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ABSTRACT  
Mitochondrial DNA copy number (mtDNA-CN) has been associated with a variety of aging-
related diseases, including all-cause mortality. However, the mechanism by which mtDNA-CN 
influences disease is not currently understood. One such mechanism may be through regulation 
of nuclear gene expression via the modification of nuclear DNA (nDNA) methylation. To 
investigate this hypothesis, we assessed the relationship between mtDNA-CN and nDNA 
methylation in 2,507 African American (AA) and European Americans (EA) participants from the 
Atherosclerosis Risk in Communities (ARIC) study using the Infinium Human Methylation 450K 
Beadchip (485,764 CpGs). Thirty-four independent CpGs were associated with mtDNA-CN at 
genome-wide significance (P<5x10-8). To validate our findings we assayed an additional 2,528 
participants from the Cardiovascular Health Study (CHS) (N=533) and Framingham Heart Study 
(FHS) (N=1995). Meta-analysis across all cohorts identified 6 mtDNA-CN associated CpGs to 
be validated across cohorts at genome-wide significance (P<5x10-8). Additionally, over half of 
these CpGs were associated with phenotypes known to be associated with mtDNA-CN, 
including CHD, CVD, and mortality. Experimental modification of mtDNA-CN through knockout 
via CRISPR-Cas9 of TFAM, a regulator of mtDNA replication, demonstrated that modulation of 
mtDNA-CN directly drives changes in nDNA methylation and gene expression of specific CpGs 
and nearby transcripts. Strikingly, the ‘neuroactive ligand receptor interaction’ KEGG pathway 
was found to be highly overrepresented in the ARIC cohort (P= 5.24x10-12), as well as the TFAM 
knockout methylation (P=4.41x10-4) and expression (P=4.30x10-4) studies. These results 
demonstrate that changes in mtDNA-CN influence nDNA methylation at specific loci and result 
in differential gene expression of specific genes, including those acting in the ‘neuroactive ligand 
receptor interaction’ pathway that may impact human health and disease via altered cell 
signaling. 
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INTRODUCTION 

Mitochondria are cytoplasmic organelles primarily responsible for cellular metabolism, and have 

pivotal roles in many cellular processes, including aging, apoptosis and oxidative 

phosphorylation1. Dysfunction of the mitochondria has been associated with complex disease 

presentation including susceptibility to disease and severity of disease2. Mitochondrial DNA 

copy number (mtDNA-CN), a measure of mtDNA levels per cell, while not a direct measure of 

mtDNA damage, is associated with mitochondrial enzyme activity and adenosine triphosphate 

production. mtDNA-CN is regulated in a tissue-specific manner and in contrast to the nuclear 

genome, is present in multiple copies per cell, with the number being highly dependent on cell 

type3.  Further, levels of mtDNA-CN correlate with mitochondrial function4. mtDNA-CN is 

therefore a relatively easily attainable biomarker of mitochondrial function. Cells with reduced 

mtDNA-CN show reduced expression of vital complex proteins, altered cellular morphology, and 

lower respiratory enzyme activity5. Variation in mtDNA-CN has been associated with numerous 

diseases and traits, including cardiovascular disease6–8, chronic kidney disease9, diabetes10,11, 

and liver disease12,13. Lower mtDNA-CN has also been found to be associated with frailty and 

all-cause mortality10.  

 

Communication between the mitochondria and the nucleus is bi-directional and it has long been 

known that cross-talk between nDNA and mtDNA is required for proper cellular functioning and 

homeostasis14,15. Specifically, bi-directional cross-talk is essential for the maintenance and 

integrity of cells16,17, and interactions between mtDNA and nuclear DNA (nDNA) contribute to a 

number of pathologies18,19. However, the precise relationship between mtDNA and the nuclear 

epigenome has not been well defined despite a number of reports which have identified a 

relationship between mitochondria and the nuclear epigenome. For example, mtDNA 

polymorphisms have been previously demonstrated to alter nDNA methylation patterns20 and 
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hyper- and hypo- methylation of nuclear sites has been observed in mitochondria-depleted 

cancer cell lines21. Additionally, differential DNA methylation in brain tissue and corresponding 

differential gene expression were observed between strains of mice having identical nDNA, but 

different mtDNA18 and reduced mtDNA-CN has been associated with inducing cancer 

progression via hypermethylation of nuclear DNA promoters22. Further, mtDNA-CN has been 

previously associated with changes in nuclear gene expression23. 

 

Thus, gene expression changes identified as a result of mitochondrial variation may be 

mediated, at least in part, by nDNA methylation. Further, given that it has been well-established 

that mtDNA-CN influences a number of human diseases we propose that one mechanism by 

which mtDNA-CN influences disease may be through regulation of nuclear gene expression via 

the modification of nDNA methylation. 

  

To this end, we report the results of cross-sectional analysis of this association between 

mtDNA-CN and nDNA methylation in 5,035 individuals from the ARIC, CHS and FHS cohorts. 

Further, to determine the causal direction of the association between mtDNA-CN and nDNA 

methylation, we present results from experimental modification of mtDNA-CN followed by 

assessment of nDNA methylation and gene expression profiles in mtDNA-CN depleted cell 

lines.  

RESULTS 

mtDNA-CN is associated with nuclear DNA methylation at independent genome-wide loci 

in cross-sectional analysis 

We performed an epigenome-wide association study (EWAS) in 2,507 individuals from the 

Atherosclerosis Risk in Communities (ARIC) study, comprised of 1,567 African American (AA) 
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and 940 European American (EA) subjects (Figure 1, Table 1, Table S1). 34 independent CpGs 

were significantly associated with mtDNA-CN (P<5x10-8) in a meta-analysis combining the race 

groups (Figure 2, Figure S1, Table 2, Table S2A). This conservative P-value cutoff was 

confirmed by permutation testing. In stratified analysis of ARIC AA and EA participants, we 

identified 23 and 15 independent CpGs at epigenome-wide significance, respectively (Figure 

S2, Table S2B,C). Two CpGs were shared by both race groups (cg26094004 and cg21051031). 

ARIC AA and EA effect sizes for significant results were strongly correlated (R2=0.49) (Figure 

S3). Further, 16/23 (70%) of AA cohort-identified CpGs showed the same direction of effect in 

EA participants (P=0.06) and 12/14 (86%) of EA cohort-identified CpGs displayed the same 

direction of effect in AA participants (P=0.008). Given these observations, we have focused on 

the ARIC results from combining both races (N=2,507) in further analyses. 

 

Additionally, an association was observed between increased mtDNA-CN and global 

hypermethylation (P<2.2x10-16, ß=0.1487) in ARIC AA, however no such association was seen 

in ARIC EA (P<0.77, ß=0.013)  (Figure S4).  

 

Pathway and biological process analysis displays associations with cell signaling 

functions and the ‘Neuroactive ligand-receptor interaction’ pathway 

To assess the potential mechanism underlying the identified associations we performed GO and 

KEGG pathway analysis. mtDNA-CN associated CpGs were annotated with their nearest gene. 

KEGG analysis identified the neuroactive ligand-receptor interaction pathway (path:hsa04080) 

to be the top overrepresented pathway (P= 5.24x10-12, Permuted P=3.84x10-5) (Table 3a). 

