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Abstract 
 
Objective: Brain atrophy is an established biomarker for dementia. We hypothesise that spinal cord 
atrophy is an important in vivo imaging biomarker for neurodegeneration associated with dementia. 
Methods: 3DT1 images of 31 Alzheimer’s disease (AD) and 35 healthy control (HC) subjects were 
processed to calculate volumes of brain structures and cross-sectional area (CSA) and volume 
(CSV) of the cervical cord (per vertebra as well as the C2-C3 pair (CSA23 and CSV23)). Correlated 
features (ρ>0.7) were removed, and best subset identified for patients’ classification with the 
Random Forest algorithm. General linear model regression was used to find significant differences 
between groups (p<=0.05). Linear regression was implemented to assess the explained variance of 
the Mini Mental State Examination (MMSE) score as dependent variable with best features as 
predictors. 
Results: Spinal cord features were significantly reduced in AD, independently of brain volumes. 
Patients classification reached 76% accuracy when including CSA23 together with volumes of 
hippocampi, left amygdala, white and grey matter, with 74% sensitivity and 78% specificity. 
CSA23 alone explained 13% of MMSE variance. 

Discussion: Our findings reveal that C2-C3 spinal cord atrophy contributes to discriminate AD 
from HC. Results show that CSA23 has a considerable weight in classification tasks warranting 
further investigations.  
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Introduction 
 

Dementia is one of the most debilitating cognitive neurodegenerative disorders affecting the central 

nervous system in elderly people and having a significant impact on daily life activities. Moreover, 

with an ageing population the incidence of dementia is growing. Clinically, several forms of 

dementia-like diseases that differently impair multiple cognitive and behavioral domains are 

defined. Alzheimer’s disease (AD) is the most common cause of dementia and it is responsible for 

60% to 80 % of cases worldwide1 . 

It is known that AD is associated with an extracellular deposit of β-amyloid plaques in the brain and 

cerebral vessels, but also to the presence of intracellular neurofibrillary tangles, which appear like 

paired helical filaments with hyperphosphorylated tau proteins. Tau tangles have been identified as 

the cause of cortical neurons’ degeneration while β-amyloid oligomers have an important role in 

synaptic impairment, hence β-amyloid plaques deposition is suggested to raise later during the AD 

progression2,3. 

This neuronal degeneration explained by pathophysiology leads to macroscopic atrophy of specific 

brain structures, such as the hippocampi and the medial temporal lobes 4, which can be detected 

using Magnetic Resonance Imaging (MRI) techniques. Indeed, several MRI studies have 

demonstrated significant atrophy of white matter, gray matter and specific brain structures such as 

the hippocampi, thalami and amygdalae in AD patients suggesting that these structures are 

informative in identifying dementia disorders5,6. Indeed, hippocampi have been proposed as in vivo 

non-invasive imaging biomarkers of AD while other structures may be useful in distinguishing 

between different subtypes of dementia7.  

Recently, numerous MRI investigations have tried to identify new in vivo biomarkers for dementia 

and other neurological diseases. Optical Coherence Tomography studies have been used to assess 

that retinal ganglion cell degeneration can be associated to early stages of AD. Previous studies of 

other diseases associated with neurodegeneration, such as multiple sclerosis8, amyotrophic lateral 
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sclerosis9, and spinal cord injury10, have revealed that atrophy of the spinal cord is indicative of 

widespread alterations of the central nervous system and might be considered as a relevant imaging 

biomarker in a wider range of neurodegenerative diseases. Nevertheless, this kind of alteration has 

never been investigated and reported in dementia patients. Hence, the main aim of the present work 

was to assess for the first time -to the best of our knowledge- whether spinal cord volume is 

significantly reduced in AD patients compared to healthy controls (HC), hypothesizing that the 

neurodegeneration typical of AD significantly spreads to all components of the central nervous 

system. Furthermore, in case of a positive outcome, it would be important to quantify the role of 

spinal cord features in distinguishing between AD and HC to drive design of future studies. We 

propose to do so by a machine learning approach for features selection, that is increasingly applied 

to improve diagnostic accuracy by quantitative imaging11,12. 

Materials and Methods 
 
Subjects  

A total of 66 subjects including 31 AD patients and 35 HC, as a reference group, were analyzed.  7 

subjects (4 HC and 3 AD) were excluded from the study due to post-processing issues. 

