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The mechanism by which microtubules find kinetochores during spindle formation is a key ques-
tion in cell biology. Previous experimental studies have shown that although search-and-capture of
kinetochores by dynamic microtubules is a dominant mechanism in many organisms, several other
capture mechanisms are also possible. One such mechanism reported in Schizosaccharomyces pombe

shows that microtubules can exhibit a prolonged pause between growth and shrinkage. During the
pause, the microtubules pivoted at the spindle pole body search for the kinetochores by performing
an angular di↵usion. Is the latter mechanism purely accidental, or could there be any physical
advantage underlying its selection? To compare the e�ciency of these two mechanisms, we nu-
merically study distinct models and compute the timescales of kinetochore capture as a function
of microtubule number N . We find that the capture timescales have non-trivial dependences on
microtubule number, and one mechanism may be preferred over the other depending on this num-
ber. While for small N (as in fission yeast), the typical capture times due to rotational di↵usion
are lesser than those for search-and-capture, the situation is reversed beyond a certain N . The
capture times for rotational di↵usion tend to saturate due to geometrical constraints, while those
for search-and-capture reduce monotonically with increasing N making it physically more e�cient.
The results provide a rationale for the common occurrence of classic search-and-capture process in
many eukaryotes which have few hundreds of dynamic microtubules, as well as justify exceptions in
cells with fewer microtubules.

An essential function of a living cell is to segregate
chromosomes between the two daughter cells [1]. The
mother cell achieves this by forming a spindle: a mi-
croscopic structure made of microtubules (MT) and
cross-linking proteins, stretching across its length be-
tween the poles [2]. Once the spindle is formed and
the chromosomes are aligned at the equatorial plane,
the sister chromatids are pulled apart towards the op-
posite poles [1]. Chromosome segregation is known to
play an important role in cancer progression, adapta-
tion, and drug resistance [3–8]. Furthermore, a cell has
to form a spindle within a suitable time-frame as a part
of the regular cell-cycle. How a large number of signal-
ing molecules, MTs, molecular motors, and the chro-
mosomes self-assemble to form a spindle is a fascinat-
ing problem and has been a topic of active research
[2, 9, 10]. One important aspect of spindle morphogen-
esis is the attachment of the MTs to the kinetochores
(KC) [11] which are protein complexes on the chromo-
somes.
How does a MT attach to a KC? This question has

been raised and studied before, and the mechanism by
which this attachment takes place can vary across cell
types [12–16]. One such mechanism for capture is based
on the dynamic instability of MTs [17, 18]. Also known
as search-and-capture (S&C ), in this mechanism for
capturing a KC, a large number of dynamic MTs grow
from the centrosome in di↵erent directions [19, 20]. The
KC attaches to one of the MTs when they both hit each
other. S&C has been the most widely reported mech-
anism and the capture timescales for this mechanism
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has been well studied, both using a simplified theoreti-
cal approach [20–23], as well as using detailed computa-
tional models [15, 22, 24]. Recent in vivo experiments
however suggest that simple S&C may not be the only
way to capture the chromosomes. Existence of more
sophisticated capture mechanisms have been reported.
Some examples are: (a) biased MT dynamics due to
Ran-GTP gradient around the KC [14, 22, 25, 26], (b)
nucleation of MTs either from the spindle microtubules
(also called branching) [27–31], or from the chromosome
[15, 32–35]. Furthermore it has been observed that the
motion of a KC and adaptive changes in its size may
also a↵ect the capture process [15, 16, 36, 37].

All these observed mechanisms involve some active
chemical processes. It would be quite surprising if
the goal can be achieved by a passive mechanism us-
ing lesser resources. A recent experiment by Kalin-
ina et al. [16] reported such an interesting exception
in Schizosaccharomyces pombe, commonly known as fis-
sion yeast — the KCs, which di↵use freely in the nu-
cleoplasm, are captured by MTs which unlike spindle
MTs in other organisms have a large duration of pause
interrupting their usual dynamic instability. During the
paused state, a MT is not stationary but executes ro-

tational di↵usion (henceforth we will denote it as RD)
being pivoted at the spindle pole body (SPB), where
its random angular movement is driven by the thermal
noise of the surrounding nucleoplasm. It is important
to note that unlike other organisms, where the MT to
KC ratio is quite large (for example, in human cells,
⇠ 17 MTs per KC [11, 38]), in fission yeast, fewer spin-
dle MTs are available to capture a KC (⇠ 3 to 5 MTs
per KC) [16, 39]. A natural question arises: is there
any relationship between the mechanism of KC capture
and the number of spindle MTs available for capture in
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FIG. 1. Study of KC capture in fission yeast. (A) Schematic of a Schizosaccharomyces pombe (fission yeast) cell. Unlike
other organisms, here, the spindle is formed inside the nucleus. (B) Main features of KC capture in fission yeast are
highlighted here. Length of a spindle MT is shown as a function of time (top). The average lifetime of a spindle MT is 3
min. There is a state of “pause” in between growth and shrinkage, where the MT length remains same. The MTs stay in
this stationary state 70% of their lifetime and perform angular di↵usion being pivoted at the SPB. The schematic (below)
shows the growth, shrinkage and intermediate pause state with rotational di↵usion, leading to the eventual capture of a
KC. (C) A KC can attach either anywhere along the length or to the tip of the MT — these are referred to as lateral and
tip capture, respectively. (D) The di↵erent models studied in this paper are schematically represented here. Blue solid color
represents the pause state. Green dashed color represents the growth and shrinkage states. Straight and curved arrows
represent the linear growth/shrinkage and angular di↵usion, respectively.

an organism? Addressing this question would require a
systematic study of capture times for di↵erent mecha-
nisms, as a function of MT number N . To the best of
our knowledge, such a comparative study with varying
N and for a moving KC has not been studied earlier in
the literature. Study of capture time dependence on N
has been done for S&C mechanism [22], and a heuris-
tic functional dependence was suggested based on the
approximation of static KC (see Sec. II for details). Re-
cently, in a di↵erent context of MTs searching a static
immunological synapse in T cells [40], a N dependence
of mean capture time was studied.

The observed RD mechanism in fission yeast [16],
which was also reported earlier as a “sweeping” motion
of MTs [13], may seem to be exceptional due to spe-
cific reasons. Unlike other organisms, in fission yeast

the mitotic spindle-size is much smaller [41, 42] and
is formed inside the nucleus [13, 43]. Also, the cold
treatment done to the cells [16] might have a↵ected
the length distribution of MTs. The RD mechanism
was shown to be robust to temperature variations —
similar results were reported for 14oC, 24oC and 32oC
[16]. On the other hand the experiments [13] and [24]
(done at 37oC) reported faster kinetics. While for any
mechanism, physical parameters like the confining vol-
ume, MT size distribution, temperature, would a↵ect
the capture process, yet, one would be curious to iden-
tify the most distinguishing characteristics of one mech-
anism from another which go beyond parameter varia-
tions. A computational study was done for a single
MT [24] and it concluded that angular di↵usion indeed
impart advantage in capture when combined with dy-
namic instability, but by a meagre amount of ⇠ 25%.
We note that the cases of biological interest whether it
be fission yeast or higher eukaryotes all have multiple
MTs (N > 1). In this work, we computationally study

first capture time statistics [44, 45] with varying N for
fission yeast, and compare the di↵erent scenarios — our
aim is to unravel the advantages and drawbacks of RD
over S&C.

