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ABSTRACT 

Objective: Accurate electronic phenotyping is essential to support collaborative observational 

research. Supervised machine learning methods can be used to train phenotype classifiers in a 

high-throughput manner using imperfectly labeled data. We developed ten phenotype classifiers 

using this approach and evaluated performance across multiple sites within the Observational 

Health Sciences and Informatics (OHDSI) network. 

Materials and Methods: We constructed classifiers using the Automated PHenotype Routine 

for Observational Definition, Identification, Training and Evaluation (APHRODITE) R-package, 

an open-source framework for learning phenotype classifiers using datasets in the OMOP CDM. 

We labeled training data based on the presence of multiple mentions of disease-specific codes. 

Performance was evaluated on cohorts derived using rule-based definitions and real-world 

disease prevalence. Classifiers were developed and evaluated across three medical centers, 

including one international site. 

Results: Compared to the multiple mentions labeling heuristic, classifiers showed a mean recall 

boost of 0.43 with a mean precision loss of 0.17. Performance decreased slightly when classifiers 

were shared across medical centers, with mean recall and precision decreasing by 0.08 and 0.01, 

respectively, at a site within the USA, and by 0.18 and 0.10, respectively, at an international site. 

Discussion and Conclusion: We demonstrate a high-throughput pipeline for constructing and 

sharing phenotype classifiers across multiple sites within the OHDSI network using 

APHRODITE. Classifiers exhibit good portability between sites within the USA, however 

limited portability internationally, indicating that classifier generalizability may have geographic 

limitations, and consequently, sharing the classifier-building recipe, rather than the pre-trained 

classifiers, may be more useful for facilitating collaborative observational research. 
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BACKGROUND AND SIGNIFICANCE 

Electronic phenotyping refers to the task of identifying patients within an electronic 

health record (EHR) who match a defined clinical profile [1]. Accurate phenotyping is critical to 

support observational research, pragmatic clinical trials, quality improvement evaluations, and 

clinical decision support systems [2,3]. However, issues such as missingness, accuracy and 

heterogeneity in EHR data present major challenges to effective phenotyping [4]. 

The traditional approach to phenotyping has been rule-based, where a cohort is manually 

defined with inclusion and exclusion criteria based on structured data such as diagnosis codes, 

laboratory results and medications [5]. Although several collaborative networks exist for 

generating and sharing rule-based definitions, including the PheKB (Phenotype Knowledge 

Base) [6], these phenotypes are typically labor-intensive to create and require multiple rounds of 

review by domain experts [7].   

Recent efforts to establish common data models for EHRs, including the Observational 

Health Data Sciences and Informatics (OHDSI) [8] and the Informatics for Integrating Biology 

and the Bedside (i2b2) initiatives [9], are enabling large-scale observational research and 

algorithm deployment across sites. To make use of this infrastructure, we need the ability to 

generate complex, generalizable phenotypes more rapidly than rule-based approaches allow [3]. 

Supervised machine learning has emerged as a way to generate phenotypes in a high-

throughput manner [1]. By incorporating a wide range of EHR features, statistical methods have 

shown robust performance for complex phenotypes including chronic pain and rheumatoid 

arthritis [10,11] with some evidence to indicate portability (preserved classification accuracy) 
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across sites [12]. The major bottleneck for supervised machine learning is access to labeled 

training data, which traditionally requires manual chart review by clinicians.  

To address the scarcity of labeled training data, Chen et al. used active learning to 

intelligently select training samples for labeling, demonstrating that classifier performance could 

be preserved with fewer samples [13]. Another trend is the use of “silver standard training sets”, 

a semi-supervised approach where training samples are labeled using an imperfect heuristic 

rather than by manual review [14–19]. The intuition is that noise-tolerant classifiers trained on 

imperfectly labeled data will abstract higher order properties of the phenotype beyond the 

original labeling heuristic (so-called noise-tolerant learning [20]). Halpern et al. have described 

the anchor learning framework where the presence of ‘anchor’ references, which are highly 

predictive of a phenotype and are conditionally independent of other features (i.e. best predicted 

by the phenotype itself), are used to define an imperfect training cohort for phenotype classifiers 

[16]. Similarly, Agarwal et al. developed the XPRESS ( eXtraction of Phenotypes from Records 

using Silver Standards) pipeline where noisy training samples are defined based on highly 

specific keyword mentions in a patient’s EHR [14]. This led to the development of the 

Automated PHenotype Routine for Observational Definition, Identification, Training and 

Evaluation (APHRODITE) R-package, an open-source implementation of the XPRESS 

framework with dynamic anchor learning built on the OHDSI common data model, which has 

shown comparable performance to rule-based definitions for two phenotypes (type 2 diabetes 

and myocardial infarction) [21].  

