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Abstract 

A designable protein backbone is one for which amino acid sequences that stably fold 

into it exist. To design such backbones, a general method is much needed for continuous 

sampling and optimization in the backbone conformational space without specific 

amino acid sequence information. The energy functions driving such sampling and 

optimization must faithfully recapitulate the characteristically coupled distributions of 

multiplexes of local and non-local conformational variables in designable backbones. 

It is also desired that the energy surfaces are continuous and smooth, with easily 

computable gradients. We combine statistical and neural network (NN) approaches to 

derive a model named SCUBA, standing for Side-Chain-Unspecialized-Backbone-

Arrangement. In this approach, high-dimensional statistical energy surfaces learned 

from known protein structures are analytically represented as NNs. SCUBA is 

composed as a sum of NN terms describing local and non-local conformational energies, 
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each NN term derived by first estimating the statistical energies in the corresponding 

multi-variable space via neighbor-counting (NC) with adaptive cutoffs, and then 

training the NN with the NC-estimated energies. To determine the relative weights of 

different energy terms, SCUBA-driven stochastic dynamics (SD) simulations of natural 

proteins are considered. As initial computational tests of SCUBA, we apply SD 

simulated annealing to automatically optimize artificially constructed polypeptide 

backbones of different fold classes. For a majority of the resulting backbones, 

structurally matching native backbones can be found with Dali Z-scores above 6 and 

less than 2 Å displacements of main chain atoms in aligned secondary structures. The 

results suggest that SCUBA-driven sampling and optimization can be a general tool for 

protein backbone design with complete conformational flexibility. In addition, the NC-

NN approach can be generally applied to develop continuous, noise-filtered multi-

variable statistical models from structural data.  

Linux executables to setup and run SCUBA SD simulations are publicly available 

(http://biocomp.ustc.edu.cn/servers/download_scuba.php). Interested readers may 

contact the authors for source code availability. 

1. Introduction 

In past decades, substantial progresses have been made in computational protein 

design,(Chen, et al., 2018; Dahiyat and Mayo, 1997; Huang, et al., 2016; Kuhlman, et 

al., 2003) with automated sequence design tools maturing(Alford, et al., 2017; Dahiyat 

and Mayo, 1997; Gainza, et al., 2016; Liu and Chen, 2016; Xiong, et al., 2014) and 

examples of successfully designed proteins with de novo backbones increasing. On the 
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other hand, current methods for designing protein backbones still heavily rely on 

structure type-specific heuristic rules or parametric models.(Grigoryan and Degrado, 

2011; Huang, et al., 2014; Jacobs, et al., 2016; Lin, et al., 2015; Yeh, et al., 2018) To 

take full advantage of the plasticity of protein backbone conformations in protein 

design,(Huang, et al., 2016; MacDonald and Freemont, 2016) it is highly desirable to 

have a general method that can be used to sample and optimize designable polypeptide 

backbones without pre-specified amino acid sequences. While a few previous 

computational studies have suggested that well-folded protein conformations may 

correspond to minima on free energy surfaces of backbones modeled without specific 

sidechain information,(Cossio, et al., 2010; Hoang, et al., 2004; Kukic, et al., 2015; 

Taylor, et al., 2009; Zhang, et al., 2006) most of these studies have aimed at coarsely 

contouring the free energy landscapes of polypeptides rather than at obtaining accurate 

backbone structures to be used for amino acid sequence design. One exception was the 

study of MacDonald et al., in which they developed a Cα-atom-based statistical energy 

function that emphasized on the accurate modeling of local backbone conformation, 

i.e., the backbone conformations of a few consecutive residues.(MacDonald, et al., 

2010) The minima of this energy function determined without specific sidechain 

information have been shown to resemble experimentally-determined loop structures 

in native as well as in designed proteins.(MacDonald, et al., 2016; MacDonald, et al., 

2013) More recently, we have proposed a sidechain-independent statistical model 

named tetraBASE to model the through-space packing between backbone positions 

contained in different rigid secondary structure elements (SSEs).(Chu and Liu, 2018) 
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The minima on the tetraBASE energy surface could reproduce various multi-SSE 

architectures in native proteins, with atomic positional root mean square deviations 

(RMSD) mostly between 1.5 to 2.5 Å. The tetraBASE model, however, does not 

describe the internal flexibility of SSEs or the conformation of loops. It is also 

discontinuous with respect to conformational changes. 