One major finding from this work is that while there
is a temporal advantage of RD over S&C for fewer MTs,
with increasing N that ceases to be the case. This role-
reversal is not apparent by looking at the mean capture
timescales, a measure that is commonly used to char-
acterize a stochastic capture event. One needs to be
careful, as the sampled timescales of the first capture
in confined geometries often do not exhibit a central
tendency — hence the mean time is inadequate and of-
ten a misleading representation of the stochastic times
[46–49]. We highlight the weakness of this measure and
argue for a more robust measure, namely the typical

time. Typical time is associated with the tail of the
capture-time distribution. Although this timescale rep-
resents capture events with low occurrence probabili-
ties, yet, should be of interest to experimentalists since
they set the upper limit to the timescales for comple-
tion of an event. We adapt an algorithm [50, 51] to
compute the fraction of lost KC to a strikingly high
precision [⇠ 10�17], and thus obtain the typical times
with high accuracy. We further propose a new alternate
method to estimate typical time by using extreme value

statistics [52, 53], which may be useful to experimental-
ists. A careful study of the typical time shows that for
large N , the mechanism of S&C is decisively advanta-
geous over RD, rationalizing its ubiquitous presence in
most eukaryotic cells.
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FIG. 2. The fraction of lost KCs or survival probability S(t) as a function of time is a non-exponential function with
an asymptotic exponential tail. (A) S(t) for RD mechanism with N = 45 MTs (all having same ✓MT , but random �MT

initially) is plotted against time in a semi-log plot. Curves with di↵erent colors indicate di↵erent relative initial orientations
(�✓ = (✓MT �✓KC)) of the MTs with respect to the KC (✓KC = 0 at t = 0). It is apparent that S(t) curves for three di↵erent
initial conditions are all distinct. Yet at large times, the memory of the initial conditions go away — the tails of the curves
become parallel to each other following exponential forms with the same decay constant. This shows that although mean
times hti are initial condition dependent, typical times ⌧ are not. (B) S(t) curves for three di↵erent mechanisms are shown.
Three di↵erent cases of N = 5, 45, 122 are shown in green, blue and red colors, respectively. As may be seen, the timescales of
models RD and RD+S&C are close, while that of S&C are comparatively larger. The curves are non-exponential functions
indicating the presence of multiple timescales, particularly for large values of N .

I. RESULTS

We numerically study the first capture of a KC to
one of the N MTs inside the fission yeast nucleus (see
Fig. 1(A)). Previous in vivo experiments [16] found that
the MTs exhibit a state of pause with RD, which lasts
for ⇡ 2.05 min, between the usual growth state (of
⇡ 0.56 min) and shrinkage state (of ⇡ 0.39 min), while
the KC di↵uses inside the nucleoplasm (see Fig. 1(B)).
Experiments showed that the KC can attach to the MT
tip (tip capture) or, at any point along the length of the
MT body (lateral capture) (see Fig. 1(C)). In the fol-
lowing sections, we present the results for lateral capture
while the results for tip capture are discussed in the Sup-
plementary Information (SI ). Here, our primary aim is
to compare the e�ciency of di↵erent capture mecha-
nisms as a function of MT number N . This is done
by comparing models that allow us to separately iden-
tify the relative contributions due to chemical kinetics
and that due to mechanics. First, we study a model
(already introduced in [16]) in which growth-shrinkage
kinetics of the MT is ignored. Preformed MTs of typ-
ical length L

MT

, pivoted at the SPB, sweep the space
in search of a KC — this case of pure rotational dif-
fusion of MTs will be referred as the RD model (see
Fig. 1(D)). Similarly, one may imagine a hypotheti-
cal scenario in which the MTs in fission yeast did not
have a pause state, like in many other eukaryotes, but a
switch directly from the growth to a shrinkage state —
we will refer to this pure search-and-capture case sim-
ply as the S&C model (Fig. 1(D)). We further compare
these two cases with a third scenario in which there is
growth-pause-shrinkage kinetics as seen in the experi-
ments, but during the paused state, the angular motion
of MTs are suppressed— this will be referred to as the
S&C+P model (Fig. 1(D)). Although rather artificial,

a similar S&C+P model has been considered earlier in
a computational work but only for N = 1 [24]. Here
we study the case for completeness, with varying N .
Finally, to have a benchmark, we also study the full
model that incorporates all the features observed in ex-
periments, i.e. a MT performing both RD and growth-
pause-shrinkage kinetics simultaneously — we will refer
to it as the RD+S&C model henceforth (Fig 1(B) and
Fig 1(D)). The simulation details of these four models
are discussed in Sec. III. The parameters for all these
models are taken from the in vivo measurements re-
ported in [16] (See Table III for details).

The random times at which the capture of a KC hap-
pens by any one of the N MTs have a probability dis-
tribution function F (t), which is called the first passage
time distribution [44]. The fraction of lost KC as a func-
tion of time which was experimentally measured [16], is
referred to as the survival probability in the stochastic
process literature and will be denoted by S(t) [44] —
it is known that S(t) =

R1
t

dt0F (t0). For capture pro-
cesses in free space, S(t) typically has power-law tails
(S(t) ⇠ t�� , for t ! 1), while in confined geometries
(like in our study, where the KC capture takes place
inside the nuclear volume), it is expected to have expo-
nential tails asymptotically: S(t) ⇠ exp(�t/⌧) [44, 54].
Usually, the asymptotic behavior is hard to determine
as obtaining S(t) to high precision is challenging. In
this study using an algorithm of repeated enrichment
[50, 51] (see Method 1 in Sec. III for details), we have
obtained S(t) for the di↵erent models upto precisions
⇠ 10�17 (see Fig. 2(A)-(B)). One should note that mul-
tiple timescales are often present in the S(t) curves,
which are not single exponentials (this is apparent in
Fig. 2(A)-(B)) — this important feature has not been
highlighted in earlier literature (see also Fig. S1 in SI ).
Moreover, all previous theoretical studies have focussed

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 18, 2019. ; https://doi.org/10.1101/673723doi: bioRxiv preprint 

https://doi.org/10.1101/673723
http://creativecommons.org/licenses/by-nc-nd/4.0/


4

only on the mean capture times. In what follows, we
would first discuss the mean capture time defined as
hti =

R1
0

dt0t0F (t0) =
R1
0

dt0S(t0). Then we would
point out its limitations, and focus on the typical time
⌧ , associated with the exponential tail of the S(t) func-
tion. We would argue that ⌧ is a better representative
than hti to compare the RD and S&C mechanisms.

TABLE I. Lateral capture times by 5 MTs

Models <
t > (min)

⌧ (min)

RD

⇤ 5.38 ⇤ 8.75
RD+S&C 6.52 10.87
S&C 11.56 16.39
S&C+P 17.58 22.22

⇤ htiRD value shown here includes a growth time
value of 0.56 min. See Fig. 3 for details.

A. Mean time of KC capture

Kalinina et al. showed that the dependence of the
fraction of lost KCs on time can be nicely explained
using the RD model for N ⇠ 3 � 5 MTs (see Fig. 3(c)
in [16]). We estimate the mean capture time hti ⇡ 4.30
min from their experimental data (Fig. 1(b) in [16]). In
Table I we have listed the various hti for 5 MTs, com-
puted using the di↵erent models (see Fig.1(D)). It is
assuring that the RD+S&C model, which incorporates
all the features in the experiments gets reasonably close
to the experimental estimate (hti

RD+S&C

' 6.52 min).
Interestingly, for the RD model, hti

RD

' 5.38 min —
it is almost same as the RD+S&C case, and in fact is
marginally closer to the experimental value. This hints
that if the MTs su↵er catastrophe (which happens in
the RD+S&C model but not in the RD model), a de-
lay is introduced in the capture process. The fact that
this delay is indeed due to dynamic instability, is fur-
ther confirmed by study of the pure S&C model which
has hti almost twice compared to the RD model (see Ta-
ble I). Finally, for the dynamically unstable MTs along
with a pause state which do not rotationally di↵use (i.e.
the S&C+P model), the time taken is even larger. This
trend of ascending order of timescales with the elimi-
nation of angular di↵usion continues even at higher N
(see Fig. 3 and Tables S1 and S2 in SI ). In particu-
lar, for the range of small N relevant to fission yeast,
capture times are thus decisively minimised by the RD

mechanism. On the other hand in S&C, time on an av-
erage is wasted due to repeated catastrophes — this is
not a preferable strategy, particularly for organisms like
fission yeast, having fewer spindle MTs. The hti for all
the models converge to the limit of mean MT growth
time of ⇡ 0.56 min at large N . Are there interesting
statistical di↵erences between the models at large N
which is masked by this saturation in hti? Why is S&C

so ubiquitous in the eukaryotic world?

