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Abstract
Cancer cells are often home to profound metabolic specialization, such as the Warburg 

effect wherein cancer cells exhibit high glucose uptake with conversion to lactate in the 

presence of oxygen. To understand the mechanisms underlying the Warburg effect in 

hepatocellular carcinoma and to investigate whether and how both the essential nutrient 

concentrations and the cells’ gene expression, impact on this metabolic alteration, we 

integrated computational genome-wide metabolic modeling with an experimental study on 

cell lines. We converted transcriptome sequencing (RNA-seq) data from two hepatocellular 

carcinoma lines HuH7 and PLC/PRF/5 to flux bounds in the most comprehensive human 

metabolic network model to date, Recon3D.  A new method was developed to enable 

changes in medium concentrations to impact Flux Balance Analyses (FBA) of genome wide 

metabolic maps.  By integrating the two methods, the cells’ metabolic behavior could be 

studied due to applying a new Nature Nurture Scaling (NNS) factor, which assesses the 

relative importance of gene expression (‘Nature’) and medium composition (‘Nurture’). To 

examine whether the medium concentrations of glucose and glutamine affect the rate of 

aerobic glycolysis and growth rate in vitro, we further cultured the same two hepatocellular 

carcinoma lines on media that contained different amounts of glucose and glutamine. 

Our integrated approach where expression level (nature) and the environment (nurture) 

work together, led us to conclude that proliferation, glucose consumption, and lactate 

production are associated with the presence of glucose, but do not necessarily increase with 

its concentration when the latter exceeds the physiological concentration. There was no 

such association with the presence of glutamine. The observed dependencies on glucose 

concentration could hereby be understood in terms of a balance between Nature and 

Nurture, as could be the lack of the cells’ response to glutamine. 

Author summary 
Metabolism is directly involved in many human diseases including cancer, and indirectly in 

virtually all, because disease causes metabolic changes that can accompany or even affect 

etiologies and be read as biomarkers. The best-known metabolic abnormality in cancer cells 

is an increased glycolysis followed by lactic acid production even in the presence of oxygen 

and fully functioning mitochondria, a process known as the Warburg Effect. So-called 

genome-scale metabolic reconstructions integrate all known metabolic reactions occurring 

in an organism into a single map.   Together with a mathematical method for simulating the 

optimal balance of metabolic fluxes, this holds promise for studying the mechanisms by 

which networks control life. We combined this genome-scale metabolic modeling approach 
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with in vitro experiments to investigate whether the behavior of cancer cells is determined 

by their nutrition or/and the expression of their genes. We hereto developed a new method 

that integrates the genome (nature) and the environment (nurture) and identified the 

influence of cell-nutrition changes on the Warburg effect in hepatocellular carcinoma. 

Highlights:
1. Cell nutrition and gene expression can now be dealt with simultaneously by FBA through 

a newly developed Nature Nurture Scaling (NNS) factor.

2. The physiological concentration of glucose is sufficient for the production of lactate by 

Huh7 and PLC. 

3. Huh7 and PLC growth rates are independent of glutamine in media containing glucose.

4. On glutamine alone Huh7 and PLC growth rates are much lower than on glucose alone.

Keywords: 
hepatocellular carcinoma, Warburg effect, WarburQ effect, metabolic network modeling, flux 

balance analysis, genome-scale metabolic map

1. Introduction

Hepatocellular carcinoma (HCC) is among the most common primary liver malignancies [1] 

and a frequent cause of cancer death [2]. It represents the fifth most common cancer 

worldwide and over 500 000 new cases are diagnosed per year [3,4]. Hepatotropic viruses 

such as HBV, HCV, and hepatitis D virus (HDV), and excessive alcohol intake leading to 

chronic liver disease and cirrhosis, are the most common cause of HCC worldwide [5,6]. 

There are other relevant risk factors such as tobacco, obesity, diabetes, metabolic 

syndrome, and selected aspects of diet [5]. Several factors contribute to the gloom of HCC 

prognosis: 1) late diagnosis due to lack of symptoms at early stages, 2) recurrence and 

resistance to chemotherapy, 3) large heterogeneity, and 4) HCCs perfect environment of 

healthy liver cells providing nutrients to their surroundings. Notwithstanding therapies such 

as liver resection, transplantation and ablation, the prognosis of HCC is still very poor [7] 

with five-year survival rates in the 20% range in the United States [8].  

Altered metabolism in cancer has been linked to increased tumorigenicity and 

resistance to chemotherapeutics. The metabolic signatures of cancer cells result from 

biochemical/metabolic reprogramming (switching) that promote fast growth, survival, 

proliferation, and long-term maintenance, and are thereby selected for [9]. In most cancer 
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cells the rate of glucose uptake has increased and part of glycolysis-derived pyruvate is 

diverted to lactate [10-13], which produces much less ATP per glucose than its oxidation to 

carbon dioxide would. This metabolic signature, known as the Warburg effect [12], enables 

dividing cells to satisfy anabolic needs for biomass production and is accompanied by a 

suppression of apoptotic signaling [14,15,16]. The high glucose consumption during the 

Warburg effect also provides a higher production of reduced nicotinamide adenine 

dinucleotide phosphate (NADPH2) through the pentose phosphate pathway, which provides 

electrons to cell proliferation [2,17]. Cancer cells tend to persist in converting much glucose 

to lactate [10-13], while most normal cells import the glycolysis-derived pyruvate into the 

mitochondrial matrix. Here the pyruvate is converted to acetyl-coenzyme A, which is 

oxidized by mainly NAD+ in the Krebs cycle to CO2 [10,11]. The Warburg effect [12] 

correlates with tumor aggressiveness and poor patient prognosis in many tumor types, 

including HCC [14,18-21].  Many cancer cells also have an increased uptake of glutamine 

[22-26]. The partial catabolism of this glutamine to lactate by cancer cells has been called 

the WarburQ effect [27]. Some rapidly proliferating cells are particularly dependent on 

glutamine, and undergo necrosis upon glutamine depletion [25], possibly because glutamine 

is their main source of nitrogen essential for the synthesis of the amino acids and nucleotides 

required for cell proliferation. 

The excess secretion of lactate would appear to be an inefficient use of cellular 

resources: each excreted lactate molecule wastes three carbons that might otherwise be 

utilized for either ATP production [12]. However, the human organism is a perfect host for 

cancer cells. Lactate produced by cancer cells is picked up from the bloodstream and 

reconverted to glucose by the liver via the Cori cycle [28], the glucose returning to the blood 

that then supplies cells, including tumor cells, with this glucose. Similar to lactate, ammonia 

produced during high glutamine catabolism can also be removed by the liver via the putative 

glutamine-ammonia cycle [29,30] and returned to the tumor cells as glutamine. According 

to “Lactate Shuttle” concepts, lactate plays a role in delivery of oxidative and gluconeogenic 

substrates as well as in cell signaling [31-33]. It includes intracellular (e.g. between the 

cytosolic and mitochondrial compartments) and extracellular (e.g. between working skeletal 

muscle and heart) lactate exchanges [31]. The difference between processes e.g. in the 

healthy heart and skeletal muscles of the host, and cancer cells, is lack of regulation and a-

social behavior of cancer cells [27]. The host’s physiology bears the burden of providing a 

relatively unlimited glucose supply to the cancer cells and a sink for the lactate they secrete 

[10a,10b]. Thereby the host delivers resources to the proliferating cancer cells at the cost of 

delivery of these same resources to the other organs, and increasing whole-body Gibbs 
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energy expenditure and multiple organ failure as is highlighted in cancer cachexia. In the 

case of HCC, resourcing processes are simplified and the liver becomes the host in the host. 

Refurbished glucose is readily used by local cancer cells and lactate produced by cancer 

cells is used by liver cells in gluconeogenesis without transportation through the body. The 

switch is not always quite irreversible:  switching of glycolysis to gluconeogenesis in 

hepatocarcinoma cells lacking gluconeogenesis was possible after application of the 

corticosteroid medication dexamethasone [34].

A better understanding of the mechanistic links between cell metabolism and survival 

control may aid in the development of strategies towards a more specific control of HCC 

progression as well as other types of cancer. The genome-scale metabolic models (GEMs), 

that are at the core of some bottom-up systems biology approaches, constitute promising 

tools to study such complex diseases [35,36,37]. Using metabolic reconstructions, 

researchers can store and continually update information about chemical reactions in a 

standardized genome wide representation. Various human metabolic maps that represent 

the entire network of metabolic reactions in a human is known, have been published and 

their content has been expanded e.g. from 3311 reactions in RECON1 [35a] to 13,543 

reactions in RECON3D [37]. Recon3D is not only the most comprehensive human metabolic 

network model to date, it also includes three-dimensional (3D) metabolite and protein 

structure data and enables integrated analyses of metabolic functions in humans. GEMs 

have already been used to predict biomarkers of inborn errors of metabolism [36,38], to 

identify drug targets [39], to characterize cancer metabolism [40] and to improve the 

understanding of microbial interactions with the host organism [41,42]. This has been 

achieved by a computational approach called Flux Balance Analysis (FBA), which enables 

the computation of optimal steady state flux distributions over genome-scale metabolic 

maps, optimal in terms of objective functions such as maximum growth yield.  Existing 

computational methodology is able to calculate the implications of quantitative gene 

expression information for those optimal flux patterns and yields.  In reality, the performance 

of cells may not only be a function of gene expression (which we shall here call ‘Nature’) but 

also of the metabolic environment of the cells (‘Nurture’), but there is no corresponding FBA 

methodology yet to take nutrient concentrations into account quantitatively in such 

calculations.