Inclusion criteria for patients were: clinical diagnosis of dementia on the basis of the Diagnostic and 

Statistical Manual of Mental Disorders (DSM-5) criteria13, Mini-Mental State Examination 

(MMSE) score14  below 24 and age above 60 years. Exclusion criteria comprised the presence of at 

least one of the following: epilepsy or isolated seizures, major psychiatric disorders over the 

previous 12 months, pharmacologically treated delirium or hallucinations, ongoing alcoholic abuse, 

acute ischemic or hemorrhagic stroke, known intracranial lesions, and systemic causes of subacute 

cognitive impairment15. Diagnosis of AD was made according to the criteria of the National 

Institute of Neurological and Communicative Disorders and Stroke and Alzheimer’s Disease and 

Related Disorders Association (NINCDS-ADRDA) workgroup16. HC were enrolled on a voluntary 

basis among subjects with MMSE score above 27 and attending a local third age university 
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(University of Pavia, Information Technology course) or included in a program on healthy ageing 

(Fondazione Golgi, Abbiategrasso, Italy).  

The study was accomplished in accordance with the Declaration of Helsinki and with the 

approbation of the local ethic committee of the IRCCS Mondino Foundation, upon signature of the 

written informed consent by the subjects.  

 
MRI Acquisition 

High resolution 3D T1-weighted(3DT1-w) MR images were acquired using a Siemens 

MAGNETOM Skyra3T(Siemens AG, Erlangen, Germany) with software version 

NUMARIS/4(syngo MR D13C version) and a receiving head-coil with 32 channels.  

Scan parameters were7: TR=2300ms, TE=2.95ms, TI=900 ms, flip angle=9degrees, field of view 

(FOV)=269x252mm, acquisition matrix=256x240, in-plane resolution=1.05x1.05mm, slice 

thickness=1.2 mm, and 176 sagittal slices. The FOV, in feet-to-head direction, was set to cover the 

entire brain and cervical cord up to the C5 vertebra in all subjects. 

Spinal Cord analysis 

For each subject, the 3DT1-w volume was resized removing the brain and centering the FOV on the 

spine. Once a single volume of interest(VOI) comprising the same spinal cord regions for each 

3DT1-w was defined(matrix=176x240x96 voxels), the process was automatized for the whole 

dataset. The resized 3DT1-w volumes were analyzed with the Spinal Cord 

Toolbox(http://sourceforge.net /projects/spinalcordtoolbox), an open source software specifically 

developed to elaborate spinal cord images, to extract features of the C1-C5 vertebrae. 

The spinal cord was segmented with the propseg algorithm17 and  manually labelled18 to identify all 

vertebrae separately19(Figure 1). Mean cross-sectional area (CSA) and volume (CSV) were 

calculated for each vertebra and for the C2-C3 pair20,21(CSA23 and CSV23), given the known 

sensitivity of this combined level to disease severity22. 
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Brain atrophy analysis 

3DT1-w images were segmented into white matter (WM), gray matter (GM) and cerebrospinal fluid 

(CSF) using SPM12(https://www.fil.ion.ucl.ac.uk/spm/software/spm12 )23, while left (L) and right 

(R) hippocampi (LHip and RHip), thalami (LThal and RThal) and amygdalae (LAmy and RAmy) 

were segmented using FIRST (FSL, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST)24 (Figure 2).   

WM, GM and all other brain structures volumes were calculated in mm3. Total intracranial volume, 

as the sum of WM, GM and CSF, was also calculated to account for different brain sizes. 

 

Machine learning analysis 

Classification between AD and HC was performed using a machine learning approach implemented 

with Orange(https://orange.biolab.si/). 

A total of 22 features were extracted from the above MRI morphometric analysis. Given the large 

number of parameters extracted compared to the sample size of our AD and HC groups, a feature 

reduction approach was adopted in order to control for overfitting issues. The Spearman correlation 

coefficient25 was obtained in Matlab between pairs of all calculated metrics. When pairs of metrics 

had a correlation coefficient greater than 0.7, one metric was kept while the other was eliminated. 

Ranking was implemented with the ReliefF algorithm26 on the uncorrelated features to identified 

the best subset able to classify AD from HC, and particularly to investigate the contribution of 

spinal cord metrics to the task. In order to identify a unique subset of features, 30% of instances was 

employed for ranking. Data were normalized by span to avoid a polarization of the results due to the 

different scale of features, as for WM compared to CSA. The remaining 70% of instances was 

further divided into 70% for the Random Forest algorithm application and 30% to test its 

classification accuracy(CA=
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previously-identified best features. 

