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Abstract 25 

While the link between amyloid β (Aβ) accumulation and synaptic degradation in 26 

Alzheimer’s disease (AD) is known, the consequences of this pathology on coding remain 27 

unknown. We found that the entropy across neural ensembles was lower in the CA1 region in 28 

the APP/PS1 mouse model of Aβ, thereby reducing the population’s coding capacity. Our 29 

results reveal a network level signature of the deficits Aβ accumulation causes to the 30 

computations performed by neural circuits.  31 
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Main Text 51 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder associated with 52 

cognitive decline that is thought to arise in part due to the pathological accumulation of amyloid 53 

β (Aβ) plaques1 throughout the neocortex and hippocampus. Plaques cause a constellation of 54 

changes in neural circuits including, but not limited to, degradation of dendritic spines2, 55 

reductions in synapse density2,3, and increases in the intrinsic excitability of neurons3. Aβ 56 

pathology has been linked to various behavioral and cognitive changes4,5; for example, plaque 57 

burden correlates with degradation of place fields in the dorsal CA1 (dCA1) subfield of the 58 

hippocampus resulting in poor performance on spatial memory tasks4. Such behaviors require 59 

the orchestration of activity across large groups of neurons, or ensembles, whose dynamics are 60 

governed by the structure of neural circuits6. However, although Aβ pathology disrupts multiple 61 

features of these circuits2,7,8, the net effect of these changes on the structure of population 62 

activity and the resulting disruptions in neural computation remain unknown.  63 

To address this question, we performed electrophysiological recordings in the 64 

hippocampus of awake APP/PS1 mice (model of Aβ pathology9, Fig. 1a, d), where dense 65 

amyloid plaques can be seen at 12 months of age10 and correspond to poor performance on 66 

spatial cognition and memory tasks, such as the T-maze alternation task4,5. High-density 128 67 

channel arrays were targeted to the dCA1 region in head-fixed APP/PS1 and non-transgenic 68 

control mice (N = 4 male APP/PS1, N = 4 male control, age = 12-13 months, see Supplemental 69 

Methods for details) trained to run freely on a one-dimensional wheel. Up to 134 well-isolated 70 

single units were identified in each animal11 (control = 58±37 units, APP/PS1 = 59±50 units, see 71 

supplemental methods, Fig. 1b-c, e-f, S1). Representative rasters from a control (Fig. 1g) and 72 

APP/PS1 mouse (Fig. 1h) illustrate the complexity of patterns of ensemble activity across both 73 

groups.  74 
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To characterize the statistics of this activity across ensembles in both control and 75 

APP/PS1 mice, we first calculated the entropy, a measure of the diversity of patterns of firing 76 

that occurred over the duration of the recording12,13 (Fig. 2a, S2).  77 

First, in dCA1, we observed that entropy in APP/PS1 animals was decreased relative to 78 

that of controls (control = 0.84±0.45 bits, APP/PS1 = 0.45±0.24 bits, p < 10-6, one-sided 79 

Wilcoxon rank-sum test, Fig. 2b), suggesting that the number of different patterns in APP/PS1 80 

animals was smaller than in controls. The reduced entropy in APP/PS1 animals was significant 81 

across a range of ensemble sizes varying from 3 to 19 neurons (Fig. S3, S4), and was even 82 

preserved after normalizing entropy by firing rate (Fig. S5). 83 

Different behavioral states, such as running or remaining stationary, impact features of 84 

both single neuron and population activity14–16. To understand how these behavioral states 85 

affected entropy in control and APP/PS1 mice, the frequency of different patterns of activity was 86 

estimated when animals were running and compared to when animals remained stationary (Fig. 87 

2c). First, we found that running increased entropy in both control (stationary = 0.83±0.45 bits, 88 

running = 1.04±0.68 bits, p < 10-6, one-sided Wilcoxon rank-sum test, Fig. 2f,h) and APP/PS1 89 

mice (stationary = 0.43±0.24 bits, running = 0.59±0.26 bits, p < 10-6, one-sided Wilcoxon rank-90 

sum test, Fig. 2g,h). Interestingly, independent of whether the animal was stationary (control = 91 

0.83±0.45 bits, APP/PS1 = 0.43±0.24 bits, p < 10-6, one-sided Wilcoxon rank-sum test) or 92 

running (control = 1.04±0.68 bits, APP/PS1 = 0.59±0.26 bits, p < 10-6, one-sided Wilcoxon rank-93 

sum test), entropy was always lower in APP/PS1 animals than controls (Fig. 2d,e, S6-7), 94 

suggesting that the reduction in the number of possible network patterns was a general feature 95 

of ensemble activity. Furthermore, the magnitude of the change in entropy from stationary to 96 

running was significantly smaller in APP/PS1 mice than controls. (control = 0.21±0.38 bits, 97 