Here we report a comprehensive statistical energy function for completely flexible 

protein backbone conformation sampling and optimization. The model is named 

SCUBA, standing for SideChain-Unspecialized-Backbone-Arrangement, as sidechains 

have been considered mainly as steric space holders in the model, so that protein 

backbones can be sampled and optimized with generally simplified amino acid 

sequences. This distinguishes SCUBA from existing statistical potentials developed for 

the modeling or evaluation of protein structures with specific amino acid 

sequences.(Dong, et al., 2013; Liu, et al., 2014; Ramon Lopez-Blanco and Chacon, 

2019; Sippl, 1990; Xu, et al., 2017; Zhou and Zhou, 2002)    

A distinct feature of SCUBA is that each of its statistical energy terms depends on 

a multiplex of geometric variables. To consider multiplex variables jointly should be 

important because a range of many-body effects may not be reproduced well by a 

summation of simple terms that depend on only one or two variables.(Chu and Liu, 

2018; Xiong, et al., 2014) In practice, the construction of multi-variable statistical 

energies are challenging,(Liu, et al., 2014; Ramon Lopez-Blanco and Chacon, 2019; 

Xu, et al., 2017) being associated with technical difficulties such as how to evaluate 

properly-gauged statistical energies from training data that are unevenly distributed in 
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non-orthogonal and non-isometric multivariable spaces, how to choose appropriate 

multi-dimensional functional forms to represent the energy surface, and how to reach 

at continuous models with easily computable gradients.  

In the current work, we introduce a general approach that solve the above 

difficulties. The method, named NC-NN, comprises using adaptive-cutoff neighbor-

counting (NC) to estimate properly gauged high-dimensional statistical energies, 

followed by representing the high-dimensional statistical energy surfaces as neural 

networks (NN).(Behler and Parrinello, 2007; Galvelis and Sugita, 2017; Lemke and 

Peter, 2017; Shen and Yang, 2018) The energy terms obtained by this NC-NN approach 

have analytical gradients, allowing them to be used directly to drive (stochastic) 

molecular dynamics simulations. The SCUBA model contains NC-NN-derived energy 

terms to describe the main chain local conformation, the main chain through-space 

packing, the backbone-dependent side chain conformation, and so on, the relative 

weights of different energy components calibrated on the basis of SCUBA-driven 

stochastic dynamics (SD) simulations of natural proteins. The model is then validated 

by comparing backbones of native proteins with backbones artificially constructed and 

automatically optimized using SCUBA. 

2. Methods 

2.1. The composition of the SCUBA energy function 

The total energy is written as the sum of a sidechain-independent and a sidechain-

dependent part, namely, 

 �(�) = ���(���) + ���(���, ���),             (1) 
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in which ��� and ��� refer to the atomic coordinates of the main chain atoms and 

the side chain atoms, respectively. 

The sidechain independent part has been defined as the sum of four components, 

  ���(���) = ���������
�� (���) + �������

�� (���) + ������
�� (���) + ����������

�� (���).    (2) 

The covalent component ���������
�� (���)  consists of harmonic bond length, bond 

angle, and improper dihedral angle terms. The steric component �������
�� (���) is a sum 

over main chain atom pair distance dependent terms. The local conformation 

component ������
�� (���)  is defined as a sum over windows centered at individual 

residue positions, namely,  

������
�� (���) =

   ������
�� ∑ ������

�� (����, ������,������, … , � �, ��, … , � �����, ������,����)�
���  .   

(3) 

The ������
��  is a weighting factor. For each residue position i, the term ������

��  depends 

on a series of consecutive Ramachandran torsional angles along the peptide chain 

centered around i, namely, from ���� to ����. We use m=0 for the first and the last 

two positions of a peptide chain (i.e., � ≤ 2  or � ≥ � − 1 ), and m=2 for middle 

positions. For the latter positions, the ������
��   is decomposed into a single residue 

Ramachandran term and a multi-residue correlation term,  

������
�� (����, … , � ���) = ����� (��, ��) +

�

��
������������������

�� (����, … , � ���). (4) 

If we only keep the ����� (��, ��) term on the right side of formula (4), we would be 

ignoring correlations between neighboring backbone positions. Besides the energy 

terms defined by formulae (3) and (4), an explicit Cartesian coordinate-dependent main 
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chain hydrogen bond term ���������
��   can be optionally added to ������

��  to improve 

hydrogen bonding geometries in helices (see Supplementary Methods).  

The through-space component ����������
�� (���) in formula (2) is treated as a sum 

over residue pairs that are separated by at least 4 residues in the sequence, namely,  

����������
�� (���) =

   ����������
�� ∑ ∑ ����������

�� (��
��, ����, ��, ��, ����, ��

��, ����, ��, ��, ����, )���
�����

���
���  .       

(5) 

The ����������
��  is a weighting factor. In formula (5), the residue pairwise interaction 

����������
��  depends not only on the coordinates of all the main chain atoms at positions 

i and j (noted as ��
�� and ��

��, respectively), but also on the local conformations at 

these two positions as specified by the Ramachandran angles. 

