ) =
∏
i

[(
(1− φS(δi))

{Xi==S} · φS(δi)
{Xi==I}

){Xi−1==S}

×
(

(1− φI(δi)){Xi==S} · φI(δi){Xi==I}
){Xi−1==I}

]
, (6)

where {Xi == S} represents an indicator function. Taking the log of Equation (6) gives 449

l(θ) =
∑
i

[{Xi−1 == S} ({Xi == S} log(1− φS(δi)) + {Xi == I} log(φS(δi)))

+ {Xi−1 == I} ({Xi == S} log(1− φI(δi)) + {Xi == I} log(φI(δi)))] . (7)

The only terms of Equation (7) that contain θ are the functions φS(δi) and φI(δi), and the log likelihood 450

is linear in these functions. As such, the second partial derivatives of Equation (7) are simply 451

∂2l(θ)

∂θiθj
=

∑
i

[
{Xi−1 == S}

(
{Xi == S}∂

2 log(1− φS(δi))

∂θiθj
+ {Xi == I}∂

2 log(φS(δi))

∂θiθj

)
+{Xi−1 == I}

(
{Xi == S}∂

2 log(1− φI(δi))
∂θiθj

+ {Xi == I}∂
2 log(φI(δi))

∂θiθj

)]
. (8)

The next step to determine the Fisher Information matrix is to consider the expectation of the product 452

of the two random variables. In this case, Xi is Bernoulli, with probability of success (infection) of either 453

φS(δi) if Xi−1 = S or φI(δi) if Xi−1 = I. Using the law of total probability, it follows that 454

P (Xi = S ∩Xi−1 = S) = P (Xi = S|Xi−1 = S)P (Xi−1 = S). (9)
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The first term of Equation (9) is simply the probability of failure (that is, not infected), given an individual 455

was previously susceptible, which is (1−φS). To calculate the second term, recall that the time between the 456

ith and the (i+ 1)th observation is δi. Consider a discrete time Markov chain, with probability matrix 457

Pi =

1− φS(δi) φS(δi)

1− φI(δi) φI(δi)

 . (10)

Then, 458

[P (Xr = S), P (Xr = I)] = [(1− i0, i0)] ·
r∏

k=1

Pk

represents the probability that an individual is susceptible or infected at observation r, where i0 represents 459

the probability that an individual is initially infected, given here by the prevalence, I∗. For convenience, 460

define ps,r to be the first element of this vector, and pi,r = 1− ps,r to be the second element. 461

As each Xi is Bernoulli, it follows from Equation (9) that the joint expectation is 462

E[{Xi == S}, {Xi−1 == S}] = P (Xi = S ∩Xi−1 = S) = (1− φS(δi))ps,i, (11)

and the other forms of this expectation follow similarly. 463

Finally, taking the expectation of Equation (8) gives 464

Iθ1,θ2 =
∑
j

ps,(j−1) · (1− φS(δj))
∂2 log(1− φS(δj))

∂θ1θ2
+ ps,(j−1) · φS(δj)

∂2 log(φS(δj))

∂θ1θ2

+ pi,(j−1) · (1− φI(δj))
∂2 log(1− φI(δj))

∂θ1θ2
+ pi,(j−1) · φI(δj)

∂2 log(φI(δj))

∂θ1θ2
. (12)

The expressions for each second derivative were found using Sage, and are implemented for numeric 465

evaluation as part of the TMI package (https://github.com/MikeLydeamore/TMI). 466

B.1 Constant time between observations 467

If it is assumed that the time between observations is constant, that is, 468

ti+1 − ti = δ ∀i,

then the P matrix in Equation (10) is independent of i. Because of this, an analytic expression for P r is 469

[38], 470

P r =
1

φS + (1− φI)

1− φI φS

1− φI φS

+
(φI − φS)r

φS + (1− φI)

 φS −φS

φI − 1 φI

 .
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Figure 10: Numeric verification of the expressions for the Fisher Information matrix. The boxplot
represents the summary of the determinants of the covariance matrix, and the red line the analytic
expression for the Fisher Information matrix, with each curve normalised separately. The chosen
parameters were λ = 1/60 and γ = 1/20.