Among several machine learning algorithms, RF was selected for its robustness against a reduced 

number of input features and the capacity to weight features runtime, providing features relevance 

in a classification task27,28. The Receiving Operating Characteristics (ROC) curve was then obtained 

to visually discriminate between AD and HC and the Area Under the Curve was also calculated to 

quantify the overall ability of RF to discriminate between AD and HC.  

Statistical analysis 

Statistical tests were performed using the Statistical Package For Social Sciences (SPSS) software, 

version 21 (IBM, Armonk, New York). All continuous data were tested for normality using a 

Shapiro-Wilk test29. Age and MMSE were compared between AD and HC using a two-tailed 

Kruskal-Wallis test30 while gender was compared using a chi-squared test31. A multivariate 

regression model with gender, age and total intracranial volume as covariates was used to compare 

all morphometric metrics between AD and HC. Two-sided p<0.05 was considered statistically 

significant. 

Furthermore, to assess the power of the best features in explaining the variance of the MMSE, a 

linear regression model was implemented using the MMSE score as the dependent variable and the 

best features as predictors. These independent features were used in two ways: i) each predictor was 

used alone to determine its specific contribution to MMSE; ii) all features were used in a backward 

approach to identify which of them explained the greatest percentage of MMSE variance. A 

threshold of  p<0.01(two-tailed) was considered statistically significant. 

Results 
 
Subjects 

Population demographics and neuropsychological scores are reported in Table 1. Significant 

differences were found in MMSE between HC and AD patients. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2019. ; https://doi.org/10.1101/673350doi: bioRxiv preprint 

https://doi.org/10.1101/673350
http://creativecommons.org/licenses/by-nd/4.0/


Morphometric changes in AD patients 

All results are reported in Table 2 and Table 3. AD patients compared to HC showed atrophy in all 

brain structures. Moreover, all patients for all investigated spinal cord segments showed reduced 

CSA at all vertebral levels, while CSV was significantly reduced only in correspondence of 

vertebrae C1 and C2.  

AD classification based on morphometric data 

Results of the correlation analysis are reported in Figure 3, and show that brain volumes are not 

significantly correlated with any spinal cord metrics. 

Features that were considered independent from each other and that were entered in the feature 

selection analysis are reported in Table 4. The best features selected by the RF algorithm for the AD 

versus HC classification task are reported in Table 5 and include: RHip, WM, LAmy, LHip, 

CSA23, GM. Interestingly, CSA23 was identified as one of the most informative features to 

distinguish AD patients from HC. RF outcomes are reported in Table 6 and showed that the 

classification accuracy of AD patients is 76%, sensitivity 74% and specificity 78%. The Area Under 

Curve(AUC) percentage reaches 86%, showing a remarkable classification performance of the RF 

algorithm to distinguish AD from HC subjects. Moreover, it is noticeable that the hippocampi have 

dominant weight, but that there is a relevant contribution to the classification from CSA23.  

MMSE and morphometric data relationship 

The combination of the six best features, including WM, RHip, LHip, LAmy, CSA23 and GM, 

explained 44% of the overall variance of the MMSE. The function equation describing the linear 

model obtained by the regression analysis included the following terms with their weights: 

0.329*LHip-0.145*RHip+0.145*LAmy+0.064*CSA23-0.227*GM+0.557*WM. The MMSE 

explained variance was progressively reduced by simplifying the model, i.e. removing one or more 

predictors, as shown in Table 7. Each separate feature significantly (p<0.005) explained a 

percentage of MMSE variance ranging between 13% to 36%. The feature that most explains MMSE 

variance was the WM volume(36%), with CSA explaining 13%. 
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Discussions 

The present work is pioneering the investigation of spinal cord alterations in patients with dementia, 

and in particular with AD, a major neurodegenerative disease. Previous studies have reported spinal 

cord atrophy in patients with neurological diseases32,33, such as multiple sclerosis, but to date no 

studies have explored the existence of a volumetric loss of spinal cord tissue in dementia. Post 

mortem studies of AD patients will be needed to confirm the source of such findings, although at 

first one could imagine that any change in CSA and CVS could be the result of retrograde Wallerian 

degeneration from the cerebral cortex34. It cannot be excluded, though, that alterations in spinal 

cord morphometric measurements (CSA and CSV) in AD is the result of primary retrogenesis 

linked to myelin and axonal pathology. It is indeed very significant that a recent study of the 

5xFAD animal model of AD shows amyloid plaques accumulation in the spinal cord tissue, with a 

particular concentration at cervical level and a time dependent accumulation that starts 11 weeks 

from onset; interestingly, the same study found independent and extensive mielynopathy, while the 

motorneurons count at 6 months was not altered compared to the wild type35. While we cannot be 

conclusive on the mechanisms of spinal cord atrophy in AD, our results are intriguing and calling 

for larger studies of prodromic subjects to be followed over time. 