The current work addresses two questions resulting from the use of APHRODITE. The 

first is about the labeling function used to generate imperfectly labeled training data. While 

APHRODITE uses the mention of a single phrase, we hypothesize that a high-precision labeling 
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heuristic based on multiple keyword (or phrase) mentions may improve classifier performance in 

situations where phenotyping precision is critical. In addition, APHRODITE was evaluated using 

balanced cohorts of cases and controls; in real-world situations where the number of controls far 

outnumbers cases, a higher-precision labeling function may perform better. We investigate the 

improvement obtained via complex labeling functions across a spectrum of ten different 

phenotypes, and using real-world disease prevalence in the test data. 

The second question is about APHRODITE’s ability to port both the final classifiers and 

the underlying training ‘recipes’ between OHDSI sites. A recent study demonstrated the 

translation of PheKB definitions into executable EHR queries that ported across six different 

health systems [22]; however the portability of classifier-based approaches such as 

APHRODITE has yet to be rigorously assessed. We conduct reciprocal experiments where we 

evaluate the performance of phenotype classifiers trained at our academic medical center on the 

EHRs of two other health systems, and conversely, evaluate the performance of classifiers 

trained externally on our data. We find that phenotype classifiers perform well across OHDSI 

sites, though portability may be limited by underlying differences in EHR data at each site.  
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MATERIALS AND METHODS 
 
Data Sources 

We used longitudinal electronic health record data from Stanford Hospital & Clinics and 

Lucile Packard Children’s Hospital, Columbia University Medical Center, and Seoul National 

University Bundang Hospital (SNUBH) to construct and evaluate phenotype classifiers. At 

Stanford, patient data was extracted from the Stanford Medicine Research Data Repository 

clinical data warehouse and included nearly 1.8 million patients and 53 million unique visits. The 

dataset used at Columbia comprised of over 5 million patients from the New York Presbyterian 

Hospital clinical data warehouse. At SNUBH, the EHR dataset included over 1.8 million 

patients. Patient data at each institution was composed of coded diagnoses, laboratory tests, 

medication orders, and procedures. All data at the three institutions were mapped to the 

Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM), which 

serves as a shared standard representation of clinical data across multiple data sources and 

institutions.  

Phenotype selection and classifier development 

We selected ten phenotypes (appendicitis, type 2 diabetes mellitus, cataracts, heart 

failure, abdominal aortic aneurysm, epileptic seizure, peripheral arterial disease, adult onset 

obesity, glaucoma, and venous thromboembolism) for which rule-based definitions have been 

created by either the eMERGE or OHDSI networks. We developed classifiers for each 

phenotype using the APHRODITE framework, an R-package built for the OMOP CDM that can 

be used to construct phenotype classifiers using imperfectly labeled training data. In previous 

work, the labeling heuristic used with APHRODITE was based on single mentions of relevant 

terms in textual data. In this study, we used multiple mentions of disease-specific codes as our 
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labeling function. In particular, we identified cases by searching patients’ clinical data for at least 

four mentions of any relevant SNOMED code associated with the phenotype of interest (Figure 

1). We identified all relevant codes by using vocabulary tables and existing relationships 

between concepts within the OMOP CDM. Patients who did not meet this multiple mention 

criteria were considered controls for training purposes, and the ratio of training cases to controls 

was set to 1:1. We used four mentions since we expected this to be a highly specific label for any 

phenotype of interest. This number was also low enough such that it most consistently yielded an 

adequate number of cases (250+ based on experiments not reported in this study) to train 

classifiers. When sufficient cases were not identified, we incrementally lowered the number of 

mentions to identify more cases. 

Once the training cohort was identified, we represented patient data with the following 

feature types: visits, observations, lab results, procedures and drug exposures. Frequency counts 

were calculated for each feature capturing the entire course of patients’ EHR records. We chose 

not to exclude a single mention of relevant disease-specific codes as potential features used by 

classifiers, since our labeling function was based on multiple mentions. Random forest classifiers 

were trained for each phenotype using 5-fold cross validation. 
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Figure 1. Development and validation of phenotype classifiers. Training sets were constructed 

by applying multiple-mentions based imperfect labeling function to our patient data extract. 

Patients with multiple mentions of any SNOMED codes relevant to the phenotype of interest 

were considered training cases. Patients who did not meet this criteria were labeled as training 

controls. Random forest classifiers were built for each phenotype using 5-fold cross validation. 