In the present study, we developed the latter methodology and then use the GEM to 

predict the influence of the level and ratio of two essential nutrients (glucose and glutamine) 

in medium on the growth rate and metabolic behavior of cancer cells (HCC), whilst taking 

into account the transcriptome of those cells. We took advantage of the novel metabolic 
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reconstruction RECON3D [37] and created RECON3D-based metabolic maps that 

integrate, for the first time, transcriptomic (nature) and nutrient concentration (nurture) data 

through a new Flux Balance Analysis approach, by using a new ‘Nature Nurture Scaling 

factor’ (‘NNS’). Using this integrated approach, in silico modeling and in vitro experiments 

on the two hepatocellular carcinoma cell lines HuH7 and PLC/PRF/5, we identify how 

limitations in expression levels of the metabolic network and nutrient limitations may both 

cause glucose and glutamine (in)dependencies.

2. Materials and Methods

2.1 Cell lines
For our study we chose two HCC cell lines, i.e.  the hepatitis infection–negative Huh7 and 

the hepatitis infection–positive PLC/PRF/5. Huh7 is a well differentiated hepatocyte-derived 

cellular carcinoma cell line originating in a liver tumor in a 57-year-old Japanese male. Huh7 

is an immortal cell line of epithelial-like, tumorigenic cells. Its cells adhere to the surface of 

flasks or plates and typically grow as 2D monolayers. Also known as the Alexander 

hepatoma cell line, PLC/PRF/5 is a human hepatoma originally taken from the liver of a 

patient with primary liver cell carcinoma who was persistently infected with hepatitis B virus. 

Also, these cells adhere to the surface of flasks or plates and grow as 2D monolayers 

[43,44]. Human HCC cells (Huh-7D12 (ECACC 01042712) and PLC/PRF/5 (ECACC 

85061113) were purchased from the European Collection of Authenticated Cell Cultures 

(Salisbury, UK). 

2.2. Sources of cell-line specific transcriptomic data
2.2.1 Microarray data

We obtained microarray transcriptomics data from the MERAV database [45] 

(http://merav.wi.mit.edu/) for both the Huh7 and PLC/PRF/5 cell lines. There was data 

available from two experiments for Huh7 and one for PLC/PRF/5. All MERAV microarray 

datasets were renormalized together [45]. For the two Huh7 experimental datasets we 

averaged the signal per gene between the two experiments. 

2.2.2 RNA-seq data

RNA sequencing data for both cell lines was obtained through NCBI’s GEO database. 

Specifically, the RNA-seq dataset from [46] was accessed from: 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE86602 on November 7th 2018. 

The RNA-seq dataset pertains to cells grown under conditions somewhat different from the 
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experimental conditions in the present work. The RNA-seq data records transcript levels in 

terms of a TP(K)M value (Transcripts Per Kilobase Million): i.e. read count normalized by 

gene length in kilobases (RPK) and divided by 1 million.

2.3 In silico analyses
2.3.1 Flux balance analysis

In all simulations in this work we apply the computational technique of Flux Balance Analysis 

(FBA) [47] to the human genome-wide metabolic map Recon3D [37] using the COBRA 

toolbox in MATLAB and Python [48,49]. FBA entails the following linear programming 

problem:

 such that𝑍 = 𝑐𝑇𝑣,
𝑺𝑣 = 0

𝛼𝑘 ≤ 𝑣𝑘 ≤ 𝛽𝑘

where S is the stoichiometry matrix indicating how many molecules of each metabolite are 

produced or consumed in each reaction, v is the vector of fluxes through all reactions 

including exchange reactions with the environment of the system considered, ɑ and β are 

the vectors of lower and upper bounds on these fluxes, and c is a vector of weights 

generating the linear combination of fluxes that constitutes the objective function Z. A flux 

distribution resulting from FBA therefore satisfies the requirements that each metabolite is 

produced at the same rate as it is consumed, that the flux boundaries are not exceeded and 

that the flux distribution maximizes (or minimizes) the objective function Z.

2.3.2 Computational media representation

Ideally, to reproduce experimental cellular conditions accurately in terms of the flux 

distribution, one should experimentally measure the transport fluxes of all medium 

components that are taken up or secreted.  Using FBA one can then compute the internal 

flux pattern that should be optimal with respect to a certain objective. However, this is 

impractical for most mammalian cell line studies as there are quite a few such medium 

components. Therefore, we here made several assumptions that may be approximately 

correct under very strict conditions. We assume (i) that the concentrations of the medium 

components are essentially constant in time, (ii) that the uptake fluxes depend by first-order 

(i.e. proportional) kinetics on the known substrate concentrations in the medium, thereby 

producing an uptake rate that can only be reduced by changes in intracellular metabolite 

concentrations, and (iii) that the proportionality constant is the same for all medium 

components. Assumption (ii) biochemically implies that in order for the uptake rate to be 
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reduced, something in the downstream network needs to be limiting (i.e. an enzyme 

concentration). This ultimately has to translate back to increased concentration of 

metabolites downstream of the uptake step. This is only straightforward if the concentrations 

are well below the Km of the transporters, but  may be replaced by the options that the uptake 

reactions run at a Vmax with respect to their extracellular substrate concentration but that 

their substrate induces them such that the transporter expression level is proportional (again 

with the same proportionality constant for all substrates) to (or increasing monotonically with) 

the extracellular concentration, and that either this induction or the rate is only negatively 

influenced by intracellular concentrations. Assumption (iii) is unrealistic biochemically, but 

may be seen as a way to reflect the metabolic potential offered by the media.  In accordance 

with these assumptions, we set the maximal uptake fluxes, for all medium components listed 

in Table 2, equal to their explicit concentrations in the medium. 

In FBA there is a distinction between exchange of a metabolite and transport of that 

metabolite. Exchange refers to the net consumption or production of a metabolite and occurs 

between the extracellular compartment and the outside world. It measures how much 

substrate that is added to the experimental medium is taken up and used by the cell and 

how much product leaves the system. In contrast, transport refers only to the transfer of a 

metabolite between the cytosol and extracellular compartment. Technically, this distinction 

exists to allow some metabolites to circumvent the steady state requirement in FBA [47]: net 

catabolism of glucose is consistent with steady state (constant concentrations of 

metabolites) by allowing exchange with an external compartment to which the steady state 

requirement is not applied. By implication, if the concentration of a metabolite in the medium 

supplied to the cells is zero, then the bound (=upper limit) on inward exchange flux is zero. 

This does not mean that the transport reaction of that metabolite is blocked (has bounds of 

zero) but it does mean that that the transport flux will be zero due to lack of substrate. If that 

extracellular concentration were to go up (by increasing the exchange reaction bound), the 

metabolite could be imported and transport flux would be possible. 

We did not account for metabolic components spilling over from the added serum. 

We blocked all other uptake of metabolites so that only those compounds listed in Table 2 

were allowed to be exchanged in. We did not alter the Recon3D default choices of which 

metabolites may be net produced by the in-silico cell. This left 1559 metabolites which are 

allowed to be net-produced by the cell (Supplementary Excel Table 1). Recon3D also 

contains various so-called sink and demand reactions which serve as sources and sinks for 

certain metabolites allowing them to bypass the regular mass-balance. We blocked all such 

reactions.
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All uptake reactions and their maximal uptake bounds were taken the same across 

the six conditions with the exceptions of glutamine and glucose uptake which were varied 

as specified in Table 1 and 2.  

Medium Glucose [mM] Glutamine [mM]

M1 25 4.0

M2 25 0.0

M3 5.6 4.0

M4 5.6 0.0

M5 0.0 4.0

M6 0.0 0.0

Table 1. Media used in experiments in terms of their varying glucose and glutamine 

concentrations. The media further contained all components like in standard Dulbecco's 

Modified Eagle Medium (DMEM).