APP/PS1 = 0.16±0.17 bits, p < 0.005, one-sided Wilcoxon rank-sum test, Fig. 2h). Aβ pathology 98 

thus reduced not only the number of patterns generated by neural ensembles, but also the 99 

flexibility of those patterns across behaviors.   100 
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While the changes in entropy observed in APP/PS1 animals suggested that the diversity 101 

of network patterns was reduced with amyloid deposition, it remained unclear why such a 102 

reduction occurred. For instance, hypersynchronous neuronal activity, associated with the 103 

increased risk of seizures in human AD as well as mouse models17,18, could reduce entropy by 104 

increasing the occurrence of patterns of highly correlated neurons. By contrast, a similar, albeit 105 

mechanistically distinct reduction in entropy could occur due to the synapse loss and 106 

compromised dendritic structure seen in APP/PS1 animals3, which would result in fewer network 107 

patterns.  108 

To disambiguate these different possibilities, we linked the statistics of network patterns 109 

to the functional coupling of neurons using maximum-entropy models that aim to predict 110 

patterns of activity with as few a priori assumptions of structure as possible13,16,19. For each 111 

ensemble, we fit both an independent firing model that only contained a term for the activity of 112 

each neuron (hi) and a pairwise interaction model that contained the hi term for each neuron as 113 

well as a term for the functional coupling between pairs of neurons (Jij) (Fig. S8). This allowed 114 

us to estimate how cell autonomous properties, such as intrinsic excitability, and cell non-115 

autonomous properties, such as pairwise interactions, shaped the patterns of the network, and, 116 

in turn, the entropy. To visualize this, we plotted the predicted patterns from the models and the 117 

empirical patterns for a representative control (Fig. 3a,b) and APP/PS1 (Fig. 3c,d) animal. Each 118 

point represents a different pattern and the color denotes the number of active units in that 119 

pattern. To quantify the goodness of fits between model and data, we used a measure of the 120 

distance between two probability distributions, the Kullbeck-Liebler Divergence (KLD). First, the 121 

KLD of the independent firing model was significantly larger for controls than APP/PS1 animals 122 

(control = 1.97×10-2±3.39×10-2, APP/PS1 = 3.81×10-3±6.29×10-3, p < 10-6, one-sided Wilcoxon 123 

rank-sum test, Fig. 3e, S9, S10), showing that a first order maximum-entropy model better 124 

predicted patterns of neuronal activity for APP/PS1 animals than for controls. Additionally, we 125 

found that the pairwise interactions model was also better at predicting patterns in APP/PS1 126 
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animals than controls (control = 9.17×10-4±1.20×10-3, APP/PS1 = 2.24×10-4±2.88×10-4, p < 10-6, 127 

one-sided Wilcoxon rank-sum test, Fig. 3e, S11). Interestingly, the Jij terms in APP/PS1 animals 128 

were decreased compared to control animals (control = 0.02±1.10, APP/PS1 = -0.28±1.01, p < 129 

0.05, one-sided Wilcoxon rank-sum test, Fig. 3g, S12), suggesting that a model incorporating 130 

reductions in functional coupling between neurons, possibly arising from reductions in dendritic 131 

length and branching3 or decreased synaptic density2, was better able to predict the paucity of 132 

dCA1 network patterns (Fig. S13, S14). 133 

In summary, the decreased entropy observed in APP/PS1 animals revealed a reduction 134 

in the diversity of network patterns available to populations of neurons in dCA1. Such a 135 

decrease effectively constrains the number of patterns available to represent sensory stimuli or 136 

experiences, and this reduction in coding vocabulary could lead to the cognitive and spatial 137 

memory impairments seen in APP/PS1 mice5 and may provide clues into impairments in human 138 

AD20,21. 139 

Additionally, we found that maximum-entropy models, both the independent and 140 

pairwise models, were better at predicting dCA1 population activity in APP/PS1 animals than 141 

controls. While these models do not explicitly reflect circuit level deficits such as synaptic 142 

connectivity, they provide insight into how the constellation of cellular and molecular changes in 143 

APP/PS1 and related models of AD may result in diminished coding capacity and network 144 

function2,3. The counterintuitive result that the pairwise interactions model was better able to 145 

account for dCA1 activity in APP/PS1 animals than controls suggests that once a change in 146 

functional coupling was accounted for, there was sufficient information to describe the diversity 147 

of network patterns in APP/PS1 animals. By contrast, in controls, the inclusion of pairwise 148 

interactions was still insufficient to predict the observed network patterns. The structure of 149 

activity patterns in control animals is therefore likely shaped by higher order interactions22 150 

(triplet, quadruplet, etc.) that are either diminished or absent in APP/PS1 animals. Previous 151 

studies have identified the role that these higher-order interactions play in shaping population 152 
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activity in sensory systems and implicated the local circuits that give rise to such higher-order 153 

interactions13; our results hint at their importance in dCA1 and the extent to which they may be 154 

especially vulnerable to Aβ pathology in APP/PS1 animals. 155 

  156 
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