The test set was constructed using OMOP implementations of rule-based phenotype definitions. 

Test cases were randomly sampled from the cohort of patients selected by the rule-based 

definitions. Test controls were sampled from the remaining patients. For each phenotype, the 

imperfect labeling function used to generate the training set and the corresponding classifier 

were evaluated using the rule-based phenotype derived test sets. 
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Classifier validation with cohorts derived from rule-based definitions 

Development of evaluation sets 

Rule-based definitions were used to identify the cohort of patients comprising the test set 

for each phenotype (Figure 1). Two of the definitions, appendicitis and cataracts, were OMOP 

implementations of definitions that were publicly available on Phenotype KnowledgeBase 

(PheKB), a repository of phenotype algorithms developed by the eMERGE network. The other 

eight definitions were developed and evaluated collaboratively by several members of the 

OHDSI network with clinician oversight. Although PheKB definitions have been shown to favor 

precision and have low recall relative to manual chart review, these rule-based definitions were 

the best available ground truth label for this experiment. 

Rule-based definitions were implemented using ATLAS, an open source software tool for 

building patient cohorts with OMOP CDM mapped data. Test cases were identified by randomly 

sampling the cohort of patients selected by the rule-based definitions. Test controls were 

identified by randomly sampling from the remaining patients. All test sets were composed of 

10,000 patients, with the proportion of cases set equal to the population prevalence of the 

corresponding phenotype. Any patients used to train classifiers were excluded from test sets.  

 

Local validation of phenotype classifiers 

We evaluated the performance of our classifiers by running them on the test sets derived 

from our rule-based definitions. Classifiers were evaluated locally by using our patient data 

extract. For reference, we also assessed the performance of the ‘multiple mentions’ labeling 

heuristic described previously. Performance was reported in terms of recall and precision.  
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Performance of classifiers across multiple sites 

To evaluate the portability of our phenotype classifiers, we shared the ten classifiers 

developed on our patient data extract with two other institutions within the OHDSI network, 

Columbia University and SNUBH. Since both these institutions have mapped their patient 

datasets to meet OMOP CDM specifications, we were able to share our classifiers without any 

modification. Classifier performance was evaluated in a process identical to the one used locally 

– at both sites, rule-based definitions were used to derive the cohort of patients comprising the 

test set for each phenotype.  

We further assessed the portability of phenotype classifiers by performing a reciprocal 

experiment in which models were constructed at Columbia and SNUBH, and subsequently 

evaluated on our patient data extract. Classifiers were developed for all ten phenotypes using the 

same method that was used locally. Specifically, we employed the same labeling approach to 

generate training sets for each phenotype – patients with multiple mentions of relevant disease-

specific codes were considered training cases, while others were considered training controls. 

Once classifiers were developed at Columbia and SNUBH, we evaluated their performance on 

our patient data extract, using test sets that were constructed from rule-based definitions. 

 

Comparing demographics of cases across sites  

While rule-based definitions offer an alternative to manual chart review for the 

generation of test sets, development of these definitions is ultimately labor-intensive and limits 

the speed with which classifiers can be evaluated. To circumvent the need for rule-based 

definitions and chart review, we propose comparing the demographics of patients identified as 

cases by our classifiers across different sites as a proxy for model validation. For this 
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experiment, we randomly selected 150,000 patients at each site and used classifiers developed at 

our institution to identify cases for each phenotype. We then compared the cohorts of patients 

labeled as cases across different sites with respect to key demographics, including age and sex. 

The purpose of this was to evaluate whether the classifiers not only showed comparable 

performance across sites, but also identified comparable cohorts in terms of basic demographic 

features.  
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RESULTS 
 
Local performance of classifiers 

We first compared the performance of our phenotype classifiers with the ‘multiple 

mentions’ labeling heuristic used to identify training cases for each phenotype. Table 1 shows 

the recall and precision of both of these phenotyping approaches. Requiring multiple disease-

specific code mentions to classify patients as cases yields a mean precision of 0.99, as it is likely 

that patients with several mentions of a relevant code have the associated phenotype. Achieving 

high precision, however, results in noticeably low recall. The mean recall for requiring multiple 

mentions was 0.17. 

Classifiers built with training data labeled using the multiple code mentions heuristic 

showed markedly improved recall with relatively small losses in precision. The mean recall 

boost observed was 0.43 while the mean precision loss was 0.17. Seven classifiers showed 

precision losses that were less than 0.10. Classifiers for two phenotypes, heart failure and venous 

thromboembolism, had more considerable losses in precision (-0.38 and -0.78, respectively).  