Further, GO analyses identified a number of biological processes related to cell signaling and 

ligand interactions including Cell-cell signaling (P=1.42x10-3), Trans-synaptic signaling 
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(P=1.88x10-3) and Synaptic signaling (P=1.88x10-3), among others (Table 3b). These results 

were confirmed by both permutation testing and through their robustness to ten different 

associated-CpG cutoffs (cutoff used for final analysis: 300 CpGs).  

 

Validation of CpG associations in independent cohorts 

We performed a validation study to replicate findings from the ARIC discovery population in 239 

AA and 294 EA participants from the Cardiovascular Health Study (CHS) as well as 1,995 EA 

participants from the Framingham Heart Study (FHS), for a total of 2,528 individuals (Table 1). 

7/34 CpGs identified in the discovery cohort were nominally significant (P<0.05 and displaying 

the same direction of effect as the ARIC cohort results) (Table 2) and the effect sizes from the 

ARIC results and the validation meta-analysis were largely correlated (R2=0.36) (Figure 3). 

Overall, the results were consistent across individual cohorts (Figure S5, Table S2) and analysis 

of the results from the 34 CpGs across all 3 cohorts (ARIC, CHS and FHS, N=5,035), identify 6 

CpGs as validated mtDNA-CN associated CpGs (P<5x10-8) (Table 2, Figure S6).  

 

Establishing causality via TFAM knockout  

mtDNA-CN is causative of changes in nuclear DNA methylation at loci of interest 

To assess if modification of mtDNA-CN drives changes to nuclear DNA methylation we used 

CRISPR-Cas9 to knock out the TFAM gene, which encodes a regulator of mtDNA replication 

and has been shown to reduce mtDNA-CN24. Heterozygous knockout of the TFAM gene in 

HEK293T cells resulted in a 5-fold reduction in the expression of TFAM, negligible protein 

production, and an 18-fold reduction in mtDNA-CN across three biological replicates (Figure 4). 

We then assayed methylation of the validated mtDNA-CN associated CpGs using the Illumina 

Infinium Methylation EPIC Beadchip (Table S3). Specifically, the direct assessment of 
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methylation levels for 4 of the 6 validated mtDNA-CN associated CpGs and one surrogate CpG, 

as 2 CpGs were not present on the EPIC array and for one missing CpG a reasonable 

surrogate was not available (see Methods). Reduction of mtDNA-CN in TFAM knockout cell 

lines led to subsequent site-specific changes to DNA methylation for 3 of the 5 EWAS-identified 

CpGs (nominally significant, P<0.05), two of which were in the expected direction of effect 

(reduced mtDNA-CN led to an increase in methylation) (Table 4, Figure S7). Further, two of the 

validated mtDNA-CN associated CpGs were differentially methylated even after Bonferroni 

correction (P<0.01) (Table 4). Pyrosequencing was also performed for 3 of the 6 sites (the other 

sites did not pass pyrosequencing quality control) which confirmed methylation changes at all 

assayed sites (P<0.05) in the expected direction of effect (Table S4).   

 

Global methylation patterns did not show differences between negative control and TFAM 

knockout cell lines suggesting that these differences are site-specific (Figure S8).  

 

mtDNA-CN is causative of changes in nuclear gene expression at nearby genes of 

interest 

The same TFAM knockout and negative control cell lines were analyzed for differential gene 

expression nearby the methylated mtDNA-CN associated CpGs using RNA-seq (Table S5). 

RNA-seq resulted in expected clustering of knockout and control lines (Figure S9). All nominally 

differentially expressed genes (P<0.05) within 1Mb of the TFAM knockout differentially 

methylated CpGs were identified (Table S6). Five genes nearby the three differentially 

methylated CpGs were differentially expressed after Bonferroni correction for the number of 

genes within 1Mb of each CpG (P<6.41x10-4) (Table 5). The five differentially expressed genes 

were: IFI35 (P=3.76x10-5) and RAMP2 (P=5.51x10-4) near cg26094004; RPIA near cg26563141 

(P=5.04x10-6); and HLA-DRB5 (P=6.50x10-7) and MSH5 (P=2.50x10-4) near cg08899667.  
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These results demonstrate that modulation of mtDNA-CN drives changes in nDNA methylation 

and gene expression of specific CpGs and transcripts in a cell culture model. 

 

Pathway and biological process analysis of TFAM KO methylation and expression results 

independently identify pathways identified in cross-sectional analysis 

We sought to independently assess the underlying pathways and biological processes that were 

overrepresented following TFAM knockout in our cell-culture model. Specifically, we analyzed 

the most over-represented terms resulting from GO and KEGG analysis of our full list of 

differentially methylated CpGs and differentially expressed genes as well as a list of integrated 

methylation and expression results (Cutoffs used: TFAM Methylation - top 300 differentially 

methylated CpGs, TFAM Expression – differentially expressed genes (169 genes), TFAM 

Integrated Methylation/Expression – top 188 genes). The independent results confirmed the 

findings from our ARIC cross-sectional analysis. Specifically, KEGG analysis of TFAM knockout 

results identified the neuroactive ligand-receptor interaction pathway (path:hsa04080) to be the 

second most overrepresented pathway in the TFAM knockout methylation analysis (P=4.41x10-

4) and the top overrepresented pathway in the TFAM knockout RNA sequencing analysis 

(P=4.30x10-4) (Table 3a). Accordingly, integration of results from TFAM knockout methylation 

and expression also resulted in strong association with this pathway (P=8.77x10-6). Further, 

combining of P-values (Fisher’s method) across ARIC meta-analysis, TFAM knockout 

methylation and TFAM knockout expression analyses yielded a combined P-value of 8.96x10-16 

for this pathway which was also the top pathway identified in integrated analysis (Table 3a).  
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The specific genes identified by each analysis to be part of the neuroactive ligand receptor 

interaction pathway were unique to each study (Table S7), with only one gene (GABRG3) in 

common between ARIC analyses and TFAM knockout methylation analysis and only one gene 

(GABRB1) in common between TFAM knockout methylation and expression analyses (Table 

S7).  

 

GO analyses of TFAM knockout cell lines also confirmed the finding from cross-sectional 

analysis that biological processes related to cell signaling and ligand interactions including Cell-

cell signaling (combined P=7.63x10-8), Trans-synaptic signaling (combined P=2.89x10-7) and 

Synaptic signaling (combined P=2.97x10-7) were over-represented, among others (Table 3b). 

These results suggest that mtDNA-CN drives changes to nDNA methylation at sites nearby 

genes relating to cell signaling processes which in turn may cause gene expression changes to 

these genes and contribute to disease. 

 

Establishing causality via Mendelian Randomization (MR): Nuclear DNA methylation does 

not appear to be causative of changes in mtDNA-CN at identified CpGs 

Mendelian randomization, a form of instrument variable analysis, was used to further test the 

direction of causality between mtDNA-CN and nuclear methylation by exploring the relationship 

between methylation quantitative trait loci (meQTLs) and mtDNA-CN (Table S8). Specifically, if 

nDNA methylation at our sites of interest is causative of changes in mtDNA-CN, then meQTL 

SNPs for these CpGs of interest would be expected to also be associated with mtDNA-CN. 