Metabolite Uptake 
bound

Metabolite Uptake 
bound

Metabolite Uptake 
bound

Metabolite Uptake 
bound

Arginine 0.40 Bicarbonate 44 Nicotinamide 0.033 Thiamin 0.011

Choline 0.028 Histidine 0.2 Valine 0.80 Threonine 0.80

Cysteine 0.20 Isoleucine 0.80 Phenylalanine 0.4 Tryptophan 0.078

Iron (Fe3+) 0.00024 Myo-Inositol 0.04 Phosphate 0.9 Tyrosine 0.40

Folate 0.0091 Potassium 5.3 (R)-Pantothenate 0.0083 Carbon dioxide 1000

Glycine 0.40 Methionine 0.20 Serine 0.40 Oxygen 1000

Water [54220,

54250,

54100, 

54440,

54470,

54500]

Sodium 155 Sulfate 0.81
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Glucose [0,5.6,25] Leucine 0.80 Pyridoxine 0.019

Glutamine [0, 4.0] Lysine 0.80 Riboflavin 0.0011

Table 2. Concentrations of metabolites in the DMEM media in mM as listed in the 

manufacturer’s formulation. Our media M1-M6 only differ in the glucose and glutamine 

concentrations (colored in green) and were exempt of ammonia. All concentrations were 

effected in-silico as maximal uptake rates which shape and constrain the flux cone of the 

solutions in FBA (see text).  For carbon dioxide and oxygen, a not limiting uptake bound of 

1000 was taken. Oxygen was considered non-limiting because the concentration in the 

medium was in the order of 0.2-0.4 mM (corresponding to air saturated saline) [50] whereas 

the Km of cytochrome oxidase for oxygen is some 0.01 mM [51]. Carbon dioxide was 

considered non-limiting due to its continuous replenishment in the medium.

2.3.3. Adding an acylgroup (Rtotal) synthesis reaction to Recon3D [37]

We observed that with the default Recon3D model and given the medium definition 

discussed above, biomass synthesis was not possible. We traced the problem back to the 

triglyceride synthesis pathway where in the default Recon3D version a ‘source’ reaction for 

triglycerides is present (which allows influx into the cell independent of the presence of 

triglycerides in the medium; it may be noted that in Recon3D such a source reaction is called 

a sink reaction, by virtue of sign notation; uptake fluxes are positive, effluxes are positive 

[47]). Indeed, when temporarily reactivating the triglyceride source reaction (or equivalently 

activating the triglyceride exchange reaction and adding triglyceride to the medium) a 

biomass synthesis became possible in all conditions.

Biochemically, triglycerides are synthesized starting from glycerol-3-phosphate and 

various lipid tails esterified to CoA. Each of these lipid tails can assume any of the three 

positions in the triglyceride molecule. We observed that without adding triglyceride uptake 

(or a ditto source) to the metabolic map, the first intermediate in the pathway 

(lysophosphatidic acid; the monoglyceride with a phosphate on the 3 position) could not be 

net-produced (see the network diagram in Figure S1 and S2). Inspection of the network 

revealed that this was due to the need for net input of ‘Rtotal’, ‘Rtotal2’ and ‘Rtotal3’ groups 

in this pathway for which there exists no synthesis reaction in Recon3D. This problem affects 

biomass flux because multiple metabolites downstream of the triglyceride synthesis pathway 

(e.g. Phosphatidylcholine, Phosphatidylserine, and Phosphatidylethanolamine, see Table 

S2), or in branches of it, are explicit components of the biomass used in Recon3D. Recon3D 

does have the potential to make Stearoyl-CoA, Palmityl-CoA, Oleoyl-CoA and 
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Octadecadienoyl-CoA, but lacks the reactions to associate these with the glycerol moiety:  

it instead associates Rtotal, Rtotal2 and Rtotal3 to the glycerol moiety, the numbers referring 

to the position they take in the resulting triglyceride molecule.  Recon3D worked around the 

ensuing problem of lack of biomass synthesis by adding a source for triglycerides. We 

removed such dei ex machina by forbidding source reactions and thereby came across this 

problem.  We solved it by equating Rtotal, Rtotal2 and Rtotal3 species in Recon3D to a 

single pool Rtotal and by adding a pooling reaction for lipid tails: 

1 Stearoyl-CoA + 1 Palmityl-CoA + 1 Oleoyl-CoA + 1 Octadecadienoyl-CoA <-> 4 Rtotal-CoA

This apparent synthesis reaction merely reflects that the four acyl groups mentioned may 

be considered a single pool, in the sense that they can largely substitute for each other as 

lipid tails in biomass. With these two adjustments we have essentially reverted the Recon3D 

model back to how these reactions were annotated in Recon 2.2 [52] but with a different 

Rtotal synthesis reaction. In Recon2.2 Rtotal synthesis was only possible from Palmityl-CoA 

and Palmitoleyl-CoA in separate reactions. From Icosanoyl-CoA and Stearoyl-CoA 

Rtotal2CoA and Rtotal3CoA respectively, could be could synthesized but these metabolites 

were not connected to anything else in the network. Our grouping of the synthesis of all 

Rtotal into a single reaction, has the advantage that a ratio may be imposed when this is 

known experimentally. We here took this ratio to be 1:1:1:1 This workaround allowed 

Recon3D to sustain a positive biomass flux on the medium discussed above. An alternative 

in which all Rtotal-CoA could be synthesized from any of the four above CoA esters was not 

here entertained. The resulting ‘patched’ version of Recon3D is available in the 

supplementary code and model archive and a list of its reactions and metabolites can be 

seen in Supplementary Excel Table 2. 

All simulations discussed in this section may be reproduced using the scripts in the 

Supplementary Code Repository.

2.3.4 Mapping transcriptomics data to Reaction Activity Scores with Recon3D [37]

We converted the entrez gene identifiers in Recon3D to their gene symbols (e.g. 8639.1 

was converted to AOC3), using the mygene module in Python 

(https://pypi.org/project/mygene/), in order to match them to genes represented in the 

transcriptomics datasets. Out of the 2248 genes in Recon3D, we were unable to match 103 

to the dataset on the basis of their gene symbol alone. We then additionally searched the 

dataset for known gene aliases and this led us to identifying an additional 87 transcripts. 16 
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genes of Recon3D (see Table S1) we could not identify. These included the three 

mitochondrial genes encoding the 3 subunits of cytochrome c oxidase.  We artificially 

assigned all these 16 genes a TPM score equal to the maximum TPM score of the genes 

we could identify for each cell line. Since we do not know whether or not these genes are 

expressed, we did not want to artificially block them in our model analyses. Setting them to 

the maximal observed TPM value guarantees that they will not be limiting in any of our 

analyses.

The existing RNA-sequencing methodology suffers from so-called zero-inflation [53], 

i.e. the lack of transcripts for genes that are in fact expressed. For data integration this is 

problematic since a single zero may block an entire pathway. For our dataset we did indeed 

observe this problem. For example, in the RNA-seq data the serinepalmitoyltransferase-

long-chain-base-subunit-3 gene (SPTLC3) which catalyzes the reaction synthesizing 3-

dehydrosphinganine (SERPT), has a TPM of zero, and blocking this reaction (after imposing 

our changes to Recon3D as discussed above) singlehandedly prevents biomass synthesis. 

To bypass this problem, we used a microarray dataset and calculated the ratio R of 

the microarray intensity divided by the genome-wide median for each gene that came 

associated with a TPM score of zero in the RNA-seq dataset. Then we updated such genes’ 

TPM scores and set them equal to the calculated ratio R for the microarray dataset multiplied 

by the genome-wide median in the RNA-seq dataset. Below we will therefore refer to this 

set of zero-adjusted TPM scores as TPM*. Because the microarray dataset had scores for 

all genes, this removed all zeros from the dataset. We here neglected any transcriptome 

difference between the cell lines and experimental conditions used for the microarray and 

RNA-seq experiments and we assumed that the microarray data were quantitative also at 

low gene expression. 

Recon3D contains an annotated gene-reaction coupling rule for each reaction. Using 

AND and OR logic this rule specifies which genes encode proteins that may help catalyze 

that reaction. The AND logic may be used to indicate proteins that consist of more than one 

subunit, or protein complexes that catalyze reactions whereas the OR logic may be used to 

indicate isoenzymes or alternative configurations of the protein complexes. When integrating 

the transcriptomics data into the map we turned these Boolean gene-reaction coupling rules 

into quantitative rules. Here we were inspired by the Metabolic Reaction Enrichment 

Analysis (MaREA) methodology [54] and the E-flux approach [55]. MaREA had been 

developed to compare reaction activities between patients rather than between cell lines by 

assigning a quantitative so-called Reaction Activity Score (RAS) to each reaction based on 

gene expression levels for all proteins that might be involved in the catalysis of that reaction 
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also turning the above Boolean rules into quantitative activities. In order to do this, one needs 

to know the levels of the corresponding proteins and protein subunits in the cell of interest. 

We used the mRNA levels as a first approximation to the corresponding protein levels, 

assuming that the two were proportional.  We assigned to each reaction a RAS by summing 

over isoenzymes (for OR logic) and taking minima of subunits of a complex (for AND logic) 

the TPM scores for the genes coupled to each reaction. In this way, isoenzymes are thought 

to contribute additively to the activity of a reaction whereas lack of even one subunit of an 

enzyme complex can linearly bring down a reaction’s activity [54,55]. 