The sidechain dependent energy in formula (1) has been defined as the sum of 

three components, 

���(���, ���) = ���������
�� + ��������

�� + ��������
�� .       (6) 

The covalent component ���������
��  contains usual harmonic terms depending on bond 

lengths, bond angles and improper dihedral angles. The rotamer component is a sum 

over residue-wise terms, 

��������
�� = ��������

�� ∑ ��������
�� (��, ��, ��

�, ��
�, … )�

��� .    (7) 

The ��������
��  is a weighting factor. For each residue i, the rotamer energy depends on 

not only the sidechain torsional angles ��
�, ��

�, and so on, but also the local backbone 

conformation as specified by the Ramachandran torsional angles. The component 

��������
��  has been treated as a sum over simple distance-dependent atomic pairwise 
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terms (see Supplementary Methods) multiplied by a weighting factor ��������
��  . In 

SCUBA, the main purpose of considering the ��������
��  and ��������

��  components is 

to model the steric volume effects of sidechains which may play indispensable roles in 

shaping the backbone conformational landscape. In addition, the ��������
��   contains 

inter-atomic attractions (see Supplementary Methods) to counterbalance the thermal 

expansion effects in finite temperature SD simulations. Other than these, the 

descriptions of sidechain interactions that are more residue-type-specific, such as the 

electrostatic interactions, hydrogen-bonding, (de)solvation, and so on, have been 

intentionally omitted or simplified. The purpose is to minimize the differences between 

different specific sidechain types, so that the model can be applied to backbones with 

generic or simplified amino acid sequences.  

The statistical energy terms in SCUBA have been derived from more than 10,000 

non-redundant training native protein structures (X-ray structure resolution higher than 

2.5 Å and sequence identity below 50%).(Wang and Dunbrack, 2005; Xiong, et al., 

2014) More details about the SCUBA energy terms are given in Supplementary 

Methods. 

2.2. The NC-NN approach to construct high dimensional statistical energies 

    A general approach has been applied to derive statistical energy terms in SCUBA 

that each depends on a multiplex of geometric variables, the terms including ����� , 

������������������
��  , ����������

��  , ��������
��  , and the optional  ���������

��   (See 

Supplementary Methods). This NC-NN approach consists of a neighbor-counting (NC) 

step followed by neural network-fitting (NN). 
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(1) The neighbor-counting (NC) step 

We denote the multi-dimensional geometric variables collectively as � ≡

(��, ��, … , � � ) , and consider two probability density functions in the �   space, one 

denoted as ��(� ) corresponding to the distribution of the training data, and the other 

denoted as ��(� )  corresponding to a background or reference distribution. An 

effective statistical energy as a function of �  can be defined as  

�(� ) = −��
��(� )

��(� )
.                        (8) 

We do not try to determine �(� ) through any sort of parametrically estimated ��(� ) 

or ��(� ). Instead, for any given point � �, the value of �(� �) is directly estimated 

from two set of sample points distributed in the �   space. One set denoted as �� 

contains samples whose distribution follows ��(� ). For a SCUBA energy term, this 

sample set consists of data extracted from the training native proteins. The other set 

denoted as ��  consists of samples computationally generated according to the 

distribution ��(� ). Then the ratio 
��(� �)

��(� �)
 can be estimated as the ratio between the 

(properly normalized) numbers of neighboring points of � � in the �� set and in the 

�� set, respectively. Namely, 

     �(� �) ≈ −��
��(� �)

��(� �)
,                  (9) 

in which � � and � � represent the respective normalized numbers of neighbors. We 

note that the different geometric variables constituting �  do not need to be orthogonal, 

to be isometric with respect to the Cartesian coordinates, or to be linearly independent 

from each other.  

For formula (9) to be meaningful, for any given � � point, the values � � and � � 
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should be estimated in exactly the same way. This requirement fulfilled, the ratio form 

in formula (9) should lead the computed energy to be relatively insensitive to the exact 

way of how neighbor counting has been implemented. A general way to compute the 

normalized number of neighbors �  in a sample set S for the probing point � � is to 

define the following multi-dimensional kernel function 

ℎ(� �, � � ) = ∏ ℎ� ���
�, ��

�
��

� �� ,              (10) 

in which the one dimensional function ℎ� (��
�, ��

�
) takes the value of 1 if the difference 

between ��
� and ��

�
 is below a (adaptively) chosen cutoff, and gradually goes to zero 

as the difference increases (the “soft” cutoff approach). Given h, the normalized number 

of neighbors �  of point � � in set S can be computed as 

N(� �) =
�

|�|
∑ ℎ(� �, � � )� � ∈�               (11) 

in which |�| stands for the cardinal or the number of points in S. As the distribution of 

training points in the �  space is usually extremely uneven, the kernels ℎ� (��
�, ��

�
) 

may need to be adaptively defined, associated with larger cutoffs in sparsely populated 

�   regions to reduce statistical uncertainties, and with smaller cutoffs in densely 

populated �  regions to increase resolution.(Xiong, et al., 2014)  

(2) The neural-network (NN) fitting step 

A major drawback of the above neighbor-counting (NC) approach is that it is 

computationally too expensive for on-the-fly energy evaluations in conformation 

sampling or optimization. In addition, the directly estimated energy surfaces are 

roughed by statistical noises, analytical derivatives of the energy being unavailable. 

These drawbacks are overcome after the NN step. Inspired by the idea of replacing 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 18, 2019. ; https://doi.org/10.1101/673897doi: bioRxiv preprint 

https://doi.org/10.1101/673897
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

first principle potential energy surfaces with artificial neural networks (NNs),(Behler 

and Parrinello, 2007; Shen and Yang, 2018) we use NNs to represent the NC-derived 

statistical energies as analytical functions of multiplexes of geometrical 

variables.(Galvelis and Sugita, 2017; Lemke and Peter, 2017) Here, the inputs of a NN 

are the geometric variables (i.e. the different constituents of � ) encoded with chosen 

encoding schemes. The output is the value of the statistical energy. The NN model is 

trained using the NC-estimated single point statistical energies at a diversely distributed 

set of points in the �  space. As the training of the NN needs to be carried out only 

once, the NC estimation can be carried out for as many �  space points as needed to 

provide a sufficient amount of training data to the NN. 

The NNs used in the current work are of three-layers, implementing the following 

mapping from an input encoding vector � to an output real value, 

�(�) = ��→ � + ∑ ��
�→ ��1 + ����−� ∑ ���

�→ ��� + ��
�→ ���

��� ���
����

���      (12) 

in which �� is the number of nodes in the first or input layer, �� the number of nodes 

in the second layer, � ≡ (��, ��, … , � ��
) the input vector encoding a point in the �  

space, the coefficients ���
�→ �  and ��

�→ �  the weights connecting the first and the 

second layers and the second and the third layers, respectively, and ��
�→ � and ��→ � 

the respective biases. The input to node j in the second layer is ∑ ���
�→ ��� + ��

�→ ���
��� , 

which is mapped to the output by the transformation �1 + ����−� ∑ ���
�→ ��� +

��
���

��
�→ ����

��
 . The single node in the third or output layer accepts inputs from all the 

second layer nodes, combines them linearly, and adds a biasing value to generate the 

final output.   
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2.3. Calibrating and testing SCUBA by stochastics dynamics simulations of native 

proteins  

   The weighting factors in the SCUBA model, including 

������
�� , ����������

�� , ��������
�� , and ��������

�� , have been introduced to compensate for 

potentially redundant or double-counted interactions between different energy 

components. These weights have been calibrated using SD simulations of 33 native 

proteins, using in-house developed codes implementing SCUBA-driven SD with bond 

lengths constrained by SHAKE.(Vangunsteren, et al., 1981) The codes can be applied 

to optimize backbone conformations through simulated annealing, or to test if any 

conformational minimum on the SCUBA energy surface is stable against thermal 

fluctuations at a given “temperature” (we assume the statistical energies defined 

according to formula (8) to be of the physical unit of ���� , in which ��  is the 

Boltzmann constant and the temperature �� is 300 K. In later discussions, we will use 

the reduced temperature ��, with �� = 1 corresponding to 300 K). The energy weight 

calibrations have been carried out using an approach that is conceptually similar to force 

field parameter refinements using thermodynamics cycles in conformational space(Cao 

and Liu, 2008) or “contract divergence”(Jumper, et al., 2017; Várnai, et al., 2013), with 

the objective of parameterization being to stabilize the native conformational states 

relative to conformations further away from the native structures. After determining the 

weights, SD simulations have been carried out on the native proteins in their original 

sequences as well as in simplified sequences, in which all residues in helices have been 

changed into leucine, residues in strands changed into valine, and residues in loops 
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removed of sidechains. More details are given in Supplementary Methods.  