Evaluating spinal cord alterations in humans in vivo is challenging due to technical and anatomical 

constrains. The most important technical limitation is related to image quality that may be affected 

by wrong subject positioning inside the scanner, individual subject’s neck curvature or subject’s 

motion. Furthermore, the spinal cord is a small structure and optimized sequences with reduced 

FOV and appropriate alignment should be used to obtain reproducible results36. Dedicated 

acquisition protocols would also allow one to analyse specific alterations of spinal cord GM and 

WM. Despite these limitations, previous studies have demonstrated that it is possible to use 

volumetric brain 3DT1-w data, often acquired as part of neurological examinations, for spinal cord 

features extraction37,38. These are the scans that were used for this first study and results show that 
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spinal cord morphometry, as measured by CSA and CSV, is significantly altered in AD, showing 

considerable neurodegeneration of the order of 10% compared to HC spinal cord volumes. 

Moreover, our results indicate that the spinal cord CSA23 contributes significantly to discriminate 

between HC and AD patients. Usually, only atrophy of brain regions is investigated in dementia39,40 

but our findings reveals that a better discriminative power is achievable combining information of 

both brain and spinal cord structures. In light of the only animal model study reported to date35, 

which shows that C2-C3 is selectively affected by greater morphological alterations our results 

become of significant value. 

It is well known that hippocampal atrophy is a key feature to detect dementia and is considered a 

biomarker of AD progression41; our results are consistent with this as both hippocampi are picked 

up as top features for the classification task. Moreover, it has now been recognized that other brain 

structures play a key role to identify AD patients and to distinguish between different subtypes of 

dementia7. Our results are, indeed, indicating that patients present significantly different brain 

volumes with respect to HC, and all segmented brain structures, except for the right amygdala, are 

statistically significantly atrophic in AD. In this context, though, our work demonstrates that 

volumes of all cervical vertebral segments are reduced in AD, with only the CSV of the first and 

second vertebrae being significantly atrophic with respect to HC. These results are coherent with 

results obtained for cerebral structures and suggest the existence of a remarkable reduction in the 

volume of spinal cord in dementia. This hypothesis is further supported by significant CSA 

reduction for all vertebrae in patients. Moreover, the fact that CSA23 is particularly sensitive to 

pathological changes in AD is in accordance with other studies in neurodegenerative diseases such 

as amyotrophic lateral sclerosis9 and could be seen as a corroborating evidence of significant 

correlation between spinal cord atrophy and neurodegeneration. Considering that the 5xFAD animal 

study showed that there are significant alterations in myelin microstructure, uncorrelated with the 

amyloid deposits, one has to be careful in interpreting these findings as purely due to axonal loss 
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induced by Wallerian degeneration. It is  important to assert that our findings reveal the importance 

of spinal cord changes in the study of dementia and suggest that CSA23 should be considered as a 

contributing in vivo imaging biomarker to distinguish between dementia patients and HC.  

Few recent studies have combined several MRI findings with machine learning approaches to 

attempt the classification of dementia subtypes and prediction of disease progression. Accuracy of 

about  80%42,43 was achieved when AD and HC were classified while more fluctuating results were 

reported when more subtypes of dementia were considered. In the present study a RF algorithm 

with the “leave-one-out” approach was chosen to discriminate between AD and HC because RF is 

robust with small numbers of subjects and performs features weighting runtime with good 

sensitivity and specificity. Our findings has shown that spinal cord morphometric measures (CSA 

and CSV) alone cannot directly discriminate between AD and HC, but CSA23 was identified as one 

of the six best features useful to distinguish between these groups of subjects. Classifier accuracy 

was good and reached its best performance, around 76%, when both volume of brain structures, 

such as LHip, RHip, WM and GM, and CSA23 were included in the classification procedure.  In 

addition, the ROC curve between AD and HC (shown in Figure 4) reported high performance with 

AUC of 86%. The RF sensitivity and specificity, of 74% and 78% respectively, showed a 

remarkable ability in correcting identify healthy and pathological cases. Furthermore, the RF 

feature weighting (reported in Table 6) demonstrated that CSA23 had a considerable weight in the 

classification procedure, for example higher than GM, highlighting that it should be considered as 

an additional biomarker together with the more conventional volumes of subcortical regions31. 