2.3.5 Constraining fluxes based on RAS scores 

To evaluate the implications of the RAS scores for all reactions in the map for the metabolic 

fluxes through the map we mimicked the approach used in [54,40] and used an approach 

analogous to the E-Flux approach to map the RAS to flux bounds [55]: we equated RAS 

scores to those flux bounds, in both directions for reversible reactions (as defined by the 

map) and in the forward direction for irreversible reactions. Assuming an objective, we then 

used FBA to compute the implications for the fluxes. More details on this approach are in 

the Results section. 

2.3.6 Data and source code availability

All Python and MATLAB code, Jupyter Notebooks and raw data files are available as part 

of a Github repository https://github.com/ThierryMondeel/HCC_flux_balance_analysis.

2.4 In vitro experiments
2.4.1 Cell culture

The cells were cultured in Dulbecco’s modified Eagle’s media (DMEM; GibcoBRL, Grand 

Island, NY, USA) at various initial concentrations of glucose and glutamine (M1-M6, table 1 

and 2), supplemented with 10% fetal bovine serum (GibcoBRL, Grand Island, NY, USA), 

and a solution of 100 U/ml penicillin and 100 μg/ml streptomycin (GibcoBRL, Grand Island, 

NY, USA), and grown at 37°C in a 5% CO2 incubator at physiological pH. Cells were seeded 

on 25 cm2 cell culture T flasks (Sarstedt, Nümbrecht, Germany) and sub-cultured by trypsin-

EDTA (GibcoBRL, Grand Island, NY, USA) treatment. During the experiments reported 

below the medium was not refreshed. 

2.4.2 Growth rate/Cell proliferation assay.  
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Proliferation assays were conducted in 25 cm2 T flasks, starting with a cell density of 8.2x105 

and 5.2x105 cells/ml for Huh7 and PLC, respectively. At the time points indicated, media 

were collected, cells were washed and trypsinized with a 0.25% (W/V) solution of trypsin 

(GibcoBRL, Grand Island, NY, USA). The total number of cells in the consequent 

supernatant was determined by hemocytometer counting (viable plus non-viable). Mean 

growth rate was determined by counting six non-overlapping sets of sixteen corner squares 

selected at random, and these four times at each time point.

2.4.2 Metabolic assays

The concentrations of glucose, glutamine and lactate in samples from the cells’ supernatant 

were determined by High Performance Liquid Chromatography (HPLC) based on calibration 

curves made with standard solutions. The samples were taken from supernatant at the end 

of experiment, filtered using 0.22μm syringe filters (BGB Analytik Vertrieb GmbH, 

Rheinfelden, Germany) and stored until measurement in -80℃. HPLC was performed using 

the HPLC-DAD_RID LC-20AT Prominence (Shimadzu, Columbia, USA) machine with a UV 

Diode Array Detector SPD-M30A NexeraX2 or/and a Refractive Index Detector RID 20A 

and an analytical ion-exclusion Rezex ROA-Organic Acid H+(8%) column (250x4.6 mm) 

with guard column (Phenomenex, Torrance, USA) (5 mM H2SO4 in MilliQ water (18.2 MΩ), 

isocratic, 0.15 ml/min. flow rate). Injection volume was 15 µl (Autosampler: SIL-20AC, 

Prominence, Shimadzu), column oven temperature was 55 ⁰C (Column oven: CTO-20A, 

Prominence, Shimadzu) and the pressure was 29 bar.

3. Results

3.1 Metabolic genes: expression and activity in two hepatoma cell lines
3.1.1 Differential expression of metabolic genes in Huh7 and PLC  

For our two cell lines, the RNA-seq dataset published by Ma et al. [46] reports on 17726 

genes.  We extracted the RNA-seq records for 2232 out of the 2248 metabolic genes that 

surface both in this data set and in Recon3D (see Methods). Comparing the mRNA levels 

(in terms of TPM scores) for the subset of metabolic genes to the genome-wide mRNA 

levels, we observed that most metabolic genes exhibited a higher than average expression, 

with a median expression level of ~15 compared to ~1 genome-wide and a mean expression 

level of ~81 compared to ~39 genome-wide. 

We were confronted with a well-known issue with RNA-seq data integration in 

metabolic models, i.e. zero expression levels, including zeros in mRNAs encoding enzymes 
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catalyzing essential reactions or combinations of enzymes that are essential. Of the 2232 

metabolic genes 262 and 310 had TPM scores equal to zero in Huh7 and PLC respectively. 

Such zeros could be due to true absence or correspond to technical zeros where the gene 

had in fact been transcribed but was somehow not measured. Technical reasons may 

include inefficient cDNA synthesis due to tertiary structure formation, amplification bias, or 

low sequencing depth. Additionally, zeros may occur due to transcription bursting between 

somehow synchronized individual cells [56] or to small time-windows of expression. Given 

that an independently obtained set of microarray data might not suffer from quite the same 

problems, we assigned to genes with zero TPM scores in the RNA seq analysis, alternative 

TPM scores that reflected the microarray datasets (see Methods). 

Huh7 and PLC being both hepatoma cell lines with a different history of oncogenesis, 

we further expected them to differ mostly in the expression of oncogenes and perhaps other 

genes involved in signal transduction or management of the genome, but not much in genes 

encoding metabolic enzymes.  With respect to the metabolic genes, we expected both cell 

lines to be transcriptionally addicted to the same metabolic Warburg rewiring at the level of 

transcription. With this expectation, a plot of the expression levels Huh7 versus the 

expression levels of the same genes in PLC should show all genes close to the diagonal 

line. Although for the majority of genes the correlation fell close to the diagonal, there were 

quite a few genes for which the expression levels differed between the two cell lines (Figure 

1A). 

We first looked at the genes that did correlate: In the RNA-seq dataset (prior to 

correcting for zeros as discussed above), 186 metabolic genes (~8% of the 2232 genes) did 

not come with any transcript in either cell line. 215 metabolic genes (~10%) exhibited non-

zero TPM values below the genome-wide median (~1 TPM), again in both cell lines. 

Together, these constituted a common set of 401 metabolic genes that were expressed at 

low level. On the high-abundance side, the two cell lines shared 1422 genes (~63%) that 

were more highly expressed than the median gene.  A 623-genes subset of these 1422 

(~28%) was commonly expressed above the genome-wide mean (~39 TPM). These genes 

behaved in line with our expectation of metabolic similarity between these cell lines. They 

came however with a possibly important exception of some 425 genes that were off-diagonal 

in Figure 1A. 415 metabolic genes (~18%) exhibited a TPM score above the genome-wide 

median in both cell lines and a differential expression ratio of at least 3 (or below ⅓). The 

data suggests that our expectation was not quite right: there was an appreciable metabolic 

difference between the two cell lines.
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In accordance with the above, the expression ratio between the two cell lines was still 

mostly distributed narrowly around 1.  The corresponding probability distribution was largely 

log-normal, but not quite: it had long ‘tails’ on either side, suggesting that a disproportionate 

number of metabolic genes were much more expressed in Huh7 than in PLC and vice versa 

(Figure 1C).  

Figure 1. (A) Correlation of the mRNA levels (in terms of TPM* scores) between the Huh7 

and PLC cell lines for all metabolic genes represented in Recon3D. The line PLC-TPM* = 

Huh7-TPM* represents theoretical identical scores between the cell lines. (B) 2D 

comparison of the RAS scores (dealing with multi-subunit proteins and isoenzymes) of the 

Huh7 and PLC cell lines for all metabolic genes represented in Recon3D. (C) Histogram of 

the probability mass function of the log10 of the ratio of the TPM* scores between the two 

cell lines (PLC relative to Huh7) shown in (A). (D) Histogram of the probability mass function 

of the log10 of the ratio of the RAS scores between the two cell lines (PLC relative to Huh7) 

shown in (B). 
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3.1.2 Converting protein subunit levels to Reaction Activity Scores reduces but does not 

eliminate metabolic differences between Huh7 and PLC

There are at least two reasons why different expression of metabolic genes between two 

cell lines might not affect the activities of the corresponding biochemical reactions.  First, the 

differences in expression level between the two cell lines could be in enzyme subunits that 

are abundant as compared to other subunits that are equally expressed.  Second, the two 

cell lines may express different proteins (isoenzymes) that catalyze the same reaction. 

Recon3D dealt with this issue qualitatively through its gene-reaction coupling rules.  We 

used a quantitative version of these rules to assign a ‘Reaction Activity Score’ (RAS). The 

RAS for a metabolic reaction reflects the expression levels of isoenzymes and components 

of multi-component complexes that may catalyze that reaction (Methods and [40,54-55]).  

The MaREA data integration framework [54] put forth this approach for integrating 

transcriptomics data into genome-scale metabolic models based on earlier work on the E-

flux approach [55].  Out of the 10601 reactions in Recon3D, 5938 reactions were assigned 

a RAS in this manner. For the 2999 reactions catalyzed by single genes the RAS scores 

were taken equal to the TPM values.  The remaining 4663 reactions are not linked to any 

genes: they represent so-called ‘exchange reactions’ between the cells’ immediate 

environment and the outside world, or non-enzyme-catalyzed reactions and transport within 

the cells or across their membranes. We left the bounds of such geneless reactions 

unlimiting at +/- 1000.