2.4. Designing artificial backbones using SCUBA by SD and simulated annealing 

(1) Building the initial backbone structures 

To design a backbone, an intended “framework” is specified first. This framework 

defines at a very coarse level the intended backbone architecture, including the numbers, 

types, sequential orders, and approximate lengths of secondary structure elements 

(SSE). It also specifies how the SSEs should be organized in the three-dimensional 

space to follow an abstractive multi-layered form as summarized from native protein 

folds by Taylor et al.(Taylor, 2002) In an initial structure artificially constructed 

according to this form, the N or C-terminal end positions of SSEs in the same SSE layer 

fall on grid points on a line in a 2-dimensional plane. The end-to-end directions of the 

SSEs are perpendicular to the plane. SSEs in different layers have their ends on different 

parallel lines on the plane. Given the intended framework, helix and strand fragments 

of expected lengths have been constructed with the given end positions, with backbone 

torsional angles randomly drawn from distributions associated with respective SS types, 

and with given end-to-end directions. Then loops of given lengths have been built using 

the kinematic closure algorithm(Coutsias, et al., 2004) to link the SSEs in a given order. 

For a given framework specification, different initial backbones have been built by 

using different random seeds. A two-stage SD simulated annealing procedure (see 

Supplementary Methods) has been applied to optimize each artificially constructed 

backbone. In the first stage, no sidechains have been considered. In the second stage, 

leucine (valine) sidechains have been considered for all helix (strand) positions. For 
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each intended framework, 10 conforming final SCUBA-optimized structures have been 

obtained. Each final structure has been used as a query to search against the protein data 

bank (PDB) using the Dali server(Holm and Laakso, 2016) (or the mTM-align 

server(Dong, et al., 2018) if the Dali search did not return any matching structure with 

a Z-score above 6.0)  

Results and discussions 

3.1. Statistical energy terms constructed by the NC-NN approach 

Despite that the construction of a multi-dimensional NC-NN term involves many 

steps with intricate details (see Supplementary Methods), the NC-NN approach seems 

to be robust: by simply following common senses and using not excessively fine-tuned 

parameters for the intermediate steps, a final statistical energy term may be obtained to 

faithfully model a high-dimensional native distribution of a multiplex of strongly 

correlated geometric variables. This point is visually illustrated in Supplementary 

Figures S1 to S7, which show several examples of distributions of the NC-estimated 

statistical energies (Figures S1 to S3) and comparisons between the NC-estimated and 

the NN-estimated energies (Figures S4 to S7). Brief discussions of the implications of 

the presented data have been included in corresponding figure captions. 

3.2. Calibrating the energy function by SD simulations of native proteins 

In Figure 1, the averaged RMSDs of the structures sampled in the SCUBA-driven 

SD simulations from respective native structures are given. The results from four sets 

of simulations have been compared. In the first three sets of simulations, the test 

proteins have their native sidechains. The medium value of the averaged RMSDs for 
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the 33 simulated proteins is 1.85 Å when both the optional main chain local hydrogen 

bond terms and the radius of gyration restraint are turned off (see Supplementary 

Methods). The medium RMSD is reduced slightly to 1.6 Å upon the inclusion of the 

optional main chain local hydrogen bond terms, and further reduced to 1.25 Å upon the 

additional inclusion of the radius of gyration restraint. There does not seem to be any 

systematic difference between the RMSDs obtained for backbones of different fold 

classes. The last set of simulations have been carried out on the proteins of simplified 

sequences. The medium RMSD is 2.23 Å when both the main chain local hydrogen 

bond terms and the radius of gyration restraint are turned on. If these optional potentials 

are turned off, the medium RMSD is slightly larger (2.47 Å). These simulations have 

been carried out with the finalized set of energy weights given in Supplementary 

Methods. The effects of varying the individual or the overall energy weights on the 

RMSDs have been summarized in supplementary Figures S8 and S9, with brief 

discussions of the implications of the presented data included in corresponding figure 

captions. 

 

Figure 1. The averaged RMSDs from native structures of structures sampled in the 

SCUBA-driven SD simulations using the calibrated energy weights. For each native 

structure with the given PDB ID, results of four simulations are plotted in different 
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colors. Three simulations have been carried out on the native sequence, with both the 

main chain local hydrogen bond terms (���������
��  ) and the radius of gyration (��) 

restraint off (red), or ���������
��   on and the ��  restraint off (orange), or both 

���������
��  and the �� restraint turned on (green). One set of simulations have been 

carried out on the simplified sequence, with both ���������
��   and the ��  restraint 

turned on (violet). The fold classes are indicated below the PDB IDs. 

 

The above results suggest that with the chosen set of energy weights, most of the 

native protein backbones are stable against thermal fluctuations at �� = 1.0, and the 

SD sampled conformations remain close to the native structures. In addition, when the 

native sequences have been substituted with the generally simplified sequences, the 

stability of most native backbones can still be retained, with the RMSD medium values 

still below 2.5 Å.  