Alternatively, if mtDNA-CN is not associated with meQTL SNPs, then it would follow that 

changes to nDNA methylation likely do not drive changes to mtDNA-CN at these CpGs.  
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We identified 4 independent cis meQTLs in the ARIC EA cohort (Permuted P=7.84x10-4) and 6 

independent cis meQTLs in the ARIC AA cohort (Permuted P=9.12x10-4) across 5 mtDNA-CN 

associated CpGs for use as an instrument variable for MR (Table S8A). We further identified 2 

independent meta-analysis derived meQTLs by combining results from ARIC EA and AA 

cohorts (Permuted P=3.97x10-5, fixed effects (FE) model) (Table S8B). 

 

We then assessed the relationship between meQTL SNPs and mtDNA-CN. The results of the 

MR were null for each independent meQTL (Bonferroni P=0.005) (Table S8). While our power 

for a single meQTLvaried depending on the specific meQTL assessed, with power to detect an 

individual association ranging from 0.18 to 0.99 across the 12 meQTLs, overall power was 

>99% to detect at least 1 associated meQTL. These results support the experimentaly 

established direction of causality by suggesting that modification of nDNA methylation at CpG 

sites of interest does not directly drive alterations in mtDNA-CN.  

 

Association of CpG methylation with mtDNA-CN associated phenotypes 

Since decreased mtDNA-CN has been associated with a number of aging-related diseases, and 

given our hypothesis that mtDNA-CN leads to nDNA methylation changes which influence 

disease outcomes, associated CpGs should also be associated with mtDNA-CN related 

phenotypes. To test these associations, we performed linear regression and survival analysis 

for prevalent and incident diseases, respectively, for each of the 6 validated CpGs as they relate 

to CHD, CVD, and mortality in the ARIC, FHS and CHS cohorts (Table 6, Table S9). Results 

from each cohort were meta-analyzed to derive an overall association for each validated CpG 

with each outcome of interest.  
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We identify nominally significant phenotype associations with at least one of the mtDNA-CN 

associated traits of interest for 4 of the 6 validated mtDNA-CN associated CpGs (P<0.05). 

Specifically, results in the expected direction of effect for prevalent CHD and prevalent CVD 

were identified for two mtDNA-CN associated CpGs (cg26094004 and cg08899667). Similarly, 

results in the expected direction of effect were identified for the association between all-cause 

mortality and cg26563141 and cg08899667. Thus, we found cg08899667 to be associated with 

three of the five mtDNA-CN associated phenotypes, including all-cause mortality (Table 6). 

DISCUSSION 

We report evidence that changes in mtDNA-CN influence nDNA methylation at specific, 

validated loci and lead to changes in gene expression of nearby genes, including those acting in 

the ‘neuroactive ligand receptor interaction’ pathway which may impact human health and 

disease via altered cell signaling. A number of these associations were validated across three 

independent cohorts and identified both cross-sectionally and experimentally. Interestingly, 

these associations were found to be site-specific in nature. It is important to note that the 

methods used to estimate mtDNA-CN differed between the three cohorts with a qPCR based 

approach used for CHS, a whole-genome sequencing approach for FHS and microarray 

analysis for ARIC. This may reflect the robustness of results across mtDNA-CN estimation 

methods and also explain why some but not all CpGs replicated in our validation analysis25. We 

also report that our experimental approach using cell lines replicated some but not all of the 

cohort validated CpGs. These findings likely reflect both the intrinsic differences between cell 

line data and cross-sectional data as well as the inherent complexity of mitochondrial-to-nuclear 

signaling which would be expected to vary across cell-types, developmental timepoints and 

environmental conditions. 
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DNA methylation as the link between mtDNA-CN and changes in nuclear gene expression 

A symbiotic relationship between the nuclear and mitochondrial genomes has developed in 

eukaryotes. This relationship strongly implicates communication between the mitochondrial and 

nuclear genomes as vital for proper cell functioning. Epigenetic mechanisms allow for control of 

gene expression beyond DNA sequence and have the capacity to be influenced by 

environmental stimuli. Given the function of the mitochondria in meeting cellular energy 

demands, mitochondria may play an important role in translating environmental stimuli into 

epigenetic changes. In addition, mtDNA-CN levels are sensitive to a number of chemicals26, 

highlighting the role of mtDNA as an environmental biosensor. Also supporting the notion that 

bioenergetics are involved in modulating the epigenetic status of the cell is the observation that 

clinical phenotypes of mitochondrial diseases are strikingly similar to those found in a number of 

epigenetic diseases such as Angelmans, Rett and Fragile X syndromes27. Further, epigenetic 

changes in nuclear DNA correlate with reduced cancer survival and low mtDNA-CN correlates 

with poor survival across a number of cancer types28,29. Thus, retrograde signals from the 

mitochondria to the nucleus may be crucial in sensing homeostasis and translating extracellular 

signals into altered gene expression18. 

 

Our results implicate the neuroactive ligand receptor interaction pathway and in general 

additional processes involved in cellular signaling. The results also show that although the same 

pathways are implicated across our independent datasets, the specific genes affected differ 

between conditions. Interestingly, the neuroactive ligand receptor interaction pathway has been 

identified as having the second highest number of atherosclerosis candidate genes of any 

KEGG pathway, harboring 53 atherosclerosis candidate genes (272 total genes in the 
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pathway)30 . This is an interesting finding given the association of mtDNA-CN with 

cardiovascular disease6–8. Perhaps unsurprisingly, this pathway also belongs to the class of 

KEGG pathways that are responsible for environmental information processing.  

 

Proposed mechanisms for the methylation of nDNA as a result of changes in mtDNA 

The precise identity of the signal(s) coming from the mitochondria that might be responsible for 

modifying nDNA methylation has not yet been identified and warrants further experimentation. It 

is likely that metabolite intermediates, non-coding RNA, and/or histones, may play a role in this 

signaling process. For example, mitochondria-to-nucleus retrograde signaling has been shown 

to regulate histone acetylation and alter nuclear gene expression through the heterogenous 

ribonucleoprotein A2 (hnRNAP2)23. In fact, histone modifications co-vary with mitochondrial 

content and are linked with chromatin activation, namely H4K16, H3L4me3 and H3K36me231.  

 

The differentially expressed genes identified from the experimental knockout may provide some 

evidence with regards to the mechanism behind these findings. For example, IFI35, a gene 

involved in Interferon response, is associated with mtDNA-CN through the antiviral innate 

immune response32. Futher, the differentially expressed genes, RAMP2 and MSH5, are known 

to be related to oxidative phosphorylation protein expression and genome stability, 

respectively33,34.  

 

Uncovering the precise nature of this signaling from mitochondria to the nucleus would be 

expected to expose essential clues that will integrate epigenetic regulation, mitochondrial and 

genomic polymorphisms, and complex phenotypes. Further assessment of the functional 

mechanisms underlying the crosstalk between mtDNA-CN, methylation and disease will be 
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required to fully appreciate the diagnostic and therapeutic utility of the interaction between 

mtDNA and nDNA as identified in this study.  