The expression for the Fisher Information in Equation (12) is verified in the constant time between ob- 471

servations case again through a simulation estimation approach. For a given set of parameters, θ = {λ, γ}, 472

64 populations of the SIS model are simulated, and parameters estimated under each sample spacing, 473

δ ∈ {5, 10, . . . , 40}. The determinant of the covariance matrix under each sample spacing is calculated and 474

normalised. The results of this verification are shown in Figure 10. 475

C Optimal sampling strategy diagnostics 476

We utilise the induced natural selection heuristic for finding optimal sampling strategies [32]. We choose the 477

following parameters: 478

• Initial designs, D ∼ U [1, 40], with |D| = 2000, 479

• Number of generations, W = 50, 480

• Pertubation function, f(d|d′) = T N (d′, 1), 481

• Acceptance criteria: retain top 40, 30, 20, 10 and 5 designs (10 times each), 482

• Newly sampled designs, m: 5, 10, 20, 30 and 40 designs (10 times each). 483
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Presented here are diagnostics which give evidence of the convergence of the induced natural selection 484

heuristic. Figures 11, 12 and 13 show that the Fisher information matrix has converged (panel A), and that 485

the chosen values for the sampling intervals also appear to have converged (panel B) for the variable interval 486

strategies. The same conclusion is drawn for the fixed interval strategies, as shown in Figurse 14, 15 and 16. 487

D Conservative sampling strategy 488

In Section 5, it was found that the optimal sampling strategy favoured a longer sampling interval in the 489

absence of prevalence information. While this performed well for the relatively low prevalence observed in 490

the setting where the HH dataset was collected, the strategy performed poorly in the higher prevalence 491

setting where the PHN dataset was collected. A potential alternative strategy would be the conservative 492

strategy, where the population is sampled every 10.45 days (as per the high prevalence setting). This strategy 493

favours oversampling at the penalty of potentially broader credible intervals for parameter estimates in a 494

low prevalence setting. A simulation estimation study of this, with 20 observations, is shown in Figure 17. 495

The conservative strategy appears to perform well in the low-prevalence setting, although the variability in 496

estimates is high (up to a 10% estimate error, compared with a 6% estimate error in the high prevalence 497

setting). As this sampling strategy is optimal for the high prevalence setting, this study suggests that the 498

conservative strategy may be a valid ‘catch-all’ strategy. 499
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Figure 11: Accepted values of the sampling intervals for the PHN dataset with a variable sampling
interval, as a function of the generation of the estimation algorithm. The space appears well
explored, and the solution appears converged after 50 generations.
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Figure 12: Accepted values of the sampling intervals for the HH dataset with a variable sampling
interval, as a function of the generation of the estimation algorithm. The space appears well
explored, and the solution appears converged after 50 generations.
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Figure 13: Accepted values of the sampling intervals for the combined dataset with a variable
sampling interval, as a function of the generation of the estimation algorithm. The space appears
well explored, and the solution appears converged after 50 generations.
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Figure 14: Accepted values of the sampling intervals for the PHN dataset with a fixed sampling
interval, as a function of the generation of the estimation algorithm. The space appears well
explored, and the solution appears converged after 50 generations.
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Figure 15: Accepted values of the sampling intervals for the HH dataset with a fixed sampling
interval, as a function of the generation of the estimation algorithm. The space appears well
explored, and the solution appears converged after 50 generations.
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Figure 16: Accepted values of the sampling intervals for the combined dataset with a fixed sampling
interval, as a function of the generation of the estimation algorithm. The space appears well
explored, and the solution appears converged after 50 generations.
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Figure 17: Marginal posterior distributions for the force of infection, λ, the rate of recovery γ, and
the basic reproductive ratio, R0, from 8 randomly generated populations from the linearised SIS
model under the conservative sampling strategy (every 10.45 days, for 20 successive observations)
under (A) a high prevalence setting, and (B) a low prevalence setting. The mean of each distribution
is given by the white circle. The boxplot at the bottom of each panel represents the means of 64
marginal posteriors. The true value which was used to generate each population is represented by
the blue line (high prevalence λ = 0.049, low prevalence λ = 0.0049, γ = 1/19.97)
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