We then asked whether the metabolic differences we found between the two cell lines would 

disappear when correcting for these isoenzyme and enzyme subunit issues by assigning 

reaction activities. In Figure 1B we correlate the RASs between the two cell lines, and panel 

1D shows the distribution over the metabolic genes, of the RAS ratios between the two cell 

lines. The RAS correlation between the two cell lines is only a little stricter than that of the 

individual mRNAs. The standard deviation in the RAS ratios is ~14 compared to a standard 

deviation of ~177 for the TPM* ratios. The fraction of outliers outside the lognormal 

distribution of the ratio remains substantial however. Supplementary Excel Table 3 lists the 

92 outlier reactions with a log10 RAS ratio > 2 or < -2.

3.2. A new Flux Balance Analysis methodology
3.2.1. Translating mRNA levels to flux bounds for flux balance analysis

Functions of living cells are not determined by any individual reaction but rather by fluxes or 

concentrations set by pathways consisting of multiple reactions at the same time.  For 

calculating such fluxes, FBA requires flux bounds of the reactions.  We here translated the 
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RASs into metabolic map flux bounds using a method inspired by the Metabolic Reaction 

Enrichment Analysis (MaREA) data integration framework [54].  Even though it has been 

suggested that RAS scores of individual reactions are better for highlighting metabolic 

differences among groups of (patient) samples than flux distributions predicted based on 

those RAS scores, here the interest is in flux distribution predictions. The authors of [54] 

already applied the E-flux methodology to incorporate the RAS scores into flux bounds. We 

here propose a variant of that approach, where flux bounds are set proportional to RAS 

scores, i.e. , where bi is the flux bound on reaction i,  is a NNS factor 𝑏𝑖 = 𝛼 ⋅ 𝑅𝐴𝑆𝑖 𝛼

independent of the reaction identity, and RASi is the RAS based on the expression levels of 

enzyme(s) catalyzing reaction i. When reaction i is reversible its forward flux is bounded by 

bi and its backward flux is bounded by -bi. When reaction i is irreversible the flux bound in 

the impossible direction remains zero and the flux bound in the possible direction is set to 

bi. Essentially this approach assumes that the Vmax of any enzyme is proportional with the 

corresponding mRNA transcript level. This approach shares the shortcomings of the E-flux 

approach in that it may be inaccurate due to non-proportional translation (protein synthesis) 

[58], absence of corresponding steady state conditions, or due to the differences in catalytic 

efficiency (kcat) between enzymes. Notwithstanding these shortcomings, the approach may 

provide some insight into the potential network effects of changes in gene expression levels. 

Our variant of the E-flux approach allows us to scale the RNA-seq data, in reference to a 

specific set of medium uptake bounds (see above). 

It is a-priori unclear how large the NNS factor  should be. There are two possible 𝛼

sources of limitation for the model: the medium composition (as represented by maximal 

exchange rates) and the enzyme expression levels (consequent to transcriptomics). We 

here wish to examine the case where the enzyme expression levels begin to impose 

limitations on the model output. We thereto start with high α values, where the enzyme 

expression levels are not limiting, and maximal biomass flux is determined by substrate 

concentrations in the medium. Then we decrease  and hence all resulting metabolic flux 𝛼

bounds uniformly until we see differential effects on the predicted maximal growth rates 

across media conditions. Where this occurs significantly, we fix α, which thereby becomes 

a fitted parameter.   

3.2.2 Accounting for medium metabolite concentrations in flux balance analysis

To predict the effects of nutritional differences in terms of all components in the medium 

including the various concentrations of glucose and glutamine, between our six different 

medium conditions (see Table 2), on the global metabolic behavior of the two cell lines we 
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modified existing genome-scale flux balance analysis: We equated the upper bound of each 

uptake reaction to the corresponding metabolite concentration in the medium, setting the 

bound to zero if the metabolite was absent from the medium. In [54,55] the medium was 

defined as all exchange reactions open with bounds of -1 and +1. Here we took medium 

concentrations into account quantitatively. Export was left unlimited for all metabolites that 

were allowed to be exported in the default Recon3D map (see Supplementary Excel File S2 

for the list of such metabolites). As a consequence of this approach the units of the uptake 

fluxes depend on the units used to define the metabolite concentrations in the medium.  

Below, we shall deal with this problem somewhat by varying the NNS factor.

3.2.3. Ability to predict a dependence of growth rate on medium composition and 

transcriptome

We analyzed transcriptomics data with the focus on metabolic differences between the cell 

lines by computing the steady state flux pattern for the maximal biomass synthesis flux for 

each medium and for each cell line across a range of values for the NNS factor  ∈ [0.01, 𝛼

1] (Figure 2). For either cell line Figure 2 shows that for a NNS factor in excess of 0.3, the 

predicted growth rates differed between media conditions, the ones at 25 mM glucose being 

about double those at 5.6 mM glucose. Also, a dependence on glutamine concentrations 

was predicted, but this dependence was smaller.  

When decreasing the NNS factor to below 0.1, this medium dependence disappeared 

for four out of six modeled medium conditions:  the same biomass flux was then predicted 

which was still significantly higher than that for the remaining two medium conditions at zero 

glucose (5 and 6). Huh7 predictions for media 1-4 converged already at higher values for  𝛼

than did the predictions for PLC.  Huh7 was predicted to have equal or lower growth rates 

than PLC across all conditions.  Medium 1, followed by medium 2, were predicted to yield 

the highest biomass fluxes for the high values of , corresponding (see above) to absence 𝛼

of gene-expression limitations. This reflects the model’s sensitivity to carbon input for high 

 values, since medium 1 and 2 contained the highest levels of glucose. At = 0.1, the 𝛼 𝛼

simulations for media 1-4 yielded equal biomass fluxes which were still larger than the 

predicted fluxes for medium 5 and 6 which lack glucose. This indicates that by reducing the 

NNS factor, the model can be made more (high , hence no limitation by low transcription  𝛼

of metabolic genes and thereby limitation by uptake) or less (low , hence strong limitation 𝛼

by low transcription of metabolic genes) sensitive to variation in concentration of the growth 

substrate.
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The fact that media 1-4 converge to similar biomass synthesis flux optima for low 

levels of  may reflect a shared limiting reaction downstream of (and at a flux bound smaller 𝛼

to the bound of) the exchange reaction the flux bound of which keeps monotonically 

decreasing with decreasing . In Figure 3 we summarize the predicted maximal biomass 𝛼

fluxes for the NNS factor  = 0.1, which is at the transition between limitation by extracellular 𝛼

substrate levels and intracellular expression levels.  It shows that reduction of glucose 

concentration does not decrease maximal biomass flux as we observed in in vitro 

experiments (compare Figure 3 and 6A) . 

We observe that nontrivial predictions for limitations imposed by medium composition 

and gene expression can be computed by our new method, such as that (i) both in the 

absence and in the presence of glutamine the growth rate should be independent of glucose 

concentrations between 5.6 and 25 mM, yet decrease appreciably in the absence of 

glucose, (ii) the specific growth rate of Huh7 cells is lower than that of PLC cells, (iii) in the 

absence of glucose, the cells should be able to grow on glutamine, but (iv) growth rate on 

glutamine alone should be much lower than on glucose alone.

  

Figure 2. Maximal in-silico biomass flux predictions for Huh7 (dashed lines) and PLC (dotted 

lines) on six medium conditions versus the NNS factor  used to convert mRNA levels (RNA-𝛼

seq TPM scores) to flux bounds. The labels M1-M6 refer to the different medium conditions 

listed in Table 1 and 2 and were effected as proportional uptake (exchange) bounds: 

Glucose and glutamine were (in mM) 25, 4 (M1), 25, 0 (M2), 5.6, 4 (M3), 5.6, 0 (M4), 0, 4 

(M5) and 0, 0 (M6). The dashed black line indicates = 0.1, the value of the NNS factor that 𝛼

we shall consider more in detail below and at which the maximal biomass flux predictions 

for M1-M4 become virtually equal for both cell lines.
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Figure 3.  Maximal in-silico biomass flux predictions for PLC and Huh7 across the six 

different media conditions for a RAS NNS factor of = 0.1 (as in Figure 2). 𝛼

3.2.4. Metabolic flux potential as predicted by Flux Variability Analysis

Fluxes through intracellular biochemical reactions are not only determined by the 

concentrations of the enzymes catalyzing them, but also by metabolic regulation [57], i.e. by 

the concentrations of intracellular metabolites.  FBA is oblivious of metabolic regulation other 

than that it philosophizes about what flux should be optimal for the cell in view of some 

objective.  The transcriptome and extracellular-concentrations informed flux bounds that we 

here implemented, merely define ranges of the fluxes rather than that they precisely predict 

the fluxes.  For the precise predictions of fluxes one needs fully dynamic models [58], but 

the kinetic information required for this approach is missing for mammalian cells.  We hereby 

can only predict the ranges of fluxes that are consistent with transcriptome and extracellular 

metabolite concentrations and this is done by flux variability analysis.  