FIG. 3. Comparison of capture-time e�ciency using the
mean capture time hti. We plot here hti versus N on a log-
log scale for all the cases shown in Fig. 1(D). N is varied
from 1 to 500. Here we particularly highlight the important
cases RD (blue) and S&C (orange) by plotting them with
both symbols and lines. We also show the cases for S&C+P

(green) and RD+S&C (red). Clearly RD is faster than
S&C, as well as the other cases. Mean time of RD+S&C and
RD are close over the full range of N studied. Mean time
of RD for N = 5 is close to the experimental value (cyan
line). At large N all the hti values saturate to a threshold
⇡ 0.56 min which is time taken on an average by the MTs
to grow from the SPB to its average length LMT . Since the
RD model does not take the initial growth of the MTs into
account, we have added a growth time 0.56 min to htiRD

here, for comparison with other models.

Is mean time an adequate representative of the KC capture

times?

Mean time is very frequently used to characterize first
passage processes in both theoretical and experimental
studies, yet could be misleading due to two reasons.
Firstly, the entire S(t) curve strongly depends on the
initial spatial distribution of the KC and MTs. In our
simulations, with the RD mechanism, we have chosen
the N MTs to be initially oriented in random direc-
tions. This we believe is a generic initial condition.
But in Fig. 2(A) we show that, if instead, the MTs
were initially oriented in other special directions, the
S(t) curves could be di↵erent. Consequently, the corre-
sponding mean times would be distinct for the di↵erent
initial conditions. Thus the mean first capture time is
not a robust quantity to characterize the KC capture
times, and is dependent on the initial arrangements of
cellular components. This fact is not specific to this
problem and well known in the stochastic process liter-
ature [44].

Secondly, we see in Fig. 2(B), that for small N ,
the S(t) curves are almost single exponentials, while
with increasing N , existence of multiple timescales are
clearly visible (see Fig. S1 in SI ). In such cases, where
the statistical data do not exhibit a central tendency, a
mean value maybe misleading. Recent works on first
passage problems in confined geometries have made
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FIG. 4. The adequacy of hti is tested by studying the nor-
malized distribution of the uniformity index ! (see Sec. I A)
for di↵erent MT numbers (shown in di↵erent colors). For
any given case, a deviation of P (!) from a unimodal shape
would arise due to large variability in the measured capture
times. Here we show P (!) for (A) RD and (B) S&C models.
Clearly P (!)|RD is bimodal for all N , thereby showing that
htiRD is not a good representative of the overall statistics.
P (!)|S&C on the other hand, is bimodal for small values of
N , but becomes unimodal when N becomes large.

such observations [47–49]. Any large variation of cap-
ture times between trajectories can be quantified by an
indicator called the uniformity index ! [49]. If t

1

and t
2

are two instants out of a random set of capture times,
then one defines ! = t

1

/(t
1

+ t
2

). When times are not
too di↵erent, t

1

will be close to t
2

, and hence ! will be
typically around 0.5. To the contrary, if t

1

and t
2

are
very di↵erent, ! will be either close to 0 or 1. Thus
by studying its distribution namely P (!), we may con-
clude how non-uniform the timescales of capture are.
By symmetry, swapping t

1

and t
2

should keep P (!)
invariant, i.e. P (!) = P (1� !).

Since we wish to extract the real extent of trajectory
to trajectory variations for each model, we subtract a
common o↵set from the actual capture times, namely
the minimum growth times of MTs before capture.
From these set of modified capture times, we construct
the probability distribution P (!) as defined above. The
results for the case of RD and S&C mechanisms, for
di↵erent MT numbers N , are shown in Fig. 4(A) and
Fig. 4(B), respectively. For the RD model (Fig. 4(A)),
P (!) has a peak near ! = 0 and 1, for both small
as well as large N . Thus KC capture by this mecha-
nism has large time variations across trajectories (for
any N), and hence a mean value would not represent
the frequently sampled times. On the other hand in the
S&C case (Fig. 4(B)), while for small values of N there
is a peak near ! = 0 and 1, with increasing N , the
peak shifts near ! = 0.5. Thus for large N , mean val-
ues should be good representatives of the KC capture
times by the S&C mechanism.
Given that P (!) indicates large timescale fluctua-

tions for small N (which is relevant for fission yeast),
for both RD and S&C, we need a more robust mea-
sure to characterize the information of fluctuations con-
tained in the processes. A natural thought would be to
look at the variance of times. But we note that like
mean times, variances would also be dependent on ini-
tial positions, since the whole S(t) curve does so (recall

Fig 2(A)). Moreover, variances do not quantify the ex-
treme temporal fluctuations. For that we need to study
the typical capture time associated with the exponen-
tial tails of S(t), namely ⌧ . For the rest of the paper,
we shift our focus to this interesting quantity ⌧ , which
is also preferable as it is una↵ected by any variation in
initial conditions. We discuss this in details below.

FIG. 5. Comparison of capture-time e�ciency by studying
the typical capture time ⌧ . Similar to Fig. 3, here ⌧ versus
N is plotted on a log-log scale for all the di↵erent cases
(Fig. 1(D)). N is varied from 1 to 500. Again the main
cases RD (blue) and S&C (orange) are highlighted with
additional lines joining data points. For small N values,
both ⌧RD and ⌧S&C decreases with growing N , with RD

being more e�cient than S&C. As N increases, ⌧RD starts
saturating beyond N ⇡ 20 while S&C keeps on decreasing
leading to a crossover. The ⌧ due to S&C+P (green) and
RD+S&C (red) are also shown.

B. Typical time of KC capture

In Fig. 2(A), we see that although S(t) curves are dis-
tinct for di↵erent initial conditions, all the curves have
parallel slopes at large time, indicating that they have
the same decay constant ⌧ . Thus the typical time ⌧ ,
although dependent on MT number N , is independent
of the initial spatial orientations of the MTs and hence
is a rather robust quantity. Physically this happens as
⌧ represents timescales of rare events of KC capture in-
volving long trajectories of motion which remove initial
memories. Biologically, extreme times are important to
estimate upper bounds on completion of the KC cap-
ture process which a↵ects mitosis. Since S(t) may be
obtained rather precisely by a computational method
(see Method 1 in Sec III), we obtain ⌧ very reliably.
To compare the e�ciency of the two mechanisms, we

plot ⌧ as a function of N in Fig. 5. For completeness,
we compare the ⌧ for all the four models (see Fig. 1(D)),
but our primary focus is to highlight the di↵erences be-
tween RD and S&C (plotted with symbols and dotted
lines in Fig. 5). Importantly, when N is small, we see
that ⌧

RD

< ⌧
S&C

. Thus for few MTs, RD is more
e�cient than S&C — a conclusion similar to the one
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shown above in Fig. 3 based on the comparison of hti,
and consistent with the experimental findings of [16] for
fission yeast. On the other hand, as N increases, ⌧

RD

starts saturating for N ' 20 while ⌧
S&C

continues to
decrease monotonically. This leads to a crossover be-
tween the two cases. Thus S&C mechanism is more
advantageous temporally for cells with larger number
of MTs. This is consistent with the observation that in
many eukaryotes, where a large number (few hundreds)
of spindle MTs are present [15, 38], dynamic instability
driven capture of KCs are prevalent.
Fig. 5 also shows the typical times obtained from the

RD+S&C and the S&C+P models respectively (plot-
ted only with symbols in Fig. 5). Similar to Fig. 3,
⌧
RD+S&C

⇡ ⌧
RD

for small N . However as N increases,
the contribution due to dynamic instability starts dom-
inating leading to a crossover such that at large N
⌧
RD+S&C

< ⌧
RD

. This feature is also observed for the
S&C+P model — although at small N it less e�cient
than the RD model (⌧

S&C+P

> ⌧
RD

), as N increases,
it becomes more e�cient (⌧

S&C+P

< ⌧
RD

).