These results indicate the yet unexplored potential influence that spinal cord features can play in the 

diagnosis of dementia. 

Finally, our data shows that also clinical aspects of AD are partially explained by spinal cord 

atrophy. Given the exploratory nature of the present study, in absence of specific motor and sensory 

tests, it was decided to assess whether spinal cord atrophy could be correlated with the variance of 
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the MMSE, which is a global test, clinically used to assess AD severity. Indeed, 43% of the MMSE 

variance was explained with a multiple regression model implemented with all the best features 

included as independent variables, whereas CSA23 alone explained 13% of the MMSE variance. 

Targeted and well-designed imaging studies should investigate the involvement of the spinal cord at 

different stages of AD and in different types of dementia to explore its full clinical potentials. It is 

essential to promote multi-modal studies that can disentangle the contribution of myelin, amyloid 

accumulation, axonal swelling and axonal loss to spinal cord alterations in neurodegenerative 

diseases. Post-mortem studies of human tissue will be key to understand mechanisms of 

involvement of the spinal cord. 

In conclusion, the present work can be considered a milestone because for the first time it 

demonstrates in a cohort of AD and HC subjects the contribution of spinal cord atrophy to explain 

clinical indicators of dementia and to improve disease classification, opening also mechanistic 

questions for future studies.  
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Figures Legend 
 
Figure 1. Labelled vertebrae in two randomly chosen subjects: a HC subject on the left and an AD 
patient on the right (slice n=96, sagittal plane). Each color represents a different vertebra from C1 
(yellow) to C5 (fuchsia).  

Figure 2. Cerebral tissue segmentation in two randomly chosen subjects: a HC subject on the left 
and an AD patient on the right. Top row: WM (yellow) and GM (blue) segmentation (slice n = 126, 
transverse plane). Middle row: hippocampi (yellow) and amygdalae (light blue) segmentation (slice 
n = 123, transverse plane). Bottom row: thalami (green) segmentation (slice n = 132, transverse 
plane) .   

 
Figure 3. Correlation matrix between pairs of variables, tested with the Spearman’s correlation 
coefficient. All correlations for p<0.5 are set to white, correlations for p>0.5 are red to yellow, with 
yellow (p=1) being the strongest correlation. No spinal crod metrics are correlating with brain 
metrics with p>0.7, which is the threshold we used for extracting the set of uncorrelated features 
(Table 1)  

 

Figure 4. ROC curves for AD-HC classification using Random Forest feature selection. 
Pathological class (AD = 1) was considered as the target class. The curve shows higher 
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performance (bold red line) than the majority algorithm (diagonal). TN rate is the rate of true 
negative and FP rate is the rate of false positives. 

 

Tables 
 
Table 1: Subjects’ demographic and neuropsychological data 

 HC (n=32) AD (n=28) p-value 

 mean (SD) mean (SD)  

Age [yrs] 69.4 (9.6) 73.0 (6.4) 0.138 

Gender (Male [%]) 51.4 56.2 0.800 

MMSE 28.5 (0.2) 16.0 (1.1) < 0.001* 

Gender is expressed in Male % and compared with a Chi-square test. Age and MMSE are expressed as mean (SD) and 
compared with a Kruskall-Wallis test. Significance was set to p=0.05. * refers to statistically significant comparisons. 

 

 

Table 2: Brain morphometric changes in AD patients  

Volumes of different brain structures expressed in mm3. Values are expressed as mean (SD). Significance was set at p = 
0.050. * refers to statistically significant values. 
 
 
 
Table 3: Spinal cord morphometric changes in AD patients  

  HC (n=32)   AD (n=28) p-value 

  mean (SD) mean (SD)  

   
 B

ra
in

 S
tr

uc
tu

re
s 

(m
m

2 ) 

ICV 1573086 (144439) 1511611 (139532) 0.04* 

WM 612335 (11230) 540237 (12064) <0.001* 

GM 427508 (6492) 399274 (6975) 0.006* 

RHip 3602 (106) 2932 (114) <0.001* 

LHip 3591 (99) 2822 (107) <0.001* 

LThal 7013 (109) 6433 (118) 0.001* 

RThal 6808 (109) 6371 (117) 0.011* 

LAmy 1256 (41) 1054 (44) 0.002* 

RAmy 1323 (63) 1120 (66) 0.035* 

 Vertebra HC (n=32)   AD (n=28) p-value 

  mean (SD) mean (SD)  