For the NNS factor value = 0.1, indicated by the black vertical line in Figure 2, we 𝛼

analyzed each of the 12 models in terms of the possible ranges its production fluxes of 

lactate, pyruvate, ATP and CO2 and its uptake fluxes of glucose, glutamine, oxygen and 

phenylalanine.  Here we maintained the maximal biomass flux for each specific medium and 

transcriptome (i.e. the biomass fluxes listed in Figure 3, which differ between the 12 models) 

(Figure 4). The results for lactate and pyruvate production are non-negative since these 

compounds are not in the growth medium and thus cannot be taken up. In order to avoid 

thermodynamically infeasible ATP synthesis the ATP hydrolysis reaction was non-negative 
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by design. The fluxes in Figure 4 for glutamine and CO2 can be both negative and positive 

due to these compounds being present in the medium. If the lower end of its bar in Figure 4 

is positive that compound must be produced for the cell to grow at maximal growth rate: it is 

a primary metabolite. When the upper end of the bar is negative it indicates that the 

compound needs to be taken up for maximal growth. 

In Figure 4 we see that in the media where glucose is present (M1-M4) some glucose 

uptake is essential for attaining the maximal growth rate.  In M5-M6 glucose uptake is always 

zero due to its absence from the medium. Phenylalanine, an essential amino acid, functions 

as a positive control.  Its uptake proves indeed essential in all media for both cell lines as 

expected. In most media its uptake rate can vary from the amount of phenylalanine in 

biomass to 0.4, the rate at which it can be used to provide nitrogen to other parts of 

anabolism. This maximum uptake rate of 0.4 is the same for all media and both cell lines, 

reflecting that this corresponds to its concentration in the media.  In the absence of glutamine 

and in the presence of low glucose (M4), PLC needs to make full use of this phenylalanine 

in order to achieve its maximum growth rate, but Huh7 cells could still vary the amount of 

phenylalanine used whilst attaining the same growth rate. Maximum lactate, pyruvate and 

ATP production capabilities track the total amount of carbon in the medium within each cell 

line, with subtle differences between the two cell lines. The gene expression levels appear 

to be consistent with shifting to virtually complete metabolism of glucose and glutamine to 

lactate whilst maintaining the maximum growth rate. At the same biomass production flux, 

lactate efflux could also be as high as 55 mM, corresponding to 2 lactate per maximum 

glucose consumed plus one lactate per maximal glutamine consumed. However, in all 

models, the lactate secretion can also be zero while maintaining maximal growth. This 

shows that glucose conversion to lactate can vary greatly, and may also reflect that in our 

models the cells can produce and secrete other compounds such as pyruvate. The in silico 

cells are not addicted to the Warburg effect.

Glutamine uptake is only essential for both PLC and Huh7 in medium 5 and for PLC 

only in medium 3. In medium 3 for PLC it is then required at a very low amount to achieve 

optimal growth (as indicated by the upper end of the bar) whereas in medium 5 in both cell 

lines the maximal uptake bound has to be hit to achieve maximal growth (see the markers 

at -4). Because (in silico) the maximum growth rate of Huh7 is lower it has the luxury of 

producing glutamine from glucose whilst growing maximally in M3 whereas this is not 

possible for PLC. Both cell lines may produce glutamine in M1 and M2 owing to the excess 

glucose in those media. We conclude that the model cells are insensitive to glutamine 
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concentrations in the medium in the presence of high glucose but glutamine-sensitive in the 

absence of glucose. 

In all models a small amount of oxygen must be taken up. CO2 (either as CO2 or as 

bicarbonate) may either be produced or taken up in M1-M3 for both cell lines and M4 for 

Huh7 and may only be produced in M4 for PLC and M5-M6 for both cell lines. CO2 uptake 

might have to do with the reversal of the isocitrate dehydrogenase reaction, which produces 

isocitrate as substrate for ATP citrate lyase producing cytosolic acetyl CoA for lipid and 

cholesterol synthesis [27]. For conditions where CO2 or bicarbonate production is required 

this may point to oxidative phosphorylation being required for maximal biomass production. 

Oxygen uptake was essential even in conditions where oxidative phosphorylation 

(interpreted as CO2 production) seems not to be required. In these cases, oxygen uptake 

may be necessary for the synthesis of tyrosine, or of cholesterol and other lipids that are 

part of the biomass definition and absent from our growth media. We checked that removing 

cholesterol from the biomass equation reduced the need for oxygen, but it did not remove 

it.

The possibility to grow at maximum rate in the absence of CO2 production in some 

conditions, highlights the possibility for cells to obtain all the Gibbs energy they need for 

maximal growth only from the conversion of glucose to lactate. This may underlie the 

selection of the Warburg effect by a-social cells [27]. It does not quite correspond to the 

Warburg and WarburQ effects however: the in silico cells are not addicted to the absence 

of respiration, as they can still respire all this substrate whilst growing at the same rate. In 

PLC cells, but not in Huh7 cells, the maximal growth rate in low glucose medium without 

glutamine (M4) does require oxidative phosphorylation, consistent with the glutamine to 

lactate pathway elucidated by Damiani et al [27].  These and other apparently minor 

differences between cell lines in our FVA results are of interest, as they suggest that drugs, 

in this case ones that inhibit respiration, should be effective against some cancer cells and 

not others, also depending on extracellular metabolic conditions.   
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Figure 4.  The range of uptake (if negative) / secretion (if positive) fluxes of various 

metabolites: computed to be consistent with maximal biomass flux and steady state. Uptake 

and secretion fluxes of metabolites have units of mM/h. Since we set maximal uptake fluxes 

equal to medium concentrations these rates differ from reality by some undetermined factor 

which is identical for all conditions.  Minimal and maximal exchange fluxes for each of the 

compounds lactate, phenylalanine, glutamine, pyruvate, oxygen (O2) and CO2 + 

bicarbonate and ATP hydrolysis flux (i.e. ATP + H2O => ADP + Pi + H+), were calculated 

using flux variability analysis [59] while requiring the model to produce the same maximum 

possible biomass fluxes shown in Figure 3. Maximal glucose and glutamine uptake fluxes 

had been set to their medium concentrations divided by 1 hour (see Table 1).  In these 

calculations ATP is treated differently from the others.   For the others the reaction was and 

remained present and potentially carrying varying flux when any of the yet other fluxes was 

manipulated in the FVA.  For the ATP, the ATPase reaction was absent (no growth rate 

independent maintenance therefore) when doing FVA for any of the others and only present 

when ATP synthesis was manipulated by forcing flux through an ATP hydrolyzing added 

reaction. For visibility we used starred markers to indicate flux ranges with a width less than 

0.1. These markers are typically located at minimal or maximal flux boundaries: e.g. zero 

glucose uptake in M5 and M6 or maximal phenylalanine uptake in PLC M4.

We further explored this by plotting some essential reactions for respiration to occur 

analogously to Figure 4 in terms of their minimal and maximal possible flux allowed while 
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maintaining maximal biomass flux for the medium and cell type specified (Figure 5). In media 

with glucose the maximum growth rate does not require flux through cytochrome oxidase 

and oxidative phosphorylation with the exception of M4 for PLC.  Figure 5 suggests that for 

PLC respiration in terms of flux through cytochrome oxidase is required for maintaining the 

maximal biomass flux in media 4-6 whereas for Huh7 this is required for media 5 and 6: 

rather than a range of fluxes, a precise non-zero flux magnitude is required. This suggest 

that only in those cases of limiting metabolic substrate, the maximal growth rate depends 

strictly on ATP produced by oxidative phosphorylation. This is in full agreement with the 

interpretation of the CO2 + bicarbonate panel in Figure 4.  In all other cases respiration is 

optional for maximum biomass synthesis flux, suggesting that the cells can obtain their ATP 

from other processes including aerobic glycolysis. To maintain their maximum growth rate 

at the 5.6 mM glucose concentration, they do need to use virtually all that glucose however 

(Figure 4). 

Because of its assumptions of maintenance of maximum growth rate and full 

capability of the network to allow for various fluxes, flux variability analysis makes few 

predictions that may be put to the test in this study.  Exceptions are (i) both cell lines should 

be capable of consuming the 5.6 or 25 mM glucose offered to them, (ii) they are not addicted 

to a 100% aerobic glycolysis, but can reduce lactate production without giving up their 

maximum growth rate, (iii) at glucose concentrations around 5 mM they would make use of 

all that glucose to grow maximally, (iv) They should be capable of catabolizing glutamine 

both in the absence and presence of glucose. 

  

Figure 5. Range of allowed flux values through various reactions related to mitochondrial 

oxidative phosphorylation while maintaining the maximal biomass flux for the medium 
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condition and cell type specified on the abscissa. See Table S3 for the detailed reactions. 