3.3 Backbones optimized from artificial initial structures and their similarity to 

native structures 

 The intended frameworks for artificial backbone construction are given in Tables 

1 to 4 with framework IDs and intended types, orders, and lengths of the secondary 

structure elements (SSEs). These frameworks cover different types of SSEs interacting 

with each other in various combinations and relative geometries. Examples of initial 

and SCUBA-optimized structures for each framework are given in Figures 2 to 4. The 

framework in Table 1 is a 3-helix bundle. Frameworks in Table 2 comprise four SS 

segments, including a four-helix bundle, a 4-strand β sheet, and several two layered 

frameworks containing one helix packed against a 3-strand β sheet. Frameworks in 

Table 3 comprise six SS segments arranged in two layers, each containing a two-helix 
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layer packed against a 4-strand β  sheet. Frameworks in Table 4 comprise six SS 

segments arranged into three layers, each containing two single-helix layers packed at 

the two opposite sides of a 4-strand β sheet.  

In Tables 1 to 4, the PDB IDs of the best-matching native structures (according to 

the Dali Z-scores) of the SCUBA-optimized backbones are given, together with lengths, 

Z-scores, and RMSDs of the respective structure alignments. Examples of aligned 

SCUBA-optimized backbones and native backbones are shown in Figures 2 to 4 in 

stereo views, together with plots of the displacements of individual aligned positions. 

The shown native backbones have been found by Dali, except for the one shown in 

Figure 2f, which has been found by mTM-align.  

For the majority of the frameworks in Tables 1 to 3, the SCUBA-optimized 

backbones can be aligned to one or more native backbones with Dali Z-scores > 6.0. 

For these high Z-score alignments, the overall RMSDs of the aligned positions are 

mostly between 2 to 3 Å, with the main chain atom displacements for residue positions 

contained in regular SSEs being mostly below 2 Å (see the displacement plots in 

Figures 2 and 3). Especially, for the framework H4, the SCUBA-optimized backbones 

exhibit inter-helix twist of two types of handedness. Both the backbone exhibiting left-

handed twist (Figure 2b) and the one exhibiting right-handed twist (Figure 2c) can be 

well aligned with known native backbones. The SCUBA-optimized backbone of the 4-

strand antiparallel β sheet shown in Figure 2d accurately reproduces the intra-strand 

twisting and the surface curving of a native β-sheet.  

For the frameworks in Table 4, matching native structures with Dali Z-scores 
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above 6.0 have been detected for only one SCUBA-optimized structure obtained for the 

framework H2E4-CS (Figure 4a). For the other SCUBA-optimized backbones in Table 

4, similar native backbones with high Dali Z-scores have not been found, even though 

the SCUBA-optimized backbones obtained for these frameworks seem to have 

similarly well-formed and packed SSEs (Figures 4b and 4c) as those obtained for the 

other frameworks. It could be possible that the particular SSE arrangements specified 

for these frameworks were of relatively poor designability. 
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Table 1.PDB search results using the SCUBA-optimized backbones obtained for a Framework consisting of three helices.a  

aResults 

of 

structure 

alignments between the SCUBA-optimized backbones and the best-matching PDB chains returned by the Dali server. Z��� are the largest Z-

scores, RMSD is the root mean square deviations of aligned main chain atom positions, L����� is the number of aligned residues, and PDB chain 

is the PDB IDs and chain IDs of the matching native backbones. Results for ten different SCUBA-optimized backbones are given in different 

columns. Higher Z-scores (>6.0) are highlighted in bold. 

bIntended secondary structure states, lengths and orders of peptide segments comprising the framework. H stands for helix, E for strand and L for 

loop. 

  

Framework ID: H3; Intended secondary structure compositionb: H15L7H15L7H15 

Z���
 6.6 6.1 6.4 7.3 7.1 7.3 6.9 6.6 6.4 6 

RMSD 2.1 2.4 2 2.2 2.3 2.4 2.2 1.7 2.5 2 

L�����
 55 55 55 57 59 58 58 53 57 54 

PDB chain 4zsf-A 3ego-A 5b04-C 4zsf-A 2khm-A 4zsf-A 4zsf-A 5dwa-A 5sv0-A 5w7g-b 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 18, 2019. ; https://doi.org/10.1101/673897doi: bioRxiv preprint 

https://doi.org/10.1101/673897
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

Table 2. PDB search results using SCUBA-optimized backbones obtained for Frameworks consisting of four secondary structure segments.a  

a,bSee 

footnotes 

of Table 1. 

cFor this 

framework, searching using mTM-align has detected good-matching native backbones. See also Figure 5f. 