 

Influence of findings on complex disease etiology 

The observation that differential methylation occurred at specific-sites throughout the nuclear 

genome as a result of changes to mtDNA-CN, provides an explanation for how mtDNA could 

alter normal homeostasis as well as susceptibility and/or severity of diseases. It is particularly 

interesting to note that these changes appear to be site-specific rather than global in nature. 

The association of mtDNA-CN associated CpGs with mtDNA-CN related disease states lends 

further support to the hypothesis that modulation of mtDNA-CN not only modifies the nuclear 

epigenome, and the expression of nearby genes, but does so at locations which may be 

relevant to disease outcomes, including cardiovascular disease and all-cause mortality. In 

particular, these observations may explain how mitochondrial-to-nuclear signaling could 

influence polygenic traits with complex etiology and in particular those for which environmental 

insults play a role. Together, mitochondrial signaling, and subsequent nDNA methylation, may 

have an important role in modifying gene expression which may in turn lead to disease 

outcomes or influence the severity of disease manifestation. Thus, the mechanism(s) by which 

mtDNA-CN influences disease status may be, at least in part, through modification of nDNA 

methylation and subsequent modification and/or regulation of nuclear gene expression.  

 

Further, these findings have direct implications for the recent emergence of mitochondrial 

donation in humans as they suggest that mitochondrial replacement into recipient oocytes may 

lead to unexpected changes to the nuclear epigenome. Thus, with the recent development of 
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mitochondrial replacement therapy, unravelling the complex interplay of the mitochondria and 

nucleus is also critical to properly informing medical decision makers. 

This study design had a number of strengths and limitations. A possible limitation of the cross-

sectional analysis is the potential for some common factor we have not been able to account for 

to influence both mtDNA-CN and nDNA methylation. In experimental analysis, we used 

HEK293T cells for our knockdown studies and we note that the use of a blood cell line may be 

more relevant to direct interpretation of the results. Further, prevalent disease is subject to 

reverse causality and therefore the results on prevalent phentoypes should be interpreted with 

caution. Strengths of this study include the well phenotyped and carefully collected incident 

disease data, the robustness of the findings across multiple cohorts and ethnic groups, as well 

as the carefuly quality control employed. Further, our results stood up to rigorous permutation 

testing which increases the reliability of these observations.  

CONCLUSION 

Cross-sectionally we have shown that variation in mtDNA-CN is associated with nuclear 

epigenetic modifications at specific CpGs across multiple independent cohorts. Specifically, six 

mtDNA-CN associated CpGs were robustly identified across three independent cohorts, three of 

which were confirmed in experimental analysis. Second, we found meQTL SNPs to not be 

associated with mtDNA-CN, suggesting that nuclear methylation at these CpGs does not 

directly cause altered mtDNA-CN. Third, functional results show that modulation of mtDNA-CN 

causes site-specific changes to nuclear DNA methylation and RNA expression near genes 

relating to cell signaling processes including those in the neuroactive-ligand-receptor interaction 

pathway. Further, mtDNA-CN associated CpGs display association with mtDNA-CN related 

phenotypes, namely cardiovascular disease and all-cause mortality. These findings 

demonstrate that the mechanism(s) by which mtDNA-CN influences disease is at least in part 
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via regulation of nuclear gene expression through modification of nDNA methylation. 

Specifically, the data presented here support the model that modification of mtDNA-CN leads to 

changes to nDNA methylation which in turn influence nuclear DNA expression of nearby genes 

which contribute to disease pathology. These results have implications for understanding the 

mechanisms behind mitochondrial and nuclear communication as it relates to complex disease 

etiology as well as the consequences of mitochondrial replacement therapeutic strategies. 

Taken together, the results confirm that in elucidating the underpinnings of complex disease, 

knowledge of only nuclear DNA dynamics is not sufficient to fully elucidating disease etiology.  

ONLINE METHODS 

A flow chart of general methods can be found in Figure 1. 

 

Ethics 

The Atherosclerosis Risk in Communities (ARIC) study, Cardiovascular Health Study (CHS) and 

Framingham Heart Study (FHS) have been approved by the Institutional Review Board (IRB) at 

each participating institution. All participants provided written informed consent. 

 

The ARIC study design and methods were approved by four different IRBs at each of the 

collaborating medical institutions: University of Mississippi Medical Center Institutional Review 

Board (Jackson Field Center); Wake Forest University Health Sciences Institutional Review 

Board (Forsyth County Field Center); University of Minnesota Institutional Review Board 

(Minnesota Field Center); and Johns Hopkins University School of Public Health Institutional 

Review Board (Washington County Field Center).  
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FHS is approved by the IRB at Boston University Medical Center. CHS recruited participants 

from Medicare lists at 4 sites and IRBs at each site were involved in human subjects approval. 

 

Discovery Study Analysis 

The Atherosclerosis Risk in Communities Cohort (ARIC) 

The ARIC study is a prospective cohort intended for the study of cardiovascular disease in 

subjects from four communities across the USA: Forsyth County, NC, northwest suburbs of 

Minneapolis, MN, Jackson, MS, and Washington County, MD35. Sample characteristics are 

available in Table 1. Following quality control, 1,567 African Americans (AA) and 940 European 

Americans (EA) were used as a discovery cohort. Participants for ARIC EA were derived from 

two existing projects, Brain MRI (81.7%) and OMICS (18.3%). DNA was extracted from 

peripheral blood leukocyte samples from visit 2 or 3 using the Gentra Puregene Blood Kit 

(Qiagen; Valencia, CA, USA) according to the manufacturer's instructions (www.qiagen.com) 

and hybridized to the Illumina Infinium Human Methylation 450K BeadChip and the Genome-

Wide Human SNP Array 6.0. 

Estimation of mtDNA-CN from Affymetrix Human SNP 6.0 Arrays 

The Affymetrix Genome-Wide Human SNP 6.0 Array was used to estimate mtDNA-CN for each 

participant as previously described36. Briefly, mtDNA copy number (mtDNA-CN) was determined 

utilizing the Genvisis software package (http://www.genvisis.org). Initially, a list of high-quality 

mitochondrial SNPs were hand-curated by employing BLAST to remove SNPs without a perfect 

match to the annotated mitochondrial location and SNPs with off-target matches longer than 20 

bp. The probe intensities of the 25 remaining mitochondrial SNPs was determined using 
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quantile sketch normalization (apt-probeset-summarize) as implemented in the Affymetrix 

Power Tools software. To correct for DNA quality, DNA quantity, hybridization efficiency and 

other technical artifacts, surrogate variable analysis was applied to the BLAST filtered, GC 

corrected LRR of 43,316 autosomal SNPs. These autosomal SNPs were selected based on the 

following quality filters: call rate >98%, HWE P-value >0.00001, PLINK mishap for non-random 

missingness P-value >0.0001, association with sex P-value 0.00001, linkage disequilibrium 

pruning (r2 <0.30), maximal autosomal spacing of 41.7 kb. The median of the normalized 

intensity, log R ratio (LRR) for all homozygous calls was GC corrected and used as initial 

estimates of mtDNA-CN for each sample. The final measure of mtDNA-CN is represented as 

the standardized residuals from a race-stratified linear regression adjusting the initial estimate of 

mtDNA-CN for 15 surrogate variables (SVs), age, sex, sample collection site, and white blood 

cell count. Technical covariates such as DNA quality, DNA quantity, and hybridization efficiency 

were captured via surrogate variable analysis (SVA) as previously described7,37. 