Uptake and secretion fluxes of metabolites have units of mM/h. Since we set maximal fluxes 

equal to medium concentrations (Table 1) these rates differ from reality by some factor. 

3.3 In vitro experiments

3.3.1 Growth rate

In a first attempt to examine the applicability of our computational results, and to explore 

experimentally whether the concentrations of glucose and glutamine in the media control 

the cells proliferation rate, we evaluated the doubling time for Huh7 and PLC cell lines in six 

media containing different amounts of glucose and glutamine (see Figure 6A) for the first 24 

h. We used DMEM media at 25, 5.6 and 0.0 mM concentration of glucose and 4.0 mM of 

glutamine (M1, M3, M5) and their counterparts without glutamine (M2, M4 and M6, 

respectively). In each of the six experimental conditions, the PLC cell line grew faster than 

the Huh7 cell line. In both HCC cell lines, the specific growth rate was almost the same for 

low and high glucose levels, 5.6 and 25 mM respectively. In the absence of glucose, cells 

grew more than 5 times more slowly. In the presence of glucose, the growth rate did not 

correlate with the level of glutamine in the medium, suggesting a lack of glutamine addiction 

in both cell lines. Only for media without glucose, the addition of glutamine to the growth 

medium led to a higher than 50% increase in the growth rate of both cell lines. 

3.3.2 Glucose and glutamine consumption

During the same first 24 hours as when we measured growth rates, we observed a decrease 

in the concentration of glucose with time such that some 5 mM was consumed by the PLC 

cells (Figure 6B). In the PLC cultures that started with 5.6 mM glucose this resulted in almost 

full glucose depletion after the first day and night. In case of the Huh7 cell line, the 

consumption of glucose was higher in rich glucose medium than in low glucose medium 

reaching some 8.5 mM and 5 mM, respectively. Further velocity of glucose consumption for 

Huh7 was the same, while in case of PLC cells, after 24 h of culturing, stabilization appeared 

and lasted for next 20 hours (Figure 6B and 6C). We did not observe a difference in glucose 

consumption between media with and without glutamine. With respect to glutamine 

consumption by the cells we found that the level of glutamine did not change maintaining 

the 4.5 mM level for media with glutamine (that contained originally 4 mM) and 0.5 mM 

without.
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Figure 6. Metabolic performance as a function of time for Huh7 and PLC cells in six different 

media. (A) Biomass doubling time calculated based on a linear equation describing the 

variation of the number of the cells in the first 24h (see Figure S3 in SM). Glucose 

consumption by PLC (B) and Huh7 (C) in four different media. In media M5 and M6 glucose 

was not detected. Lactate production by PLC (D) and Huh7 (E) cells. Pyruvate secretion by 

PLC (F) and Huh7 (G) cells. Ratio of extracellular lactate to pyruvate in PLC (H) and Huh7 

(I) cells starting from the second time point measured in panels D-G.  In all six media the 

concentration of lactate and pyruvate before the experiments was 0 mM.

3.3.3 Lactate and pyruvate secretion 

To gain additional insight into the dependence of the Warburg phenotype on cell nutritional 

shifts, we measured the production of lactate and pyruvate by cells using the same media 

conditions as above. In the case of the PLC cell line, the production of lactate was the same 

during the first 24 hours for M1 - M4, the lactate concentration reaching some 5 mM at the 

end of this time period. After 55 hours the concentration of lactate was twice higher in 

samples derived from the glucose-rich M1 and M2 (8.5 mM) than in samples taken from the 

low-glucose (5.6 mM) media M3 and M4, ostensibly because after 24 h the glucose had run 

out. In media low in glucose (M3 and M4), slightly over 40 % of the glucose was consumed 

during the experiment was transformed to lactate, while for M1 and M2 this was a bit less, 
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i.e. 35% (Figure 7). For the Huh7 cells the trends were similar in case of M1 - M3 medium. 

In case of medium M4 such production was achieved only after 45 hours. In M1 and M2 

lactate increased linearly with time attaining 10 mM at the end of experiment. 

Pyruvate production was quite small for PLC cells, from 0.15 mM (M1 and M6) to 0.4 mM 

(M4) during the first 24 h. Pyruvate production was higher for media without glutamine (M2, 

M4 and M6 vs. M1, M3 and M5). For PLC cells, the lactate/pyruvate ratio (L/P) showed a 

positive relation with the glucose consumption, being highest for medium M1, and lowest for 

M5. For Huh7 cells, the timeseries for pyruvate (Figure 6G) look similar to those that show 

lactate secretion (Figure 6E). On M1-M4 the ratio of lactate to pyruvate changed over time 

from ~ 6 to ~10 whereas it stayed roughly constant for M5 and M6.

Consistent with the hypothesis that both cell lines exhibited a Warburg effect, they 

produced an amount of lactate proportionate to the amount of glucose that was present 

initially. Apparent differences merely derived from the glucose running out after some 30 h 

in the experiment starting at only 5.6 mM of glucose. Only part of the glucose was 

transformed to lactate, around ~43 % for low glucose media and perhaps a little as ~33 % 

in glucose-rich media. Thus, lactate production corresponded to only part of what might have 

been expected for full glucose conversion to lactate. This deficit in lactate secretion can be 

explained by the utilization of glucose for oxidative phosphorylation and as a source of 

carbon for the new biomass. 

Consistently, we did not observe any difference between M1 and M2 for both cell 

lines nor did we observe such differences between M3 and M4 for PLC; for Huh7 small 

deviations were noticed. For the two cell lines we examined, this proves an independence 

of lactate production from glutamine access.  
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Figure 7. Schematic representation of branched glucose metabolism also indicating the 

percentage of the glucose carbon that was converted to lactate carbon in our experiments 

with glucose in the medium ( ). In the Warburg effect the 𝑃 = 𝛥𝑛𝑙𝑎𝑐 ÷ (2 × 𝛥𝑛𝑔𝑙𝑢) × 100%

percentage of glucose converted into and secreted as lactate is substantial even when there 

is sufficient oxygen for the glucose to be completely oxidized to carbon dioxide. For the 

maximal aerobic glucose fermentation, the value of P should be close to 100%, only 

deviating from that number because of carbon ending up in daughter cells. Values higher 

than the 100% minus the correction for growth rate, or values higher in glutamine containing 

media than in media without glutamine could reflect lactate production from glutamine, i.e. 

the WarburQ effect. 

4. Discussion

Many human cancers including HCC produce lactate aerobically. This often correlates with 

tumor progression and worse clinical outcomes in cancer patients. Understanding how the 

Warburg effect is regulated in cancer and what nutrients are essential for tumor cells to 

survive, grow and divide may be relevant for identifying new therapeutic interventions. In 

this work we investigated the effect of two most suspected nutrients i.e. glucose and 

glutamine by way of six different medium conditions (see Table 1 and 2) using both 

computational and experimental approaches. 
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In order to perform the in silico analysis we elaborated a new method to generate 

models based on the latest human metabolic map (i.e. Recon3D [37]) that take 

transcriptomic data as well as different medium conditions into account. We thereby 

obtained twelve (six for PLC and six for Huh7) models that integrate transcriptomic (nature) 

and nutrient concentration (nurture) data through a new FBA approach, by using proposed 

by us a new NNS factor. Our new methodology enabled us to predict metabolic changes 

upon nutrition shift by flux balance analysis. 

In this work, we studied the Warburg effect per se. We therefore selected cell types 

that do exhibit the Warburg effect clearly. We used transcriptomic data from the cell 

population in its entirely and the models are a representation thereof. Single cell 

transcriptomic studies suggest that cancer cell populations are heterogeneous, but single 

cell metabolomics does not yet enable us to examine the consequences for metabolism. 

Thus, we assumed in model that the cell population was homogeneous. 

Our findings offer support for the predictive potential of genome-scale metabolic 

maps together with transcriptomic data sets and nutrients composition. The predictions 

address the carbon and energy metabolism of cancer cells. Because much of this 

metabolism is essential for cell survival, the potential may translate to new drug targets in a 

long-neglected area of drug discovery. Indeed, we have shown that dependencies on 

medium composition and gene expression can be computed and that the results are then 

relevant enough to be compared with experimental work. Moreover, in most cases the 

predictions were matched by the experimental results. 

Notwithstanding these successes, our methodology comes with a number of issues.  

One of these relates to whether expression level information was properly translated to flux. 

