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Abstract

While the link between amyloid B (AB) accumulation and synaptic degradation in
Alzheimer’s disease (AD) is known, the consequences of this pathology on coding remain
unknown. We found that the entropy across neural ensembles was lower in the CAL region in
the APP/PS1 mouse model of AB, thereby reducing the population’s coding capacity. Our
results reveal a network level signature of the deficits AB accumulation causes to the

computations performed by neural circuits.
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Main Text

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder associated with
cognitive decline that is thought to arise in part due to the pathological accumulation of amyloid
B (AB) plagues! throughout the neocortex and hippocampus. Plaques cause a constellation of
changes in neural circuits including, but not limited to, degradation of dendritic spines?,
reductions in synapse density?2, and increases in the intrinsic excitability of neurons®. AR
pathology has been linked to various behavioral and cognitive changes*®; for example, plaque
burden correlates with degradation of place fields in the dorsal CA1 (dCA1) subfield of the
hippocampus resulting in poor performance on spatial memory tasks*. Such behaviors require
the orchestration of activity across large groups of neurons, or ensembles, whose dynamics are
governed by the structure of neural circuits®. However, although AB pathology disrupts multiple
features of these circuits®”8, the net effect of these changes on the structure of population
activity and the resulting disruptions in neural computation remain unknown.

To address this question, we performed electrophysiological recordings in the
hippocampus of awake APP/PS1 mice (model of AR pathology®, Fig. 1a, d), where dense
amyloid plaques can be seen at 12 months of age'® and correspond to poor performance on
spatial cognition and memory tasks, such as the T-maze alternation task*®°. High-density 128
channel arrays were targeted to the dCAL1 region in head-fixed APP/PS1 and non-transgenic
control mice (N = 4 male APP/PS1, N = 4 male control, age = 12-13 months, see Supplemental
Methods for details) trained to run freely on a one-dimensional wheel. Up to 134 well-isolated
single units were identified in each animal!! (control = 58+37 units, APP/PS1 = 59450 units, see
supplemental methods, Fig. 1b-c, e-f, S1). Representative rasters from a control (Fig. 1g) and
APP/PS1 mouse (Fig. 1h) illustrate the complexity of patterns of ensemble activity across both

groups.
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75 To characterize the statistics of this activity across ensembles in both control and

76  APP/PS1 mice, we first calculated the entropy, a measure of the diversity of patterns of firing
77  that occurred over the duration of the recording®**® (Fig. 2a, S2).

78 First, in dCA1, we observed that entropy in APP/PS1 animals was decreased relative to
79  that of controls (control = 0.84+0.45 bits, APP/PS1 = 0.45+0.24 bits, p < 10, one-sided

80  Wilcoxon rank-sum test, Fig. 2b), suggesting that the number of different patterns in APP/PS1
81 animals was smaller than in controls. The reduced entropy in APP/PS1 animals was significant
82 across a range of ensemble sizes varying from 3 to 19 neurons (Fig. S3, S4), and was even

83  preserved after normalizing entropy by firing rate (Fig. S5).

84 Different behavioral states, such as running or remaining stationary, impact features of
85  both single neuron and population activity’*-*¢. To understand how these behavioral states

86  affected entropy in control and APP/PS1 mice, the frequency of different patterns of activity was
87  estimated when animals were running and compared to when animals remained stationary (Fig.
88  2c). First, we found that running increased entropy in both control (stationary = 0.83+0.45 bits,
89  running = 1.04+0.68 bits, p < 10, one-sided Wilcoxon rank-sum test, Fig. 2f,h) and APP/PS1
90  mice (stationary = 0.43+0.24 bits, running = 0.59+0.26 bits, p < 10°, one-sided Wilcoxon rank-
91 sum test, Fig. 2g,h). Interestingly, independent of whether the animal was stationary (control =
92  0.83+0.45 bits, APP/PS1 = 0.43+0.24 bits, p < 10, one-sided Wilcoxon rank-sum test) or

93  running (control = 1.04+0.68 bits, APP/PS1 = 0.59+0.26 bits, p < 10, one-sided Wilcoxon rank-
94  sum test), entropy was always lower in APP/PS1 animals than controls (Fig. 2d,e, S6-7),

95  suggesting that the reduction in the number of possible network patterns was a general feature
96 of ensemble activity. Furthermore, the magnitude of the change in entropy from stationary to

97  running was significantly smaller in APP/PS1 mice than controls. (control = 0.21+0.38 bits,

98 APP/PS1 =0.16%0.17 bits, p < 0.005, one-sided Wilcoxon rank-sum test, Fig. 2h). AB pathology
99  thus reduced not only the number of patterns generated by neural ensembles, but also the

100 flexibility of those patterns across behaviors.
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101 While the changes in entropy observed in APP/PS1 animals suggested that the diversity
102  of network patterns was reduced with amyloid deposition, it remained unclear why such a

103  reduction occurred. For instance, hypersynchronous neuronal activity, associated with the

104  increased risk of seizures in human AD as well as mouse models!’8, could reduce entropy by
105 increasing the occurrence of patterns of highly correlated neurons. By contrast, a similar, albeit
106  mechanistically distinct reduction in entropy could occur due to the synapse loss and

107  compromised dendritic structure seen in APP/PS1 animals®, which would result in fewer network
108 patterns.