FIG. 6. Explanation of the saturation of typical time ⌧ in
the RD model. (A) schematic of the RD model with finite
number of MTs. (B) Schematic for N ! 1 limiting case.
The RD model now consists of regions (sub-volumes shown
in blue) which cannot be accessed any more. A KC starting
from the central region can get captured at either of the
surfaces bounding the sub-volumes. As a consequence in
(C), ⌧RD saturates with growing N to a limiting value. This
limiting value of ⌧ lat

sat ⇡ 1.56 min, obtained by simulating the
KC di↵usion in presence of two curved absorbing surfaces
(shown in (B)), is shown with a dashed line in (C).

Why does typical time ⌧ saturate with increase in N for

RD?

The saturation of the value of ⌧ with increasing N in
case of RD indicates that there exists a lower bound on
time of KC capture that may be achieved by the mech-
anism. By adding more MTs beyond a certain num-
ber, the capture process cannot be made more e�cient.
What leads to such a saturation in ⌧ (Fig. 5)? Note
that, this saturation occurs at a higher value (⇡ 1.56
min) than the saturation in hti (⇡ 0.56 min) (Fig. 3). In
our model, the MTs have equal length, and therefore a
MT tip di↵uses on a curved surface which is a portion of
a spherical surface with radius L

MT

, ✓
MT

2 [0, ✓max
MT

]
with ✓max

MT

= cos�1(L
MT

/2R), and �
MT

2 [0, 2⇡].
There are two such surfaces accessed by MTs originat-
ing from both the SPBs. As N becomes large, the en-

tire volume below (and above) the surfaces traced out
by the tips of these numerous MTs (see Fig. 6(B)) be-
comes inaccessible to the KC since they get instanta-
neously captured there. To show that this is indeed the
reason, we performed a separate simulation represent-
ing the N ! 1 limit — here the initial position of the
KC is taken around the equatorial plane between two
curved absorbing surfaces (see schematic in Fig. 6(B)).
From this second simulation, we obtained a typical cap-
ture time ⌧ sat

RD

⇡ 1.56 min. This is represented with a
dashed line in Fig 6(C) — the re-plotted data of ⌧

RD

(already shown in Fig 5) completely converges to the
dashed line at large N . This confirms our reasoning for
the saturation based on geometrical constraint. The
saturation of ⌧ with increasing N in the RD model is a
generic phenomenon due to the existence of a spatially
absorbing continuous surface that restricts the KC dif-
fusion within a sub-volume. To show this, we further
present numerical and analytical calculations for a toy-
model (see SI ).

C. How to estimate typical time from
experiments?

We have shown above how typical time ⌧ is a very
reliable quantity to compare the e�cacy of di↵erent
mechanisms of capture. While it is possible to estimate
⌧ from the S(t) curves, which are obtained numerically
up to high precision using Method I (see Sec. III), it may
seem inaccessible to experimentalists who would typi-
cally have limited number of measured samples. For ex-
ample, in [16], KC capture statistics was obtained using
an assay with < 100 cells. Here we propose a method
(see Method 2 in Sec III for details) based on extreme

value statistics [52, 53], using which a reasonable esti-
mate of ⌧ may be obtained from limited available data.
If the experiment consists of an assay with N

t

fission

yeast cells, each cell giving a random capture time, then
the idea is to divide the measured times into N

2

sets,
each containing N

1

= N
t

/N
2

samples. The maximum
times t

max

drawn from these N
2

sets have a variance
which is related to the typical time ⌧ (see Eq. (4) in
Sec. III). In Table II, we see that for S&C, for just
N

1

= 100 and N
2

= 10, an experimentalist may get
⌧ values not too di↵erent from the accurate values ob-
tained by Method 1. For RD, we see in Table II that
convergence to ⌧ from Method 1 requires a relatively
larger sample set, namely N

1

= 1000 and N
2

= 100.
These results of ⌧ from Method 2, just like the earlier
results based on Method 1 discussed above, reconfirm
that for small N , RD is more e�cient, while for large
N , S&C would be a preferable mechanism of capture.
We hope that this Method 2 will be widely used hence-
forth by experimentalists, for studying the typical times
in first passage processes in cellular biology.
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TABLE II. Estimation of typical capture times for RD and
S&C

N

⌧RD (min) ⌧S&C (min)

Method-I
Method-II

Method-I
Method-II

N1 = 1000 N1 = 100
N2=10 N2=100 N2=10 N2=100

5 8.75 9.62 8.58 16.39 12.24 17.97
16 3.72 3.81 3.77 7.41 3.69 6.96
27 2.86 2.91 2.84 5.18 4.97 5.43
45 2.35 1.75 1.51 3.60 3.39 3.76

II. DISCUSSION

Finding KCs by the spindle MTs is a crucial part of
mitosis. The capture should happen fast enough to en-
sure uninterrupted progress of the cell division cycle.
Due to both experimental and theoretical limitations,
a complete physical picture of what dictates such a pro-
cess is still lacking. The cell interior is a complex envi-
ronment which is dynamic and crowded. Furthermore,
the degree of this complexity can vary across organisms.
Why do organisms often select di↵erent mechanisms to
achieve capture? It is a moot question whether the
existence of any specific mechanism is just a random
selection, or, given the machinery and resources avail-
able to an organism, the chosen mechanism optimize
something. A systematic study of first capture times
as a function of MT number N , comparing di↵erent
possible mechanisms is lacking. In this paper we ad-
dress this issue in elaborate details, in the context of
the biophysical problem of KC capture in fission yeast.
We started with the main question whether there is

any advantage of choosing RD, which has only been
reported in fission yeast, over the standard S&C mech-
anism. By numerically studying these two di↵erent
mechanisms and by comparing their typical times ⌧ , we
have shown that RD is more e�cient than S&C only
when the MTs are fewer in number. This indicates that
for any organism that has fewer spindle MTs like fission
yeast, choosing RD over S&C can be advantageous in
terms of time-optimality. Furthermore, the fact that
this mechanism is thermally driven makes it advanta-
geous on energetic considerations as well, than chemi-
cally driven S&C. We also find that for large number
of MTs, the S&C mechanism becomes more e�cient
than angular di↵usion — this may explain the common
occurrence of the latter in eukaryotes.
The fact that fission yeast uses RD to search KCs

instead of the other standard mechanisms has been a
matter of surprise to cell biologists. It is possible that
under special circumstances, fission yeast uses a combi-
nation of both RD and S&C. Such a mixed mechanism
was studied computationally in [24] for a single MT and
compared with the case where the MT undergoes dy-
namic instability with a paused state and no angular
di↵usion (similar to our S&C+P case). In this work,
we have studied N > 1, and systematically compared
mean and typical times (see Table. I, Fig. 3, Fig. 5 and

Fig. S1, Table S1, Table S2 in SI ) for all the mecha-
nisms (Fig. 1(D)). The fact that RD gives least capture
times stands out. There is a rather simple physical ar-
gument for this. For a few MTs, it is obvious that RD
helps them explore a larger solid angular space than
S&C in a fixed time. In the latter case, mis-oriented
MTs and their times of growth-shrinkage may both lead
to additional delays in the first encounter with the KC.