In contrast to several methods developed to extract context-specific models [60-62] that 

focused on threshold selection with exception of some essential metabolic functions that are 

needed for cell growth, our method used a linear relationship between flux bounds and the 

transcriptome. Such a linear approach was first proposed by Colijn et al. [55] and applied in 

the MaREA framework by Graudenzi et al. [54], where it was shown to be of use in 

comparing the metabolism of samples in distinct subgroups. The approach assumes that 

the Vmax of a reaction is proportional to the level of the mRNA encoding the enzyme, with a 

proportionality constant equal for all reactions. It thereby neglects differential translation and 

posttranslational regulation, and assumes all kcat to be equal. Both assumptions are often 

far from the truth but have the advantage that they can be improved upon in the future by 

consulting more literature information for the steps that turn out to be important.  Keeping 

the transcriptomics data the same as in the literature source, we were further assuming that 
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the transcriptome remained constant at the time scale of 12 hours that essentially 

determined our results; we propose that a single cell cycle or less (i.e. < 24 hours) should 

qualify for this assumption. Furthermore, we assume that the cell lines in our experiments 

have not significantly evolved compared to those used in the transcriptomics datasets [46].  

We did not take into consideration epigenetic and gene-expression changes that could occur 

during culturing. In addition, our approach equated concentrations of medium components 

with exchange reaction bounds, again treating all compounds equally.  The limitations of this 

step include the failure to take into consideration the kinetics and expression levels of 

transporters. What is also peculiar in our approach is the arbitrary magnitude of the ratio of 

the proportionality constant relating mRNA level to enzyme bound to the proportionality 

constant relating medium concentration to exchange bound. We mediated this problem 

somewhat by setting the NNS factor to a value that enabled the models to shift form limitation 

by medium concentration to limitation by expression level. Here an additional issue is that 

the effect a given value of has on model output fundamentally depends on the medium 𝛼 

definition, since on different media a different NNS value might be needed to affect the 

objective value or produce a certain metabolic behavior.  On top of this, there are the generic 

limitations of flux balance analysis that come with the assumption that cells ‘know’ how to 

arrange their metabolism so as to be optimal for maximal growth rate, even in case of 

perhaps new perturbations. A further limitation to our approach lies in the constancy 

assumed in the medium concentrations. As a metabolic steady state is attained at a faster 

time scale than the change in extracellular metabolite concentrations, one may simulate the 

physiological changes in glucose and lactate levels in the body by using a model of the type 

presented here. All these issues require further substantiation or substitution with better 

assumptions or data.  The results of this study should thereby be classified as a proof of the 

principle that it should become possible to integrate transcriptome and medium composition 

data into metabolic-map based flux-balance analysis. 

Indeed, despite all these issues and limitations, we have succeeded in computing 

dependencies on medium composition and gene expression that did make sense 

experimentally. In silico experiments showed that the specific growth rate of Huh7 cells is 

lower than that of PLC cells, which was also observed during in vitro experiments on these 

cell lines. Given the positive correlation between the in silico biomass flux and the 

experimentally determined growth rate we speculated that the in silico results pertaining to 

the range of uptake and secretion fluxes of various metabolites might also correlate with 

experimental results. Modelling showed that in the absence and in the presence of glutamine 

the growth rate should be independent of glucose concentrations between 5.6 and 25 mM. 
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This apparent Vmax effect is of conceptual interest because it does not derive from the 

kinetics of any enzyme or transporter, but from a shift between the exchange or the 

metabolism bound being hit by the flux. Also, experimentally the growth rate reached the 

same level for four medium conditions (M1-M4) that contained 5.6 and 25 mM of glucose 

for both HCC cell lines. Moreover, both approaches, computational and experimental, 

showed that in the absence of glucose, the cells should be able to grow on glutamine but 

with a much lower growth rate than on glucose alone. 

According to the flux variability analysis predictions both cell lines should have a 

higher potential; they should be capable of consuming the 5.6 or 25 mM glucose offered to 

them. Yet, our in vitro observations indicated that PLC cells confronted with the 25 mM did 

not consume more than the around 5 mM during the first 24 hours. They did not make use 

of that full potential. We conclude that there is a maximum amount of glucose per unit time 

that the cells ‘wish to’ handle at glucose levels above a few mM, because other issues than 

energy and carbon may limit the cells’ growth. We use the term ‘wish to’ to indicate that this 

may be an issue of metabolic regulation: the gene expression would allow for higher glucose 

uptake fluxes.  

The cells that had consumed in the first 24 h some 5 mM of the 5.6 mM glucose they 

had been incubated with, continued to grow for the next 24 hours at virtually the same growth 

rate; they must have done this at a much-reduced glucose consumption rate. Since they 

also stopped producing lactate, we suspect that the small amount (approximately 0.5 mM) 

of glucose left provided the cells with sufficient ATP to drive their continued growth. The 

cells may have reverted from lactate production to respiration with its more than 15-fold 

higher ATP yield. This highlights that there may be a limitation to these cells’ addiction to 

lactate production:  these cancer cells can shift to glucose oxidation.  We observed a slightly 

different effect in the case of the Huh7 cell line: the consumption of glucose was almost two 

times higher in rich glucose medium (25 mM) than low on (5 mM) during the first 24 hours. 

In silico analyses predicted and in vitro experiments confirmed that both cell lines, at glucose 

concentrations around 5 mM, made use of all available glucose to grow maximally. They 

also showed that upon glucose depletion and if asked to grow at maximal growth rate, the 

cells should shift to glucose respiration (Figure 4 and 5).

Lactate production correlated with glucose consumption. Between 15% and 44% of 

the glucose was transformed to lactate during first 24 hours. Partially contrary to the 

predictions by our Flux Balance Analysis, we did not detect consumption of glutamine in any 

medium and for either cell line in the experimental work: the glutamine concentration was 

constant through all time points, maintaining the 4.5 mM level for media with extra glutamine 
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(4 mM) and 0.5 mM for the media without, even though in absence of glucose from the 

medium, the cells grew faster when they did have access to glutamine. This observation 

was in contrast with the modelling results according to which, the cell lines should be capable 

of catabolizing glutamine both in the absence and presence of glucose.  According to the 

computational experiments, glutamine consumption should have been required to achieve 

optimal growth in medium 3 for PLC and in medium 5 for both PLC and Huh7 cells. Here 

the limitation of FBA that it requires an objective function, such as the assumption that the 

cells have been reprogrammed to provide a maximal growth rate, may be at fault.  

Under aerobic conditions, ‘social’ cells use mitochondria to oxidize the glycolysis-

derived pyruvate.  In the absence of oxygen however, they ferment glucose into lactate. The 

phenomenon of aerobic lactate production from glucose has been termed the Warburg effect 

and is characteristic of many fast-growing cancer cells [10,12,62-65]. DeBerardinis et al. 

[66] examined the metabolism of glioblastoma cells exhibiting aerobic glycolysis where the 

cells were incubated under oxygenated conditions in 10 mM C-13-labelled glucose and then 

provided with 4 mM C-12 glucose prior to metabolomics analysis. High levels of C-12 

glycolytic metabolites were observed in line with the Warburg effect. In the same study, a 

high rate of glutamine consumption was observed that could not be explained by the 

nitrogen demand imposed by nucleotide synthesis or maintenance of nonessential amino 

acid pools. Most cancer cells have active and functional mitochondria, contrary to Warburg’s 

original hypothesis for the mechanism of the Warburg effect [67,68]. Weinhouse et al. 

reported that slow-growing rat hepatoma cells were more oxidative, whereas the more 

proliferative hepatomas were more fermentative [69]. Zu and Guppy reported that ATP 

derived through aerobic lactate production in various cancers and cell lines accounts for 

only 17% of the total ATP [70], still more however than the expected 5% expected for equal 

lactate production and respiration. 

While the involvement of glucose in cancer cell metabolism has been widely studied 

[10,62,63,71], most such cancer cells were grown on cell culture media containing high 

levels of glucose, i.e. between 10 and 25 mM [72], and without addressing glutamine 

utilization. Many cancer cell lines, including some of the Warburg type, display addiction to 

glutamine [23,27] with some dying rapidly if they are deprived of glutamine. But there are 

also cancer cells that are not addicted to glutamine [66].

The next question that remains to be addressed relates to the heterogeneity of 

population and the Intracellular Lactate Shuttle [10b,12b]. Future investigations with single 

cell transcriptomic/metabolomic data and multi-cells genome scale model are warranted to 

address this question. 
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In summary, our novel approach that integrates nature (the expression level) and 

nurture (the environment), let us to corelate proliferation, glucose consumption, and lactate 

production with the medium concentrations of glucose and glutamine. Our findings delineate 

a limitation of glucose consumption by HCC cells. Their growth rate was completely 

independent of glutamine in case of media containing glucose. In view of the requirement of 

nitrogen for biomass synthesis, this reflects the importance of gratuitous components of 

growth media.  We show that even under typical physiologically relevant conditions, where 

plasma glucose lies between 4 and 6 mM, production of lactate occurs pointing to aerobic 

glycolysis. Our results suggest that only a reduction of blood glucose levels to below 5 mM 

may result in decreased cancer cell proliferation. This conclusion is supported by recent 

research where Metformin (a drug that decreases blood glucose levels mainly by 

suppressing liver glucose production through gluconeogenesis) turned out to be more 

effective in enhancing chemotherapy sensitivity of cancer cells under reduced glucose 

conditions [72].
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