A
re

a 
(m

m
2 ) C1 69.8 (1.6) 63.1 (1.8) 0.009* 

C2 65.7 (1.3) 60.2 (1.4) 0.008* 

C3 62.5(1.4) 56.9 (1.6) 0.013* 
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Cross sectional area (in mm2) and volumes (in mm3) of spinal cord vertebrae. Values are expressed as mean (SD).  
Significance was set at p = 0.050. * refers to statistically significant values. 
 

 

Table 4: Cerebral and spinal cord morphometric metrics 

Set of all calculated Metrics  Set of uncorrelated metrics 
Brain Spine Personal  Brain Spine Personal 
WM CSA1 CSV1 Age  WM - - Age 
GM CSA2 CSV2 Gender  GM - - Gender 

RHip CSA3 CSV3   LHip - CSV3  
LHip CSA4 CSV4   RHip - -  
RThal CSA5 CSV5   - - CSV5  
LThal CSA23 CSV23   - CSA23 -  
RAmy     -    
LAmy     LAmy    
Left column: initial dataset of morphometric metrics. Right column: subset of uncorrelated morphometric metrics.  
WM=white matter, GM=gray matter, RHip=right hippocampus, LHip=left hippocampus, RThal=right thalamus, 
LThal=left thalamus, RAmy=right amygdala, LAmy=left amygdala, CSA=cross sectional area, CSV=cross sectional 
volume 
 

Table 5: Features ranking 

Features Weight 
RHip 0.1125 
WM 0.0630 
LAmy 0.0629 
LHip 0.0615 
CSA23 0.0317 
GM -0.0041 
9 HC and 9 AD patients were used in the ranking procedure. Ranking Algorithm: ReliefF applied on a dedicated subset 
(30% of instances, number of neighbors = 10).  
 
 
Table 6: Random Forest classification 

 
Performance  
Accuracy 76 % 
Sensitivity 74% 
Specificity 78% 
Area Under Curve 86% 

C4 62.5 (1.6) 57.2 (1.7) 0.031* 

C5 58.9 (1.6) 52.8 (1.7) 0.019* 

C2-C3 65.1 (1.6) 58.3 (1.7) 0.007* 

V
ol

um
e 

(m
m

3 ) C1 883.4 (27.3) 800.4 (29.3) 0.050* 

C2 979.8 (28.4) 857.1 (30.6) 0.006* 

C3 932.3 (29) 886.9 (31.2) 0.308 

C4 882.3 (35.1) 807.9 (37.7) 0.168 

C5 667 (34.5) 609.1 (37.1) 0.275 

C2-C3 1860.5 (66.8) 1729.9 (71.7) 0.204 
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Feature RF weight 

LHip 9.039 
RHip 2.734 
LAmy 2.263 
CSA23 1.828 
WM 0.323 
GM 0.060 
23 HC and 19 AD were used to test classifier performance. A leave-one-out procedure was used to test the performance 
of Random Forest (RF) with the best feature subset reported in table 5. RF features weight are also reported. 
 
 
 
 
Table 7: MMSE outcomes 
 

Multiple Linear Model 
Explained 
Variance 

Influence 
Significance 

MMSE = β1∗LHip+β2∗RHip+β3∗LAmy+β4∗CSA23+β5∗GM+β6∗WM 44% <0.001 

MMSE = β1∗LHip+β2∗RHip+β3∗LAmy +β4∗GM+β5∗WM 43% <0.001 

MMSE = β1∗LHip+β2∗LAmy+β3∗GM+β4∗WM 43% <0.001 
MMSE = β1∗LHip+β2∗GM+β3∗WM 42% <0.001 
MMSE = β1∗LHip+β2∗WM 40% <0.001 
   

Linear Model 
Explained 
Variance 

Influence 
Significance 

MMSE = β∗WM 36% <0.001 

MMSE = β∗LHip 30% <0.001 

MMSE = β∗RHip 22% <0.001 

MMSE = β∗GM 17% 0.001 

MMSE = β∗LAmy 16% 0.001 

MMSE = β∗CSA23 13% 0.005 
MMSE Linear Regression Models. The model-explained variance is calculated with the R2 index. Significance was set 
to p=0.05; all described model showed statistically significant influence (ANOVA). 
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