In this work, we have raised an important question:
what is a robust measure to quantify the capture time
statistics of the KCs? In all previous studies on KC
capture, mean first-passage time hti has been used to
study the capture [15, 22, 23]. Mean times (undesir-
ably) depend on initial conditions, and moreover the
meaningfulness of hti is often in question for broad dis-
tribution of capture times. To emphasize this point, we
studied the distribution of the uniformity index P (!),
which if not unimodal at ! = 0.5, indicates huge varia-
tion across trajectories. We show that the case of RD,
the fluctuations persist for all N , while in the case of
S&C the fluctuations reduce as N becomes large. This
can be understood in a heuristic way. The first passage
distributions for both RD and S&C are not pure expo-
nentials, having contributions of various short and long
timescales. The long timescales arise from long di↵u-
sive excursions of a KC which escapes hitting any of
the MTs. In case of RD, since KCs and MTs di↵use in
the space available — although the mean time reduces
with increasing N , the diversity of capture times due
to very long and very short excursions persist for any
N (Fig 4(A)). On the other hand, for S&C, since MTs
move rectilinearly in 3d space, they appear as static
line traps in the path of the di↵using KCs. Thus in this
case, with increasing N , there is a fall in the number
of long excursions due to a rise in the number of these
traps, making P (!) more unimodal (Fig 4(B)). This
finding that at large N , hti is a good measure for the
S&C mechanism, is a good news for all the previous
studies where the hti has been measured for organisms
with large number of MTs [15, 22].

We use typical time ⌧ to distinguish between the cap-
ture events due to the two mechanisms with varying N
(Fig 5). Although ⌧ is a robust quantity, estimating it
may seem challenging a priori, as it is associated with
events of low probability. In this work, following an
algorithm based on successive cloning of the system,
we demonstrated that S(t) may be obtained to a high
degree of precision (⇠ 10�17) (Fig 2). Thus a very accu-
rate estimate of ⌧ is possible in practice, and we hope
that this method could be extensively used in future
in computational studies of similar problems. Further-
more, we suggested an alternate method based on the
theory of extreme value statistics, which may provide
an approximate estimate of ⌧ (see Table II, Method
2 in Sec. III). This may be of practical importance
to experimentalists with access to limited sample sizes,
nevertheless seeking an estimate of the upper bound of
times for first capture.

We have shown that ⌧ saturates with an increase in
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N when MTs execute RD. This saturation of ⌧ is ex-
pected to be quite general and may be seen in other
organisms with pivoted MTs — this is because pivoted
MTs cannot explore more than a restricted hemispher-
ical region of space even for N ! 1 (Fig 6). An im-
plication of this saturation in ⌧ with N for fission yeast

is that, increased number of microtubules do not re-
duce the time of capture beyond a certain point. On
the other hand for S&C, ⌧ can in principle be reduced
indefinitely as the entire available volume becomes ac-
cessible with increasing N . This implies that S&C will
be preferred to RD by organisms having large number
of spindle MTs. To show the crossover clearly, in our
computational study, we considered N upto few hun-
dreds. However, what is more important is the onset
of saturation of ⌧

RD

around N ' 20, which is not very
large.

How do the capture times scale with N? Earlier stud-
ies on S&C had suggested a heuristic form of hti ⇠ 1/N
based on certain simplified assumptions including a
static KC [22]. For the more biologically relevant case
with moving KC, this conclusion is no longer valid and
requires a systematic study. Here we would like to sum-
marize some of the facts which have emerged from our
study. For a simple case with a static KC, the typical
time ⌧ / 1/N , as in this case the problem simplifies to
N independent capture events by N MTs [44]. On the
other hand, the motions of the N MTs relative to the
moving KC get correlated, thus leading to non-trivial
dependence of the mean and typical times on N . For
the case of S&C, the typical time ⌧ shows a power law
decay ⇠ N�� , with an exponent � ⇡ 0.7 over a consid-
erable range of N (see Fig. S4(A) in SI ). For the mean
time hti, a power-law dependence is seen only over a
limited range of N with an exponent value ⇡ 1.1 (see
Fig. S4(B) in SI ). Although here we numerically study
the S&C process for the case of fission yeast, such N -
dependence may be present in other capture problems
under confinement. Interestingly there is a classic prob-
lem in stochastic process literature of N lions chasing a
moving lamb, which is very similar to our problem of N
MTs searching a KC. While some results are known in
free space for that problem [55, 56], for a closed volume
like a cell, our unpublished results [57] show diverse
power-law dependences of ⌧ on N .

In this work, for simplicity, we have ignored the finite-
volume of the MTs. For a small number of MTs, as in
the case for fission yeast, this assumption holds true. As
N is increased, the excluded volume e↵ects might be-
come important. Moreover, there is an upper limit on
the number of MTs that can be accommodated on the
surface of a SPB (see SI ). For S&C, since MTs growing
radially out of the SPB do not explore the volume lat-
erally, this e↵ect has been neglected as in earlier works
[15, 22]. For the RD mechanism, this e↵ect will become
important beyond a certain MT number — this may be
studied using more sophisticated computational models
in future. However, the broad conclusions that we draw
from this work, like the relative capture time e�ciency

of RD over S&C for di↵erent ranges of N are expected
to remain unchanged. Moreover, the saturation that we
see in ⌧ with increasing N for RD, is expected to occur
at a lower value of N .

It might be worth speculating, if there are further ad-
vantages of choosing RD over S&C in fission yeast. The
RD and S&C mechanisms may be compared through
two temperature (T ) dependent parameters: di↵usion
coe�cient (D) and reaction rate(s) k. Since D ⇠ T
and k ⇠ exp(�const/T ) (Arrhenius law) [58], a small
change in temperature would cause a large change in
k in comparison to D. As a result a di↵usion driven
random process will be comparatively less sensitive to
temperature variations. This fact might be beneficial
for fission yeast to cope with large temperature varia-
tions.

We hope that our findings may encourage future
studies comparing capture mechanisms in di↵erent or-
ganisms with varying spindle sizes (and hence varying
number of MTs). This may test our basic hypothesis
that physical advantages of one mechanism over others
may drive their selection.

III. MATERIALS AND METHODS

SIMULATION METHOD OF THE MODELS

Here we first discuss the computational models to
study the attachment of MTs to the KC by RD and
S&C. The KC is assumed to be a small sphere of radius
a, which di↵uses freely in the nucleoplasm. The nucleus
is modelled as a sphere of radius R. MTs can nucleate
from either of the spindle-pole-bodies (SPB). All the
parameter values used in our simulations (see Table III)
were taken from experimental measurements done at
T = 24�C [16].

A. Kinetics of the Kinetochore

For all the four models that we study in this paper
(Fig. 1(D)), the KC dynamics is identical. The over-
damped dynamics of KC [16, 45], is given by

dr
KC

dt
=

p
2D

KC

⇠
KC

(t). (1)

Here, r
KC

is the position vector, and D
KC

is the trans-
lational di↵usion coe�cient of the KC. The components
of ⇠

KC

(t) are Gaussian white noise with mean zero
and delta correlations h⇠

i

(t)⇠
j

(t0)i = �
i,j

�(t � t0) with
i, j = x

KC

, y
KC

, z
KC

. The initial position of the KC is
uniformly distributed inside a small sub-sphere around
the center of radius 0.3 µm. At the nuclear boundary,
reflecting boundary condition is applied along the ra-
dius vector joining the KC and the center of the nuclear
sphere.
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B. Langevin simulation for Rotational Di↵usion
of MTs

In this process, all the MTs are assumed to have
fixed lengths L

MT

, pivoted at either of the SPBs (see
Fig. 1(D)). In the overdamped limit, the equation of
motion for the MT in spherical polar coordinates is
given by [16]

d✓
MT

dt
= D

MT

cos ✓
MT

sin ✓
MT

+
p
2D

MT

⇠
✓MT (t), (2)

d�
MT

dt
=

p
2D

MT

sin ✓
MT

⇠
�MT (t). (3)

Here, D
MT

is the angular di↵usion coe�cient of the
MTs. Similar to ⇠

KC

, here ⇠
MT

= (⇠
✓MT , ⇠�MT ) is a

Gaussian white noise with mean zero and delta cor-
relations. The initial orientation of the MTs pivoted
at the SPBs are distributed uniformly inside the nu-
clear envelope. Since MT length r

MT

= L
MT

is a
constant, the tip of a MT is always constrained to dif-
fuse on a portion of a spherical surface of radius L

MT

,
with 0  ✓

MT

 ✓max

MT

and 0  �
MT

 2⇡. Here
✓max

MT

= cos�1(L
MT

/2R)]. Reflecting boundary condi-
tions are applied when the MT tip hits the boundary.