Illumina Infinium Human Methylation 450K Beadchip Analysis 

The Infinium Human Methylation 450K BeadChip was used to determine DNA methylation 

profiles from blood for >450,000 CpGs across the human genome. 

 

Bisulfite Conversion 

Bisulfite conversion of 1 ug genomic DNA was performed using the EZ-96 DNA Methylation Kit 

(Deep Well Format) (Zymo Research; Irvine, CA, USA) according to the manufacturer's 

instructions (www.zymoresearch.com). Bisulfite conversion efficiency was determined by PCR 

amplification of the converted DNA before proceeding with methylation analyses on the Illumina 
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platform using Zymo Research's Universal Methylated Human DNA Standard and Control 

Primers. 

 

Normalization and Quality Control 

Probes included on the list of cross-reactive 450K probes as reported by Chen et al were 

removed prior to analysis38. The cross-reactive target had to match a minimum of 47 bases to 

be considered cross-reactive. This led to the removal of ~28,000 probes. 

 

Genome studio background correction and BMIQ normalization were performed39 and the 

wateRmelon R package was used to conduct QC filtering40.  

 

Samples were removed for the following reasons: 1. Failed bisulfite conversion, 2. Call rate 

<95%, 3. Sex mismatch using minfi, 4. Weak correlation between available genotypes and 

genotypes on 450K array, 5. Weak clustering according to sex in MDS plot, 6. PCA analysis 

identified them as an outlier (≥4SD from mean), 7. Failed sex check, 8. Sample pass rate <99%, 

9. Only sample to pass on a chip. These filtering settings led to the removal of 68 samples in the 

AA group and 24 samples in the EA group. If samples were run in duplicate, the sample with the 

lowest missing rate was retained.  

 

Surrogate Variable Analysis (SVA) 

SVAs were generated using the package SVA in R and protecting mtDNA-CN37. 

 

Control Probe Principal Components in ARIC European Americans 

The control probe principal components are based on 42 measures, which are transformed from 

control probes and out-of-band probes in the 450K data41. 
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Statistical Analysis 

All statistical analyses were performed using R (version 3.3.3).  

 

Linear Mixed Model – Association between mtDNA-CN and nuclear DNA methylation 

Linear-mixed-effects regression analysis was performed to determine the association between 

mtDNA-CN and nuclear DNA methylation at specific CpGs (Table S1). 

ARIC AA: Methylation ~ MtDNA-CN + Age + Sex + Site + Visit + Chip Position + Plate + CD8 

Count + CD4 Count + B-Cell Count + Monocyte Count + Granulocyte Count + Smoking Status + 

First 10 Surrogate Variables + Chip (as random effect). 

ARIC EA: Same model as ARIC AA but further inclusion of Project (Brain MRI or Omics) as well 

as the first 10 PCs derived from methylation microarray control probes and the composition of 

natural killer (NK) cells. 

Cell types were imputed using the method of Houseman et al.42. All correlations were performed 

using the Pearson method. 

 

Global methylation distributions were assessed by a chi-square test to compare observed to 

expected site-specific methylation.  

 

Meta-Analysis 

A meta-analysis was performed to combine the results from the individual ARIC AA and EA 

analyses (Table S1). This analysis was done using the standard error scheme implemented in 

Metal43. CpGs had to have a P-value cutoff of P<0.05 in ARIC AA and EA analyses to be 

included in the meta-analysis. Associations that met genome-wide significance were included in 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 19, 2019. ; https://doi.org/10.1101/673293doi: bioRxiv preprint 

https://doi.org/10.1101/673293


 21 

subsequent analyses (P=5.0x10-8). 100 meta-analysis permutations were also performed 

(Permuted P=3.94x10-8). 

 

Residual Bootstrapping 

Residual bootstrapping was used to determine the most appropriate genome-wide significance 

cutoff in ARIC EA and AA cohorts (AA: P<6.22x10-8, EA: P<3.03x10-7). The steps taken were as 

follows: 1) Residuals were derived from the full model, 2) Fitted values were derived from the 

null model (model without mtDNA-CN as independent factor), 3) The residuals from Step 1 were 

resampled and added to the fits from Step 2, 4) Each resulting matrix from Step 3 was run as 

pseudonull input in the formula lme(pseudonull~CN+covariates) to refit the full model and obtain 

null statistics, 4a) The most extreme P-value was pulled from each iteration, 4b) The resulting 

100 most extreme P-values were ranked from least to most significant and the 95th value was 

chosen to be the ‘genome-wide significance level’ for the corresponding cohort. Additionally, the 

qq plots show minimal inflation in ARIC AA, EA and meta-analysis (Figure S1).  

 

Significant CpGs with high correlation (R2≥0.6) were identified as non-independent and the 

CpGs with the more significant P-value was retained. Highly correlated CpGs were consistent 

between AA and EA results, specifically these CpGs were cg21051031 and cg03964851 (R2: 

AA=0.62, EA=0.63) and cg06809544 and cg13393978 (R2: AA=0.65, EA=0.70). 

 

Validation Cohorts 

The Cardiovascular Health Study (CHS) 
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The CHS is a population-based cohort study of risk factors for coronary heart disease and 

stroke in adults ≥65 years conducted across four field centers44. The original predominantly 

European ancestry cohort of 5,201 persons was recruited in 1989-1990 from random samples 

of the Medicare eligibility lists; subsequently, an additional predominantly African-American 

cohort of 687 persons was enrolled in 1992-1993 for a total sample of 5,888. The validation 

cohort includes 239 AA participants and 294 EA participants from CHS with mtDNA-CN and 

450K methylation derived from the same visit (Table 1).  

 

mtDNA-CN Estimation using Quantitative PCR 

mtDNA copy number (mtDNA-CN) was determined utilizing a multiplexed real time quantitative 

polymerase chain reaction (qPCR) assay with ABI TaqMan chemistry (Applied Biosystems) as 

previously described7. Briefly, each well consisted of a VIC-labeled, primer limited assay specific 

to a mitochondrial target (ND1), and a FAM-labeled assay specific to a region of the nuclear 

genome selected for being non-repetitive (RPPH1). Each sample was run in triplicate on a 384 

well plate in a 10µL reaction containing 20ng of DNA. The cycle threshold (Ct) value was 

determined from the amplification curve for each target by the ABI Viia7 software. A ΔCT value 

was computed for each well as the difference between the Ct for the RPPH1 target and the Ct 

for the ND1 target, as a measure of mtDNA copy number relative to nuclear DNA copy number. 

For samples with a standard deviation of ΔCT for the three replicates >0.5, an outlier replicate 

was identified and excluded. If the ΔCT standard deviation remained >0.5 after exclusion, the 

sample was completely excluded from future analyses. Replicates with Ct values for ND1 > 28, 

Ct values for RPPH1 > 5 standard deviations from the mean, or ΔCT values >3 standard 

deviations from the mean of the plate were removed. Additionally, due to an observed linear 

increase in ΔCT value by the order in which the replicate was pipetted onto the plate, a linear 

regression was used to correct for pipetting order. Plate effects are controlled for by performing 
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a linear regression whereby the plate a sample is run on is treated as a random effect. The final 

measure of mtDNA-CN is represented as the standardized residuals from a race-stratified 

mixed linear regression adjusting for age, sex, and sample collection site. 