Performance of classifiers across sites  

We evaluated the portability of our classifiers by assessing their performance at 

Columbia and SNUBH. Table 2 summarizes performance at these two sites. When classifiers 

were tested at Columbia, mean recall and precision decreased marginally by 0.08 and 0.01, 

respectively, compared to local performance. Classifiers tested at SNUBH had more significant 

losses in performance. Mean recall and precision decreased by 0.18 and 0.10, respectively. 
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Phenotype 

 
Prevalence 

of cases  
in test set  

Multiple mentions 
of  SNOMED code 

APHRODITE 
classifier 

Recall boost 
using 

classifier 

Precision loss 
using classifier 

No. of 
mentions Recall Precision Recall Precision 

Appendicitis 0.05 2 0.31 1.00 0.97 0.99 +0.66 -0.01 

T2DM 0.14 4 0.24 0.99 0.60 0.91 +0.36 -0.08 

Cataracts 0.17 4 0.07 0.97 0.63 0.93 +0.56 -0.04 

HF 0.02 4 0.33 0.94 0.99 0.56 +0.66 -0.38 

AAA 0.04 4 0.22 0.99 0.53 0.97 +0.31 -0.02 

Epileptic 
seizure 

0.02 4 0.06 1.00 0.22 0.94 +0.17 -0.06 

PAD 0.05 4 0.18 0.98 0.91 0.91 +0.72 -0.07 

Adult onset 
obesity 

0.36 4 0.20 1.00 0.29 0.91 +0.09 -0.09 

Glaucoma 0.01 4 0.08 1.00 0.22 0.88 +0.14 -0.12 

VTE 0.01 4 0.03 1.00 0.69 0.22 +0.66 -0.78 

Table 1. Test set performance of labeling heuristic requiring multiple disease-specific code 

mentions compared to phenotype classifiers trained with data labeled using this multiple 

mentions approach. T2DM = type 2 diabetes mellitus, HF = heart failure, AAA = abdominal 

aortic aneurysm, PAD = peripheral arterial disease, VTE = venous thromboembolism 

 

We further assessed the portability of classifiers by constructing models at Columbia and 

SNUBH, and evaluating their performance on our patient data extract. Classifiers developed at 

Columbia had comparable performance to those developed at Stanford. Specifically, classifiers 

demonstrated high precision when tested at Stanford, with these classifiers having a mean 
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precision value of 0.73. Mean recall for these classifiers was 0.54. In contrast, classifiers 

developed at SNUBH did not port as well. For these classifiers, we observed generally worse 

performance. Mean recall and precision for these classifiers was 0.46 and 0.24, respectively. 

Development 
site Stanford Columbia SNUBH Stanford Columbia SNUBH 

Validation 
site Stanford Columbia SNUBH Stanford Stanford SNUBH Stanford Columbia SNUBH Stanford Stanford SNUBH 

Phenotype Recall Precision 

Appendicitis 0.97 0.9 0.09 0.82 0.52 0.1 0.99 0.9 0.56 0.83 0.13 0.98 

T2DM 0.6 0.63 0.77 0.58 0.67 0.75 0.91 0.86 0.75 0.75 0.51 0.89 

Cataracts 0.63 0.45 0.84 0.8 0.35 0.84 0.93 0.79 0.85 0.74 0.42 0.74 

HF 0.99 0.97 0.8 0.99 0.71 0.82 0.56 0.67 0.75 0.47 0.11 0.66 

AAA 0.53 0.24 0.54 0.59 0.33 0.57 0.97 0.75 0.87 0.96 0.13 0.47 

Epileptic 
seizure 0.22 0.3 0.28 0.41 0.46 0.11 0.94 0.87 0.55 0.79 0.08 0.68 

PAD 0.91 0.89 0.57 0.48 0.46 0.55 0.91 0.87 0.68 0.69 0.24 0.59 

Adult onset 
obesity 0.29 0.33 0.07 0.14 0.39 0.07 0.91 0.93 0.73 0.85 0.68 0.8 

Glaucoma 0.22 0.18 0.11 0.34 0.22 0.12 0.88 0.78 0.65 0.69 0.06 0.75 

VTE 0.69 0.34 0.2 0.21 0.46 0.19 0.2 0.71 0.83 0.51 0.05 0.78 

Table 2. Classifier performance at three sites within OHDSI network. Phenotype classifiers 

constructed at Stanford were shared with Columbia and SNUBH, and evaluated using test sets 

derived locally at each site using rule-based definitions. Furthermore, classifiers built at 

Columbia and SNUBH were shared with Stanford and evaluated using similarly constructed test 

sets. Blue denotes values equal to 1, white denotes values equal to 0. 
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Classifier evaluation by comparing demographic features of cases across sites 