C. Langevin-Gillespie hybrid algorithm for
Search and Capture

The search-and-capture S&C mechanism involves dy-
namic instability of MTs [17, 20]. Experiments [16]
however showed that the MTs exhibit a state of pause
(P) before switching from the growth (G) to the shrink
(S) state (also adapted in [24]). To compare the rela-
tive e�ciency, here we study di↵erent models of S&C

both with or without the P state. MTs have a tubular
structure consisting of typically 13 proto-filaments [1].
Thus when 13 tubulin dimers are added (or subtracted),
length of a MT r

MT

increases (or decreases) by a length
of 8 nm. Since we do not have explicit protofilaments
in our models, we take care of this by choosing the ef-
fective subunit length of each dimer to be 8/13 nm in
simulations as has been done in earlier works [59–61].
In all our dynamic instability models, each MT starts
out in a random direction with a ‘seed’ length l

min

of
20 dimers (i.e. 20⇥8/13 ⇡ 12 nm) and grows by adding
subunits with rate r

+

. In S state, a MT shrinks back
to the cuto↵ length l

min

by losing subunits with rate
r�. Subsequently, the MT switches back to the G state
choosing a new random direction.

To simulate our models, we use a combination of
Langevin dynamics and kinetic Monte Carlo. The
KC position is updated using the Langevin equation
(Eq. (1)), whereas the dynamic instability of a MT is
modelled using Gillespie algorithm [62].

1. Pure search-and-capture model (S&C)

This is the standard dynamic instability model where
the P state is ignored (see Fig. 1(D)). MT switches from
the G to the S state with catastrophe frequency f

+�
keeping its orientation fixed. When a growing MT tip
hits the nuclear envelope, it switches to the S state
keeping its orientation unchanged.

2. Search-and-capture with stationary MTs in pause
state (S&C+P)

In this case a MT switches from G to P with fre-
quency f

+0

and P to S with frequency f
0� keeping its

orientation fixed (see Fig. 1(D) and Table III). Upon
hitting the nuclear envelope, the MTs switch to the P
state.

3. Search-and-capture with rotational di↵usion
(S&C+RD)

This model incorporates all the features observed in
the experiments. A MT undergoes both rotational dif-
fusion and dynamic instability (i.e G!P!S) simulta-
neously (see Fig. 1(B) and Fig. 1(D)). The state of MT
remains unchanged on hitting the nuclear envelope. In
this model unlike S&C or S&C+P, MTs not only have
a Gillespie update due to growth, pause and shrink-
age, but also has a simultaneous Langevin update due
to rotational di↵usion following Eqs. (2-3). But while
the Langevin updates of KC and MT are more frequent
and happen at chosen time intervals �t, the Gillespie
updates for MT growth, pause and shrinkage events
happen occasionally after several such �t intervals.

Since the length r
MT

varies, we chose a length de-
pendent angular di↵usion constant D̃

MT

= D
0

/r3
MT

[63–65] for r
MT

> L
MT

, where D
0

= D
MT

L3

MT

(see
Table III). For r

MT

 L
MT

, we use D̃
MT

= D
MT

—
note that having a r�3

MT

dependence all the way down
to small values of r

MT

would lead to unrealistic values
of D̃

MT

.

D. Capture Conditions

The positions of the MT tip and the center of mass
of the KC are given by r

MT

= (r
MT

, ✓
MT

,�
MT

) and
r
KC

= (r
KC

, ✓
KC

,�
KC

) respectively. The angle sub-
tended at the SPB is:

� = cos�1

⇣r
KC

· r
MT

r
KC

r
MT

⌘

As discussed earlier, the KC can attach to the tip

of the MT or laterally along the body (Fig.1(C)). The
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TABLE III. Parameter values used in simulation
Models Parameters Values
RD Radius of nuclear

sphere (R)
1.55 µm

Radius of KC (a) 0.124 µm
Length of MT
(LMT )

1.5 µm

DKC 0.0354 µm2min�1

DMT (angu-
lar di↵usion
coe�cient)

0.0603 rad2min�1

Dynamic

Instablil-

ity

DKC 0.0354 µm2 min�1

Tubulin subunit
length

6.15⇥ 10�4µm

Growth rate (r+) 4387.5 subunit min�1

Shrinkage rate
(r�)

6175 subunit min�1

S&C G to S frequency
(f+�)

1.8 min�1

S to G frequency
(f�+)

0 min�1

S&C+P G to P frequency
(f+0)

1.8 min�1

P to S frequency
(f0�)

0.49 min�1

P to G frequency
(f0+)

0 min�1

S to P frequency
(f�0)

0 min�1

RD+S&C D0 0.2036 rad2 min�1µm3

D̃MT D0/r
3
MT

(if rMT >= 1.5 µm),
0.0603 rad2min�1

(if rMT < 1.5 µm)
G to P frequency
(f+0)

1.8 min�1

P to S frequency
(f0�)

0.49 min�1

P to G frequency
(f0+)

0 min�1

S to P frequency
(f�0)

0 min�1

lateral capture condition is: r
KC

cos �  r
MT

and
r
KC

sin �  a, or |r
KC

� r
MT

|  a. For tip capture

(see Fig. S2 in SI ), the capture conditions we use are in
conformity with the criterion used by Kalinina et al. in
their experiments [16].

METHODS TO ESTIMATE TYPICAL
CAPTURE TIME

For the randomly sampled first capture times of KC
by MTs in the models discussed above, the typical times
⌧ are challenging to estimate. We discuss below two

di↵erent methods for estimating ⌧ , which we have used
in this work.

E. Method 1: Cloning of systems to calculate S(t)

FIG. 7. Illustration of the algorithm of Method-1 to cal-
culate the survival probabilities S(t) to high precisions. In
this figure, M = 4 and N = 1.

As discussed in Sec. I B, the asymptotic behavior of
the survival probability S(t) is independent of the ini-
tial positions of the MTs and the KC and behaves as:
lim

t!1 S(t) ⇠ exp(�t/⌧). However this robust asymp-
totic exponential tail may appear at very small values
of S(t). Standard computational methods often fix a
precision like ⇠ 10�8 for S(t) and try to get the tail be-
havior from large samples of t. Howsoever large number
of samples are used, at such ordinary levels of preci-
sion, the asymptotic tail may not even appear and so
accurate determination of ⌧ remains a challenge. How-
ever an algorithm, developed earlier in the context of
reaction-di↵usion systems [50, 51], may be very e↵ec-
tively extended to study problems of survival in con-
fined geometries and in particular get accurate esti-
mates of asymptotic behaviour. The main idea of the
algorithm is schematically depicted in Fig. 7. At t = 0,
we start with M random realizations of the system —
each one having N number of MTs and a KC. Initially
the survival probability S(0) = 1. As time evolves,
capture happens in some copies, while in the remaining
(say q(t)) copies the KC continues to survive. Thus at
any time t, we have S(t) = S(0)(q(t)/M). At a time
t = t

1

when q(t
1

)/M = s
1

just becomes  1/2 we
replicate the q(t

1

) surviving copies to restore the initial
ensemble size M — this step is referred to as cloning

or enrichment [51]. Subsequently at any t > t
1

, if q(t)
are the surviving copies, then S(t) = s

1

(q(t)/M) un-
til the next enrichment event happens at t = t

2

when
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q(t
2

)/M = s
2

becomes just  1/2. This process is iter-
ated many times. For k successive such cloning events
S(t) = s

1

s
2

· · · (q(t)/M) = O(1/2k), and thus accura-
cies like ⇠ 10�17 or even lower can be readily achieved.
For such precision of S(t), it is guaranteed that the
exponential tail clearly appears, and so ⌧ is extremely
accurately determined. In our simulations, the choice
of a large number of realizations namely M = 1000 re-
duced fluctuations to a minimal, but the computational
cost was fairly large. Each S(t) curve for a particular
N of each model (Fig 1(D)), is generated by running
the simulation for 96 hours, using the super-computing
facility at IIT Bombay.