 

Methylation Analysis 

Methylation measurements were performed at the Institute for Translational Genomics and 

Population Sciences at the Harbor-UCLA Medical Center Institute for Translational Genomics 

and Population Sciences (Los Angeles, CA). DNA was extracted from Buffy coat fractions and 

subsequently underwent bisulfite conversion using the EZ DNA Methylation kit (Zymo Research, 

Irvine, CA). Methylation was then assayed using the Infinium HumanMethylation450 BeadChip 

(Illumina Inc, San Diego, CA). 

 

Quality control was performed in in the minfi R package45 (version 1.12.0, 

http://www.bioconductor.org/packages/release/bioc/html/minfi.html). Samples with low median 

intensities of below 10.5 (log2) across the methylated and unmethylated channels, samples with 

a proportion of probes falling detection of greater than 0.5%, samples with QC probes falling 

greater than 3 standard deviation from the mean, sex-check mismatches, failed concordance 

with prior genotyping or > 0.5% of probes with a detection P-value > 0.01 were removed. 

Probes with >1% of values below detection were removed. In total, 11 samples were removed 

for sample QC resulting in a sample of 323 European-ancestry and 326 African-American 

samples.  Methylation values were normalized using the SWAN quantile normalization 

method46. Since white blood cell proportions were not directly measured in CHS they were 

estimated from the methylation data using the Houseman method42. 

 

Regression Analysis 
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CHS was analysed using linear regression with methylation beta values as the dependent 

variable and mtDNA-CN as the independent variable. Analyses were adjusted for age, sex, 

batch, measured white blood cell count and estimated cell type counts.  

The Framingham Heart Study (FHS) 

FHS is a prospective study of individuals from Framingham, Massachusetts47. The validation 

cohort includes 1,995 EA participants from FHS with mtDNA-CN and 450K methylation derived 

from the same visit (Table 1).  

 

mtDNA-CN Estimation from Whole Genome Sequencing 

Cohort-specific mtDNA-CN residuals were obtained by regressing mtDNA-CN on age, sex, and 

WBC counts. Mitochondrial DNA copy number was estimated by applying the fastMitoCalc 

software48 to harmonized build 37 mappings of TOPMed deep whole genome sequencing data 

(freeze 5). The estimated mitochondrial copy number is twice the ratio of average mitochondrial 

sequencing depth to average autosomal sequencing depth. We applied inverse normal 

transformation to mtDNA-CN residuals. 

 

Methylation Analysis 

DNA extraction, methylation quantification (450k-BeadChip), and QC were detailed previously49. 

We obtained lab-specific and cohort-specific DNA methylation residuals by regressing 

methylation beta values on age, sex, batch effects (plate, col, row), and WBC counts. We 

applied inverse normal transformation to DNA methylation residuals. 

 

Regression Analysis 
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A linear mixed model was applied with inverse normal transformed DNA methylation residuals 

as the dependent variable and inverse normal transformed mtDNA-CN residuals as the 

independent variable, accounting for family structure. 

 

Validation and all-cohort meta-analyses 

A meta-analysis was performed of all validation cohorts (FHS EA, CHS EA, CHS AA). We also 

performed an all-cohort meta-analysis (ARIC AA, ARIC EA, FHS EA, CHS EA, CHS AA). Both 

meta-analyses were performed using the standard error scheme implemented in Metal43. 

 

Mendelian Randomization 

meQTL Analysis 

meQTLs were identified using MatrixEQTL50. Imputed genotypes which were previously derived 

from ARIC for the relevant participants as well as normalized residuals from our 450K 

methylation dataset were used in regression analysis. Haplotype phasing was performed using 

ShapeIt51 and imputation was performed using IMPUTE252. SNPs were filtered for allele 

frequency >0.05, and imputation quality >0.4. Genotypes were imputed to the 1000G reference 

panel (Phase I, version 3). The same covariates used for the ARIC EWAS analysis were used 

to call meQTLs as well as the addition of genotyping PCs (4 for EA, 10 for AA). Only meQTLs 

which had an individual cohort P value >0.05 were included in the meta-analysis. 

 

A linear model was used for MatrixEQTL and a cis meQTL was defined as having a distance 

less than 100 kb. Only cis meQTLs derived from the 6 CpGs of interest and which met a cohort-

specific permuted P-value cutoff (Permuted P: EA=7.84x10-4, AA=9.12x10-4) or a permuted 
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meta-analysis P-value cutoff (Permuted P, fixed effects (FE) model: 3.97x10-5) were retained for 

use in Mendelian randomization. Metasoft53 was used for meta-anlaysis; in addition to the fixed 

effects (FE) model, a random effects (RE) and Han and Eskin’s Random Effects model (RE2) 

were also used and yielded very similar results (Table S8).  

Mendelian Randomization Methods 

Independent meQTLs were used for MR. Independence was defined by including SNPs in the 

same linear model. MR with mtDNA-CN as the outcome and methylation as the exposure was 

undertaken. meQTLs served as the known relationship of genotype on exposure (methylation) 

and the results of the linear model, lm(mtDNA~meQTL SNP) were calculated. Power for the MR 

was calculated using the YZ association function in mRnd54. 

 

Phenotype Analysis 

We compared methylation at the 6 validated CpGs to phenotypes that are known to be 

associated with mtDNA-CN. Phenotypes included prevalent diseases (CHD, CVD) as well as 

incident diseases (CHD, CVD, Mortality). The analysis was performed as follows for each 

cohort: 

 

A) Prevalent diseases (CHD, CVD): glm(PRVCVD ~ resids(methyl) + AGE + SEX + 

CENTER + RACE, family=binomial(logit)) 

B) Incident diseases (CHD, CVD, Mortality): coxph(Surv(STime,dead) ~ resids(methyl) + 

AGE + SEX + CENTER + RACE)) 

Where resids(methyl) represents methylation adjusted for all relevant covariates from the 

EWAS. The event adjudication process in ARIC, CHS and FHS consisted of expert committee 
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review of hospital records, telephone interviews, and death certificates. In addition, adjudicated 

events between visit 1 and the baseline visit for this study were considered prevalent events. 

 

Analyses of prevalent and incident events in CHS were adjusted for age, sex, clinic site and 

batch.  

 

In ARIC,  prevalent coronary heart disease (CHD) was defined as history of myocardial 

infarction (MI) or cardiac procedures (heart or arterial surgery, coronary bypass, or angioplasty). 

Cardiovascular disease (CVD) was defined as either CHD or stroke. Prevalent stroke was 

defined as stroke at baseline. For all phenotypes, prevalent disease was a combination of self-

report at visit 1 plus adjudicated events between visit 1 and the baseline visit. Incident CHD was 

defined as the first incident MI or death owing to CHD. Incident stroke was defined as the first 

nonfatal stroke or death owing to stroke. In ARIC, the mean follow-up time was 20.6 years in the 

EA cohort and 18.1 years in the AA cohort. Follow-up for incident events was administratively 

censored at December 31, 2016. 