We further examined classifier performance by evaluating the demographics of patients 

classified as cases for each phenotype at all three sites. We used the classifiers built at Stanford 

to select cases at all sites. The aim of this is to assess both the overall performance and 

portability of classifiers by determining whether classifiers identify comparable cohorts of 

patients across sites. Overall, age and proportion of each sex were similar among all patients at 

the three sites – mean age was 39.3, 39.9, and 40.1 and proportion of males was 0.45, 0.45. and 

0.48 at Stanford, Columbia and SNUBH, respectively. However, there was considerable 

variability in demographics of patients selected as cases by classifiers for each phenotype. For 

instance, for seven of the ten phenotypes, there was a statistically significant difference in the 

proportion of males identified as cases. Similar variation existed with regards to mean age of 

cases at the three sites (supplemental table 1).  
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DISCUSSION 

This study outlines a method for generating high-precision phenotyping classifiers in a 

semi-supervised manner. We demonstrate that classifiers trained using a high-precision labeling 

heuristic (i.e. multiple mentions of disease-specific codes) are able to preserve precision while 

boosting recall relative to the original labeling function. This recall boost was observed across all 

ten phenotypes. Furthermore, these classifiers are significantly faster to generate than rule-based 

phenotype definitions, and do not rely on expert clinical input. This may be a template for high-

throughput [3] creation of phenotyping classifiers in a way that optimizes precision and recall, 

which would greatly facilitate observational research.  

An important advantage of building phenotype classifiers with the APHRODITE 

framework is the ability to easily exchange models across sites. We evaluated model portability 

in this study by sharing our phenotype classifiers with Columbia and SNUBH. Performance at 

both of these sites was generally good, with minimal losses in recall and precision at Columbia 

(0.08 and 0.01, respectively) and a larger performance drop at SNUBH (0.18 and 0.10, 

respectively). We suspect that the larger drop in performance at SNUBH, which is an 

international site, is likely related to geographic differences in EHR data and how diagnoses are 

coded. 

In a reciprocal experiment, both Columbia and SNUBH constructed classifiers at their 

sites and we evaluated these at Stanford. Classifiers developed at Columbia performed well, with 

these classifiers having a mean precision value of 0.73. Unlike classifiers constructed at 

Columbia, those developed at SNUBH did not port well, with mean recall and precision for these 

classifiers of 0.46 and 0.24, respectively.  
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The poor portability of classifiers developed at SNUBH suggests that in certain cases, in 

which there are significant differences in the characteristics of the underlying EHR data, sharing 

the classifier-building recipe (i.e. high precision labeling function), rather than the pre-trained 

classifiers, may prove more useful. The APHRODITE framework specifically offers the ability 

to exchange recipes. Unlike traditional supervised learning approaches for phenotyping which 

require manually searching for patients to construct the training set, sharing a high precision 

labeling function for generating a large imperfectly labeled training set and re-building classifiers 

at any given site is efficient and feasible. 

This study was limited by the use of PheKB definitions as the gold standard for classifier 

evaluation. Although these definitions have been reviewed by clinical experts, they are still rule-

based definitions with imperfect classification accuracy. While the use of these definitions 

provided a standardized way to assign ‘ground-truth’ labels across multiple international sites, in 

future our classifier pipeline could be assessed against clinician-labeled test-sets at each site. The 

feature engineering scheme used in training classifiers is relatively rudimentary – simply a 

frequency count of all structured data elements. The performance of our classifiers may therefore 

be seen as a conservative estimate of such semi-supervised learning. More sophisticated feature 

engineering regimens such as EHR embeddings, incorporating temporal trends in lab values, or 

some extracts from the unstructured data, would likely improve performance. Finally, use of this 

APHRODITE-based pipeline relies on sites mapping their EHR data to the OMOP CDM.  
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CONCLUSION 

We demonstrate a high-throughput pipeline for generating high-precision phenotype 

classifiers by using APHRODITE with a high-precision labeling heuristic. These classifiers are 

easier to create than rule-based definitions and are portable across sites. We demonstrate good 

portability between Stanford and Columbia in both directions, but limited portability with 

SNUBH, suggesting that the generalizability of phenotype classifiers may have geographic 

limitations. Sharing the classifier training recipe – i.e the labeling function for generating a large 

imperfectly labeled training set and re-training classifier – showed higher portability in all 

comparisons suggesting that sharing the classifier-building recipe, rather than the pre-trained 

classifiers, may be more useful for facilitating collaborative observational research. 
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