F. Method 2: Sampling extreme times

Extreme value statistics deals with extreme (max-
imum or minimum) deviations of a set of random
observations. For a set of independent and identi-
cally distributed random variables {t

1

, t
2

, ..., t
N1} that

are drawn from a parent distribution F (t), one might
be interested in distribution of the leader t

max

=
max{t

1

, t
2

, ..., t
N1}. It is known that if F (t) ⇠

exp(�t/⌧) for large t, then the distribution of (t
max

�
µ)/⌧ approaches the universal Gumbel distribution
[52, 53] for large N

1

. Note that µ and ⌧ are non-
universal constants dependent on the parent distribu-
tion F (t). Interestingly, the variance �2 of the Gumbel
distribution for t

max

is related to the decay constant of

the exponential tail of F (t) as: �2 = ⇡2⌧2/6 (see [53]
and SI ). Thus if one can experimentally or computa-
tionally estimate �2, then one may invert this formula
to get

⌧ =

p
6

⇡
�. (4)

We propose that the above idea may be used for the
purpose of estimating typical times of first capture of
KC by MTs having the distribution F (t). Note that
the decay constants of exponential tail of F (t) and sur-
vival probability S(t) are the same. In computation or
experiment, one needs to first sample N

1

⇥N
2

di↵erent
times of capture. The whole data may be divided into
N

2

sets, each having N
1

sample times. Each such set
may provide a t

max

, such that there would be N
2

such
values. These t

max

values may then be used to obtain
�2. Finally using Eq. (4) one may obtain ⌧ . Table II in
the text show the e�cacy of this method.
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Ratio of typical and mean timescales — Indicator of non-exponential forms of S(t)

For a simple exponential function S(t) = exp(�t/⌧), it is easy to see that the mean time hti =
R1
0 S(t)dt = ⌧

(typical time). But the curves S(t) which we obtain in our study (for example in Fig. 2 in the main text), have
non-exponential functional forms. Nevertheless, they all have exponential tails. The presence of multiple timescales
manifest in the fact that hti 6= ⌧ . Thus, the ratio of ⌧/hti is an indicator of the non-exponential form of S(t). In Fig. 1
below, we plot this ratio (by using the data of Fig. 3 and Fig. 5 in main text) as a function of N for the four di↵erent
models studied in the paper. For a few MTs (< 3), the values of the ratios are slightly greater than 1, indicating that
the corresponding S(t) functions are “almost” single exponentials. But with increasing N there is a strong departure
from exponentiality indicated by the rise of the values of the ratios. In fact, for the RD model even at the largest N
that we studied, the ratio stays very di↵erent from 1. This compliments our finding that P (!) remains bimodal for
the RD model for all values of N (hence showing large trajectory to trajectory fluctuations in capture times). For the
other three models while hti tends to saturate at large N (from Fig. 3 in the main text), the typical time ⌧ continues
to decrease (Fig. 5 in the main text). Consequently, the ratio ⌧/hti shows a plunge in Fig. 1 at large N .

FIG. 1: Ratio of the typical and mean capture times for the four models studied in this work as a function of MT number N .
The black solid line indicates the case of simple exponential.

E�ciency of the RD model with respect to the other models

As discussed in the main text in addition to the mean time hti, the typical time ⌧ is a very useful quantity to study.
Here, we compare the timescales of four models discussed in the main text to demonstrate the quantative temporal
benefit that the RD mechanism produces. The e�ciency of the RD model is expressed in terms of two ratios ⌧

RD

/
⌧

Model

and hti
RD

/hti
Model

in the table below for MT number 1, 3 and 5, respectively. Amongst the three N values
studied below, the e�ciency of the pure RD mechanism is most clearly manifested for N = 5.
In Fig. 3 in the main text, we have shown that the hti

RD

is the smallest compared to all the other models for a
significant range of N . In Table II, we explicitly write some values of hti for the four di↵erent models as a function
of N in descending order of the temporal e�ciency.
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TABLE I: ⌧
RD

and hti
RD

compared to other dynamic instability associated models.

Model
⌧
RD

/ ⌧
Model

hti
RD

/hti
Model

N = 1 N = 3 N = 5 N = 1 N = 3 N = 5

RD+S&C 1.18 0.84 0.80 1.10 0.74 0.74

S&C 0.73 0.57 0.53 0.66 0.44 0.42

S&C+P 0.52 0.41 0.39 0.43 0.30 0.27

TABLE II: hti for di↵erent models as a function of N .

Model
hti (min)

N=5 N=10 N=45 N=122

RD 5.38 2.29 0.73 0.58

RD+S&C 6.52 3.02 0.85 0.59

S&C 11.56 5.44 1.09 0.63

S&C+P 17.58 8.51 1.47 0.71

Typical time for varying MT number for the case of tip capture

In the main text, we have discussed all the results in the context of lateral capture. Here, we study the typical
time for the case of tip capture, as a function of the MT number. We study here the case, where the KC can
attach anywhere within <0.5 µm of the MT tip — this was the definition of tip capture used in the experiment [1].
We find that the qualitative features are similar to the lateral capture case (compare Fig. 5 in the main text with
Fig 2 below). We see that the RD model is more e�cient than the S&C model (and also the other two models) for
smaller N . Similar to the case of lateral capture, here as well we find that ⌧

RD

saturates at large N . All other ⌧

values keep monotonically decreasing. The reason behind the saturation in ⌧

RD

can be explained using the similar
argument of geometrical constraint as in main text. Here, the annular volumes (between radii L

MT

and L

MT

� 0.5)
on both sides of the nuclear sphere become the region of the capture as N ! 1. The condition for tip capture is :
0  (r

MT

� r

KC

cos �)  0.5 and r

KC

sin �  a, or, |r
KC

� r
MT

|  a.

FIG. 2: Typical times for tip capture as a function of N .
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Quasi-2d model to explain the saturation of ⌧ with for the RD model

For large N , we have seen the saturation behavior of ⌧
RD

in Fig. 6 in the main text and Fig. 2 above. Here we
show that this behavior is generic by studying a toy-model analytically and computationally. Consider a circle of
radius b inside which a small disc of radius a (like the KC) di↵uses freely. N point particles (like the tips of N
MTs) di↵use along the diameter (see Fig. 3(A)) of the circle. As N ! 1 the entire diameter becomes an absorbing
line (see Fig. 3(B)). We perform simulations for finite N (see Fig. 3(A)) and plot the data in Fig. 3(C)). We have
performed an analytical calculation for ⌧ which yields ⌧

sat

⇡ 3.10 (a.u) — the latter is represented by a black solid
line in Fig. 3(C). Convergence of the computational values of ⌧ to the analytical value of ⌧

sat

for N > 10 is clearly
visible. The analytical calculation is discussed below.