109 To disambiguate these different possibilities, we linked the statistics of network patterns
110  to the functional coupling of neurons using maximum-entropy models that aim to predict

111  patterns of activity with as few a priori assumptions of structure as possible*®161° For each

112  ensemble, we fit both an independent firing model that only contained a term for the activity of
113  each neuron (hj) and a pairwise interaction model that contained the h; term for each neuron as
114  well as a term for the functional coupling between pairs of neurons (J;) (Fig. S8). This allowed
115 usto estimate how cell autonomous properties, such as intrinsic excitability, and cell non-

116  autonomous properties, such as pairwise interactions, shaped the patterns of the network, and,
117  inturn, the entropy. To visualize this, we plotted the predicted patterns from the models and the
118 empirical patterns for a representative control (Fig. 3a,b) and APP/PS1 (Fig. 3c,d) animal. Each
119  point represents a different pattern and the color denotes the number of active units in that

120 pattern. To quantify the goodness of fits between model and data, we used a measure of the
121  distance between two probability distributions, the Kullbeck-Liebler Divergence (KLD). First, the
122 KLD of the independent firing model was significantly larger for controls than APP/PS1 animals
123 (control = 1.97x102+3.39x102, APP/PS1 = 3.81x103+6.29%x103, p < 10°®, one-sided Wilcoxon
124  rank-sum test, Fig. 3e, S9, S10), showing that a first order maximum-entropy model better

125 predicted patterns of neuronal activity for APP/PS1 animals than for controls. Additionally, we

126  found that the pairwise interactions model was also better at predicting patterns in APP/PS1
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127  animals than controls (control = 9.17x10%+1.20x103, APP/PS1 = 2.24x10%+2.88x10*, p < 105,
128  one-sided Wilcoxon rank-sum test, Fig. 3e, S11). Interestingly, the Jj terms in APP/PS1 animals
129  were decreased compared to control animals (control = 0.02+1.10, APP/PS1 = -0.28+1.01, p <
130 0.05, one-sided Wilcoxon rank-sum test, Fig. 3g, S12), suggesting that a model incorporating
131  reductions in functional coupling between neurons, possibly arising from reductions in dendritic
132  length and branching® or decreased synaptic density?, was better able to predict the paucity of
133  dCALl network patterns (Fig. S13, S14).

134 In summary, the decreased entropy observed in APP/PS1 animals revealed a reduction
135 inthe diversity of network patterns available to populations of neurons in dCA1. Such a

136  decrease effectively constrains the number of patterns available to represent sensory stimuli or
137  experiences, and this reduction in coding vocabulary could lead to the cognitive and spatial

138  memory impairments seen in APP/PS1 mice® and may provide clues into impairments in human
139  AD%2,

140 Additionally, we found that maximum-entropy models, both the independent and

141  pairwise models, were better at predicting dCA1 population activity in APP/PS1 animals than
142 controls. While these models do not explicitly reflect circuit level deficits such as synaptic

143  connectivity, they provide insight into how the constellation of cellular and molecular changes in
144  APP/PS1 and related models of AD may result in diminished coding capacity and network

145  function?3. The counterintuitive result that the pairwise interactions model was better able to
146  account for dCA1 activity in APP/PS1 animals than controls suggests that once a change in
147  functional coupling was accounted for, there was sufficient information to describe the diversity
148  of network patterns in APP/PS1 animals. By contrast, in controls, the inclusion of pairwise

149 interactions was still insufficient to predict the observed network patterns. The structure of

150 activity patterns in control animals is therefore likely shaped by higher order interactions??

151 (triplet, quadruplet, etc.) that are either diminished or absent in APP/PS1 animals. Previous

152  studies have identified the role that these higher-order interactions play in shaping population
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153 activity in sensory systems and implicated the local circuits that give rise to such higher-order
154  interactions®3; our results hint at their importance in dCA1 and the extent to which they may be
155  especially vulnerable to AB pathology in APP/PS1 animals.
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Figure 1 High-density awake recordings of dCA1 neuronal populations. (a,d) 10-second interval of raw electrophysiology data from
three channels. (b,e) Mean waveform of each unit from channels in a and d as it appeared on the channel on which it was detected
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simultaneous running behavior.
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Figure 3 Maximum entropy models of dCA1 neuronal populations in control and APP/PS1
mice (a-d) Comparison of predicted and model word probabilities for a representative control
(a,b) and APP/PS1 (c,d) animal for the independent model (a,c) and pairwise model (b,d).
Colors denote the number of coactive neurons in each word. (e) Kullback-Liebler divergence
(KLD) between empirical and model word probability distributions. For both models, the KLD
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Histograms of (f) h. and (g) J, terms. Dashed line denotes 0. Both h. and Jij terms were smaller
in the APP/PS1 group than the controls.
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