Table 3. PDB search results using SCUBA-optimized backbones obtained for Frameworks consisting of six secondary structure segments 

arranged in two layers.a  

Framework ID: H4; Intended secondary structure composition:b H21L10H21L10H21L10H21 

Z���
 9.7 8.7 10.2 9.8 8.9 8 12.4 9.7 8.6 11.8 

RMSD 2.4 3.8 2.2 2.9 2.3 2.9 2 3.1 2.4 2.3 

L����� 75 82 98 100 73 90 98 99 74 90 

PDBID 2m6u-A 5eqw-B 5a7d-R 3t6g-B 2b8i-A 2iu5-A 5a7d-R 2qup-A 2b8i-A 3iee-A 

Framework ID: E4; Intended secondary structure composition:b E10L5E10L5E10L5E10 

Z��� 7.5 5 6.7 7.2 7 7.1 6.8 6.7 6.2 7.7 

RMSD 2.4 3.8 2.5 2.2 2.8 2 2.1 2.2 3.4 1.6 

L����� 54 52 51 54 54 52 49 52 53 52 

PDBID 3kvn-X 4o3v-B 1wzn-A 3kvn-A 4c00-A 1wzn-A 4pr7-A 1wzn-A 5iru-D 1wzn-A 

Framework ID: H1E3-A ; Intended secondary structure composition:b E7L8H16L8E7L6E7 

Z��� 5.8 5 5.3 5.4 4.9 5.6 4 6.3 4.5 5.4 

RMSD 2 2.2 2.9 2.3 2.4 2.3 2.2 1.9 3.5 1.9 

L����� 53 52 55 57 50 56 49 58 56 56 

PDBID 519w-B 6fij-A 3hmj-A 3qkb-A 4qvh-A 3hmj-A 4a2b-A 3qkb-A 3r75-B 5k3w-A 

Framework ID:c H1E3-B; Intended secondary structure composition:b E7L6E7L8H16L8E7 

Z��� 5.2 2.9 3.2 3.7 3 3 3.9 3 4.9 5.2a 

RMSD 2.3 8.8 8.3 3.2 8.6 8 2.4 8.2 2.2 2.5 

L����� 52 51 46 53 54 52 50 44 51 53 

PDBID 5f1g-A 5dmx-B 2epo-A 3n5i-D 5nq2-A 6ewa-A 6c0f-S 2epo-A 5f1g-A 5f1g-A 
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a,bSee 

footnotes 

of Table 1. 

Framework ID: H2E4-A ; Intended secondary structure composition:b E10L6H20L6E10L8H20L8E10L6E10 

Z��� 5.6 6.5 6.7 7.7 5.1 7.5 6.2 8 6.9 6.9 

RMSD 3.5 2.8 3 2.9 3.1 2.4 3.4 1.9 2.9 2.5 

L����� 78 72 73 84 69 71 94 70 72 76 

PDBID 3evz-A 3hz7-A 3hz7-A 51mn-X 3hz7-A 3hz7-A 4u3e-A 3hz7-A 3hz7-A 5hjm-A 

Framework ID: H2E4-AS ;  Intended secondary structure composition:b E7L6H16L6E7L8H16L8E7L6E7 

Z��� 6.1 6.7 6.6 7.8 5.9 5.1 7.8 6.4 5.7 7.6 

RMSD 3.1 2.3 2.4 2.7 2.6 2.8 2.5 3.3 2.8 2.3 

L����� 68 68 72 72 69 67 72 71 86 69 

PDBID 3hz7-A 3hz7-A 5hjm-A 3hz7-A 21n3-A 5hjm-A 3hz7-A 21n3-A 5yd0-B 3hz7-A 

Framework ID: H2E4-B ; Intended secondary structure composition:b E10L7H20L8E10L6E10L7H20L8E10 

Z��� 7.9 8.2 8.3 8.1 10 8.2 9.2 8.2 6.6 9.1 

RMSD 3.1 3 2.8 2.7 2.4 2.9 2.8 2.8 2.5 3 

L����� 91 103 95 89 93 90 99 89 80 101 

PDBID 3fds-A 3oha-A 3pzp-B 3fds-A 3fds-A 3pzp-B 3oha-A 3fds-A 5nd7-C 3oha-A 

Framework ID: H2E4-BS; Intended secondary structure composition:b E7L7H16L8E7L6E7L7H16L8E7 

Z��� 8.5 8.2 7.7 8.2 7.7 6.6 6.4 6.7 8.8 8.2 

RMSD 2.8 2.7 2.9 2.7 2.6 3.7 3.2 3.1 2.6 2.7 

L����� 93 90 92 90 84 86 85 83 89 88 

PDBID 3oha-A 3oha-A 3oha-A 5wm1-A 3fds-A 3fds-A 3oha-A 3fds-A 3fds-A 3oha-A 
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Table 4. PDB search results using SCUBA-optimized backbones obtained for Frameworks consisting of six secondary structure segments 

arranged in three layers.a  

a,bSee footnotes of Table 1. 