FIG. 3: A toy model to explain the saturation is shown in (A). A disc di↵uses inside a circle and can get captured along the
diameter where non-interacting particles di↵use along the diameter. (B) The limiting case here is an absorbing line along the
diameter of the circle which is realized for N ! 1. (C) The typical time ⌧ for the toy-model (green filled square) shows
saturation with N . The ⌧

sat

⇡ 3.10 (a.u) (black line) is obtained from the analytical calculation discussed below.

Analytical estimate of ⌧
sat

for the quasi-2d model

Using the Backward Fokker-Planck equation [2], we analytically estimate here the ⌧
sat

value for the quasi-2D model
in the limit of N ! 1 (see Fig. 3(B)). The disk of radius a (similar to the KC) di↵uses inside a semi-circle of radius
b. The diameter of the semi-circle is an absorbing boundary while the semi-circular arc is a reflecting boundary. For
the simplest case where disc is assumed to be as a point particle (a = 0), the backward Fokker-Planck equation for
the survival probability S(r, ✓, t) is given by,

@S

@t

= Dr2
S. (1)

Where, r2 is the two-dimension Laplacian operator in polar coordinates. S(r, ✓, t) is the survival probability of
the particle upto time t starting from initial position (r, ✓). Here D is the di↵usion coe�cient of the disc. We solve
Eq. (1) using separation of variables. Substituting S(r, ✓, t) = R(r)⇥(✓)T (t) in the above equation we get,

1

DT

dT

dt

=
1

R

d

2
R

dR

2
+

1

Rr

dR

dr

+
1

r

2⇥

d

2⇥

d✓

2
.

Equating the left hand side to a constant value �k

2, we get the T (t) solution as

T (t) = T0 exp(�k

2
Dt) (2)

and the above equation becomes

r

2

R

d

2
R

dr

2
+

r

R

dR

dr

+ k

2
r

2 = � 1

⇥

d

2⇥

d✓

2
. (3)
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Equating right hand side to m

2 and applying the absorbing boundary condition ⇥(✓) = 0, at ✓= 0 and ⇡, we get
the solution of the angular part as

⇥(✓) = A sin(m✓) (4)

where, m can be any integer value. Finally, the radial part of the Eq. (3) gives the solution in terms of Bessel functions
of order m,

R(r) = A

m

J

m

(kr) +B

m

Y

m

(kr). (5)

At r = 0, the radial function should vanish due to the absorbing boundary condition. Since Y

m

(kr) diverges as
r ! 0, we drop that term. The above relation is true for any positive integer m. The reflecting boundary condition
leads to the vanishing of the first derivative of R(r) at r = b, i.e., dR

dr

��
r!b

= 0. Using Eq. (5) and the reflecting
boundary condition we obtain [3],

dJ

m

(kr)

dr

��
r!b

=
m

b

J

m

(kb)� kJ

m+1(kb) = 0. (6)

From Eq. (2) the typical time ⌧

sat

= 1/k21D, where k1 is the smallest positive value of k satisfying Eq. (6),

corresponding to m = 1. Assuming k1b is a small number, we approximate J

m

(kb) ⇡ (kb)m

m!2m to finally obtain

k1 ⇡ 2

b

. (7)

Since in our simulation the disc has a finite radius a (see Fig. 3(B)), and the capture happens as the periphery of
the disc touches the diameter, we need to replace the radius b in Eq. (7) by an e↵ective radius b̃. We use a geometrical
appoximation b̃ ⇡

p
R

2 � 4a2 � a. For b = 4.0, a = 0.4 and D = 1, we get ⌧

sat

= b̃

2
/4D ⇡ 3.10 (a.u). We further

confirm this value by directly simulating the case of Fig. 3(B) and find a numerical value of ⌧
sat

= 3.02 (a.u) which
is in good agreement with the analytical approximation of 3.10 (a.u).

Behavior of typical time ⌧ and mean time hti for S&C with N

In the main text, we mentioned the fact that ⌧
S&C

and hti
S&C

have non-trivial dependence on N . To show that,
here we replot the ⌧

S&C

and hti
S&C

data (from Fig. 3 and Fig. 5 in the main text) as a function of N . As it is
apperant, there is no clear power-law form spanning over the full range of N . We fit power-law form ⇠ N

�� over
limited ranges of N in the two cases and extract the values of � (see Fig. 4). These turn out to be � = 0.7 and � = 1.1
for the typical and the mean times, respectively.

FIG. 4: Power-law fits (black solid lines) over limited ranges of N of the data (from Fig. 3 and Fig. 5 in the main text) for (A)
typical and (B) mean times for the S&C model.
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Estimation of maximum number MTs which may grow out of the surface of SPBs

The spindle pole body for fission yeast is oblate shaped with diameters 2d1= 0.18 µm and 2d2 = 0.09µm [4].
Assuming that MTs grow from the surface of SPBs, we may calculate the ratio of the surface area S

A

of a SPB and
the cross-sectional area of a MT. This number gives an estimate of the maximum number of MTs that may grow out
of a SPB. The area S

A

of a SPB is calculated by using the following formula [5],

S

A

= 2⇡d21 + ⇡

d

2
2

e

log
⇣1 + e

1� e

⌘
⇡ 0.0673 µm2

.

Here e = (1 � d

2
2/d

2
1), is the eccentricity of the SPB. Noting that the diameter of a MT is 2d

MT

= 25 nm [6], the
maximum number of MTs that can be accommodated on each SPB is

S

A

/2

⇡d

2
MT

⇡ 69.

The factor of half above takes care of the fact that MTs grow from half of the area of a SPB. Finally considering both
the SPBs at the two poles, we obtain a maximun number of 2⇥ 69 = 138 MTs which may grow within a fission yeast

nucleus.

Estimating typical time using extreme value statistics — derivation of Eq. (4) in the main text

Suppose, {t1, t2, ..., tN1} is a set of independent random variables such that each variable t

i

follows identical distri-
butions, which have exponential tails at large t

i

with the same typical value ⌧ :

F (t
i

) ⇠ C exp(�t

i

/⌧), for large t

i

. (8)

Where, i = 1, .., N1 and C is a constant. If t
max

represents the maximum (extreme) value from each set such that
t

max

= max{t
i

}, then the cumulative distribution of t
max

becomes

Q(t̃) = prob[t̃ � t

max

] = prob[t̃ � t1, t̃ � t2, ..., t̃ � t

N1 ] =
h Z t̃

ti=0
F (t

i

)dt
i

i
N1

=
h
1�

Z 1

ti=t̃

F (t
i

)dt
i

i
N1

(9)

At large t̃, replacing F (t
i

) in Eq. (9) by Eq. (8) we get

Q(t̃) ⇡
h
1� C⌧ exp(�t̃/⌧)

i
N1

. (10)

When N1 is large, Q(t̃) in Eq. (10) can be approximated as follows

Q(t̃) ⇡ exp
⇣
� CN1⌧ exp(�t̃/⌧)

⌘
= exp

⇣
� exp(ln(CN1⌧)) exp(�t̃/⌧)

⌘
= exp

⇣
� exp[�(t̃/⌧ � ln(CN1⌧))]

⌘
,

and it finally converges to the cumulative Gumbel distribution [7]

Q(t̃) ⇡ exp
⇣
� exp[�(t̃� µ)/⌧ ]

⌘
, (11)

with µ = ⌧ ln(CN1⌧).
It is well-known that the variance �

2 of the Gumbel distribution is related to the typical value ⌧ as follows [7]:

�

2 =
⇡

2
⌧

2

6
, (12)

which gives typical time ⌧ as

⌧ =

p
6

⇡

�. (13)
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The Eq. (13) is same as Eq. (4) in the main text. In our work, we find the variance �

2 of t
max

from N2 sets each
containing N1 sample capture times, and estimate ⌧ using Eq. (13) above.
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