 

CHS and FHS followed similar phenotype definitions as ARIC. For FHS, the mean follow-up 

time was 6.0 years and individuals were removed if follow-up years equaled 0, FHS events were 

adjudicated through 12/2016. In CHS, prevalent CVD/CHD was excluded during sampling and 

events were adjudicated through June 30, 2015. The follow up time for incident events from the 

time of methylation measurement was 23 years. 

 

Results from each of the 5 individual cohorts were meta-analyzed across cohorts using an 

inverse weighted standard error method43 to derive an overall phenotype association for each 

CpG of interest.  
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CRISPR-Cas9 Knockout of TFAM 

Generation of TFAM Knockout 

The stable TFAM CRISPR-Cas9 knockout was generated in HEK293T cells using the Origene 

TFAM – Human Gene Knockout Kit via CRISPR (catalog number: KN215488) following the 

manufacturer’s protocol. The following sgRNA guide sequence was used to generate the stable 

TFAM knockout lines: GCGTTTCTCCGAAGCATGTG. Lipofection was conducted using 

Turbofectin 8.0 (catalog number: TF81001). Puromycin was used for selection at a 

concentration of 1.5 µg/mL. Fluorescence-activated cell sorting (FACS) was used for single cell 

sorting and clonal expansion. HEK293T cells were grown in DMEM containing 10% FBS and 

1% penicillin-streptomycin at 37°C and 5% CO2. Sequencing primers used to confirm the TFAM 

knockout and proper insertion of the Donor plasmid are as follows: 

TFAM_Left_Forward_Primer_2: AGCGACTGTGGACAACTAGC, GFP_Reverse_Primer_2: 

TCATCTTGTTGGTCATGCGG, Puro-Forward_Primer_1: CACAACCTCCCCTTCTACGAG, 

TFAM_Right_Reverse_Primer_1: CCCCAAACTCCTTACCTGGG. 

 

DNA Isolation 

DNA extraction was performed on harvested HEK293T TFAM knockout cells using the AllPrep 

DNA/RNA Mini Kit (Qiagen #80204) following the manufacturer’s protocol. DNA was eluted in 

100 µL ultrapure water. DNA was quantified using a Nanodrop 1000. Low purity samples were 

subjected to ethanol precipitation. 

 

RNA Isolation 
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Total RNA was extracted from confluent T75 culture flasks of TFAM CRISPR Negative Control 

and KO cell lines (p32) using the AllPrep DNA/RNA/Protein Kit (Qiagen #80004). RNA was 

extracted using the provided kit manual/instructions for RNA extraction, except all microcentrifuge 

spins were performed at 10,000 x g. RNA was eluted twice in 50 uL molecular biology grade water 

and stored in a -80C freezer. 

 

mtDNA-CN Estimation on TFAM Knockout Cell Lines 

qPCR was used to measure mtDNA-CN as described above for CHS in section “mtDNA-CN 

Estimation using Quantitative PCR”. 

 

TFAM Expression Assay 

cDNA synthesis was performed with the SuperScript III First-Strand Synthesis System for RT-

PCR (ThermoFisher #18080-051) following the manufacturer's protocol. 1.5 µg of total RNA 

from each cell line was used as input and primed with 50 ng random hexamers using the 

appropriate incubation conditions from the manufacture’s protocol. Following completed cDNA 

synthesis, samples were quantified using the Qubit ssDNA assay kit (Invitrogen #Q10212) and 

Qubit 2.0 Fluorometer. Synthesized cDNA was then diluted to 10 ng/µL using ultrapure water 

and stored in -20oC. 

 

qPCR to determine TFAM gene expression for TFAM KO 

20 ng of synthesized cDNA from each cell line was used as input for a 10 µL volume reaction. 

TFAM cDNA were amplified using TaqMan probe Hs00273372_s1 (20x, FAM-labeled, Applied 

Biosystems #4331182). GAPDH cDNA served as a housekeeping reference control and was 

amplified with probe Hs03929097_g1 (20x, VIC-labeled, Applied Biosystems #4448489). Both 

probes were multiplexed together and all qPCR reactions were conducted at 50o C for 2 min, 
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95oC for 10 min, and then 40 cycles of 95oC for 15 sec and 60oC for 1 min. Expression fold 

change was determined using double delta cycle threshold using GAPDH as the housekeeping 

reference control. 

 

Total Protein Extraction 

Total protein lysates from HEK293T TFAM CRISPR knockout cell lines were extracted using 

ice-cold radioimmunoprecipitation assay buffer (RIPA) buffer supplemented with Halt Protease 

and Phosphatase Inhibitor Cocktail (Thermo Scientific #78440). Protein concentrations were 

quantified using the Pierce BCA Protein Assay Kit (Thermo Scientific #23227) and lysates were 

stored at -80oC.  

 

Western Blotting 

Equal amounts of each lysate were diluted 1:1 with 2x Laemmli Sample Buffer (Bio-Rad #161-

0737) supplemented with 5% β-mercaptoethanol. Samples were then heated at 95oC for 5 

minutes to denature the proteins. 30 µg of each protein lysate was separated on a 12% 

polyacrylamide Mini-PROTEAN TGX Gel (Bio-Rad #456-1044) and then transferred to a PVDF 

membrane (Bio-Rad #1704156) using the Trans-Blot Turbo Transfer System. The membrane 

was blocked overnight at 4o C in Tris-Buffered Saline and Tween 20 (TBST) containing 5% 

nonfat milk with gentle shaking. After blocking, the membrane was incubated with rabbit anti-

TFAM primary antibody diluted 1:2000 in 5% milk (Abcam #ab131607) and rabbit anti- β-

Tubulin primary antibody diluted 1:3000 in 5% milk (Invitrogen #PA5-27552) for 1 hour at room 

temperature with gentle shaking. The membrane was washed 5-times with TBST after primary 

antibody incubation, then incubated with goat anti-rabbit secondary antibody conjugated with 

horseradish peroxidase (1:20,000 dilution, Abcam #ab97080) in the dark for 1 hour at room 

temperature with shaking. Signals were visualized by enhanced chemiluminescent substrate 
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(SuperSignal West Pico PLUS, Thermo Scientific #34577) and photographed digitally using the 

ChemiDoc-It2 Imager.  

Methylation Analysis of TFAM Knockout Lines 

TFAM KO cell lines were hybridized to the Illumina Infinium EPIC BeadChip at The University of 

Texas Health Science Center at Houston (UTHealth). Bisulfite conversion efficiency was 

reviewed in the laboratory using the Bead Array Controls Reporter (BACR) tool, and Illumina 

chemistry (sample independent controls) performed within acceptable specifications.  

All samples passed with detected CpG (0.01) >97%. 

 

EPIC BeadChip analysis was performed using the minfi package55. Data was normalized using 

Functional Normalization41 and differential methylation was calculated using the dmpFinder 

function in minfi (Table S3).  

 

In the cases where the CpG from the 450k array was not represented on the EPIC array a CpG 

surrogate was chosen if there was a nearby CpG within 1000 bp upstream or downstream of the 

original CpG that was highly correlated with the original CpG (R2 ≥0.6) and associated with 

mtDNA-CN in the ARIC analysis (P<5x10-8). 