 

 

  

Framework ID: H2E4-CS; Intended secondary structure composition:b E7L6H16L6E7L5E7L8H16L6E7 

Z��� 5.7 3.8 5.3 4.6 4.3 4.2 4.3 3.6 6.1 5.7 

RMSD 2.8 3.4 2.7 3.1 2.2 2.9 3.4 2.9 2.5 3.3 

L����� 69 62 66 63 63 55 59 66 73 74 

PDBID 3g98-A 2pv7-B 3g98-A 2pv7-B 3c24-A 5uif-A 5f55-A 3g98-A 3g98-A 6cc2-A 

Framework ID: H2E4-DS ; Intended secondary structure composition:b E7L8H16L8E7L8H16L7E7L8E7 

Z��� 3.9 3.9 3.8 4.3 3.8 4.2 4 4 4.2 4.3 

RMSD 2.4 2.5 3.1 5.2 5 3.4 2.6 3.6 4.8 4.5 

L����� 55 53 58 75 66 68 50 58 52 61 

PDBID 6cuq-B 51n3-3 2gvh-B 6fqd-B 5wt1-C 5e37-A 6cuq-B 5wt1-C 5uif-A 5wt1-C 

Framework ID: H2E4-ES ; Intended secondary structure composition:b E7L8H16L8E7L6E7L8H16L8E7 

Z��� 4.2 3.9 4.6 4.7 4.9 5.2 5 4.5 5.3 4.1 

RMSD 3.2 3.6 2.8 3.4 2.5 3.5 2.5 4.6 2.9 3.3 

L����� 64 76 66 73 73 72 77 71 77 53 

PDBID 4a2b-A 5dcx-A 1wkq-A 1wkq-A 3oj6-A 1wkq-A 1n2m-C 511w-B 5xko-B 1zwy-B 
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Figure 2. From left to right in each panel, artificial initial structure, SCUBA-optimized 

structure, stereo view of SCUBA-optimized structures superimposed with a matching 
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native PDB structure, and displacements of aligned positions between the SCUBA-

optimized and the matching native PDB backbone. Artificial structures are shown in 

orange. Native structure are shown in light blue. PDB IDs, chain IDs and overall 

RMSDs are given above the stereo views. Secondary structure segments are indicated 

under the displacement plots (Helix: green box. Strand: blue box. Coil: red line.). (a) 

Framework H3. (b) Framework H4, SCUBA-optimized structure in left-handed twist. 

(c) Framework H4, SCUBA-optimized structure in right-handed twist. (d) Framework 

E4. (e) Framework H1E3-A. (f) Framework H1E3-B.  
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Figure 3. As Figure 2, but for frameworks defined in Table 3. (a) Framework H2E4-A. 

(b) Framework H2E4-AS. (c) Framework H2E4-B. (d) Framework H2E4-BS. 
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Figure 4. (a) As Figure 2, but for framework H2E4-CS. (b) An initial structure and a 

SCUBA-optimized structure for framework H2E4-DS. (c) As (b) but for framework 

H2E4-ES. 

 

4. Conclusions 

SCUBA as a statistically-learned model of protein conformations is distinct from 

existing ones in both derivations and outcomes. It can be applied to sample and optimize 

protein backbones with complete conformational flexibility. With sidechains mainly 

serving as space holders in SCUBA, generic amino acid sequences may be used in place 

of specific ones. The good agreements between the artificially-constructed SCUBA-

optimized backbones and native backbones suggest that the SCUBA SD approach may 

potentially be applied to facilitate a variety of protein design tasks, such as to construct 

de novo scaffolds to host functional centers, to restructure backbone segments to form 

a new active site, or to construct the backbone of a peptide ligand docked onto a receptor. 
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In our future work, we will continue to refine this approach as a protein backbone design 

tool and to work with collaborators to experimentally verify the designability of the 

SCUBA-optimized backbones.  

SCUBA relies on its various NC-NN-derived energy terms to faithfully reproduce 

the coupled distributions of multiplexes of conformational variables in designable 

backbones. The NC-NN approach overcomes common technical difficulties in 

statistical modeling of highly unevenly distributed data in non-orthogonal and non-

isometric multivariable spaces, with results usable in efficient gradient-requiring 

sampling/optimization algorithms. Although to derive an energy term by NC-NN 

unavoidably involves some heuristic choices of parameters, the approach is a robust 

one with the results being relatively insensitive to the exact choices of parameters or 

hyper parameters. As a general approach to derive multidimensional statistical models 

from a large amount of structural data, the NC-NN method may be applied to other 

structural bioinformatics problems besides protein backbone design. 
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