RNA sequencing of TFAM Knockout Lines  

RNA Preparation 

RNA quantification was performed using the Qubit RNA BR Assay (Invitrogen #Q10211) and 

Qubit 2.0 Fluorometer. The Agilent BioAnalyzer was used for quality control of the RNA prior to 

library creation, with a minimum RIN of 8.5. Samples were diluted to 300 ng/uL in 12 uL molecular 
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biology grade water, and then submitted to the Genetic Resources Core Facility for RNA 

sequencing. 

 

Library Preparation and Sequencing 

Illumina’s TruSeq Stranded Total RNA kit protocol was used to generate libraries.  Specifically, 

total RNA is converted to cDNA and size selected to 150 to 200 bp in length with 3' or 5' 

overhangs. End repair is performed where 3' to 5' exonuclease activity of enzymes removes 3' 

overhangs and the polymerase activity fills in the 5' overhangs. An ‘A’ base is then added to the 

3' end of the blunt phosphorylated DNA fragments which prepares the DNA fragments for ligation 

to the sequencing adapters, which have a single ‘T’ base overhang at their 3' end. Ligated 

fragments are subsequently size selected through purification using SPRI beads and undergo 

PCR amplification techniques to prepare the ‘libraries’. The BioAnalyzer is used for quality control 

of the libraries to ensure adequate concentration and appropriate fragment size.  The resulting 

library insert size is 120-200 bp with a median size of 150 bp. Libraries were uniquely barcoded 

and pooled for sequencing. DNA sequencing was performed in duplicate on an Illumina® HiSeq 

2500 instrument using standard protocols for paired end 150 bp sequencing. As per Illumina’s 

recommendation, 3% PhiX was added to each lane as a control, and to assist the analysis 

software with any library diversity issues. 

 

Primary Analysis 

Illumina HiSeq reads were processed through Illumina’s Real-Time Analysis (RTA) software 

generating base calls and corresponding base call quality scores.  CIDRSeqSuite 7.1.0 was used 

to convert compressed bcl files into compressed fastq files. 

 

Secondary Analysis 
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Each independent cell-line was sequenced twice. RNA sequencing fastq files were pseudoaligned 

to Genome Reference Consortium Human Build 37 (GRCh37) using Kallisto56. 100 bootstraps 

were performed using Kallisto. The R package Sleuth was used for RNA sequencing analysis57 

(Table S5). Lane was included as a covariate in the Sleuth model. Differentially expressed genes 

were defined as those with a P<0.05. 

Integrated analysis of TFAM knockout methylation and expression 

The linear-gwis method in FAST (genotype mode) was used to collapse TFAM KO methylation 

data into one gene level P-value per gene58. These gene-level methylation results were 

combined with gene-level gene expression results for the same gene using the Fisher P-value 

combination method to generate an integrated gene level Methylation/RNA sequencing P-value. 

 

GO/KEGG Analysis 

Each CpG was annotated with the nearest gene as defined by the closest gene which harbors 

the CpG within 1,500 bp of the transcriptional start site and extending to the polyA signal. A bias 

exists when performing gene set analysis for genome-wide methylation data that occurs due to 

the differing numbers of CpG sites profiled for each gene59. Due to this, we used gometh for GO 

and KEGG analysis since it is based off of the goseq method which accounts for this bias60. We 

analyzed our individual ARIC/TFAM datasets as well as our TFAM integrated (meth/expression) 

dataset. We also combined GO/KEGG results for ARIC, TFAM methylation and TFAM RNA 

sequencing using the Fisher P-value combination method to generate an overall combined P-

value for each term. 10 stepwise cutoffs ranging from 75 CpGs to 300 CpGs were performed to 

ensure robustness of results. Final P-value cutoffs used for each analysis were as follows: ARIC 

Meta-Analysis (300 CpGs, P=5.24x10-12), TFAM Methylation (300 CpGs, P=4.41x10-4), TFAM 
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Expression (169 genes, P=4.30x10-4), TFAM Integrated (Methylation/Expression) (188 genes, 

P=8.77x10-6). 

 

All statistical analyses were performed using R (version 3.3.3).  
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Figure 1. Flow chart of methods.  
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Figure 2. ARIC Meta-Analysis (AA and EA) Results. 34 Independent genome-wide significant CpGs were identified in ARIC meta-analysis to be associated with mtDNA-
CN (red dots). Blue dotted line represents genome-wide significance cutoff (P=5x10-8). CpGs had to be independent and nominally significant in both cohorts (P<0.05), as 
well as meet the meta-analysis significance cutoff (P=5x10-8) to be considered significant. 
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Figure 3. Validation of Meta-analysis identified CpGs in CHS and FHS combined cohorts (N=2,528, R2=0.36).  
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Figure 4. CRISPR-Cas9 induced heterozygous knockout of TFAM reduced RNA expression, mtDNA-CN and protein levels. A. RNA expression was reduced by over 
80% relative to negative control (NC) expression (left) (passage 45). mtDNA-CN levels showed an ~18-fold reduction in TFAM knockout cell lines, (passage 32) (right). B. 
Western blot of CRISPR TFAM heterozygous knockout showed a significant reduction in TFAM protein (passage 35). NC=Negative Control lines. CRISPR=CRISPR TFAM 
knockout lines. Control is Tubulin.  
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Table 1. Sample characteristics of discovery and validation cohorts. 

  DISCOVERY COHORTS VALIDATION COHORTS 

  ARIC AA (N=1567) ARIC EA (N=940) CHS CHS AA (N=239) CHS EA (N=294) FHS FHS (N=1995) 

  mean (range) mean (range)  mean (range) mean (range)   mean (range) 
 Age  57.2 (47 - 71) 60.2 (47 - 72)  72.4 (65 - 92) 72.3 (65 - 95)  61.4 (20-91) 
 mtDNA-CN (SD units) 0.04 (-6.47 - 2.88) 0.04 (-4.41 - 2.87)  0.05 (-3.19 - 2.69) 0.05 (-2.28 - 2.76)  0.01 (-2.28 -8.11) 
 Sex  N (percentage) N (percentage)  N (percentage) N (percentage)  N (percentage) 

Male 604 (38.5%) 381 (40.5%)    97 (41.8%) 112 (38.9%)  901 (45.16%) 
Female 963 (61.5%) 559 (59.5%)  135 (58.2%) 176 (61.1%)  1094 (54.64%) 

 Collection Site    Collection Site    Collection Site  
Forsyth County, NC     188 (12%) 832 (88.5%) Bowman Gray    74 (31.9%) 67 (23.3%) Framingham 

Town 
1995 (100%) 

Suburbs of Minneapolis, MN       0 (0%) 86 (9.2%) Davis      71 (30.6%) 71 (24.7%)  
Jackson, MS  1379 (88%) 0 (0%) Hopkins 0 (0%) 83 (28.8%)  

Washington County, MD        0 (0%) 22 (2.3%) Pittsburgh    87 (37.5%) 67 (23.3%)   
 Smoking Status        

Current Smoker 655 (41.8%) 181 (19.3%)  32 (13.8%)      26 (9.0%)  205 (10.4%) 
Former Smoker 484 (30.9%) 366 (38.9%)  89 (38.4%)    116 (40.3%)  947 (47.47%) 
Never Smoker 428 (27.3%) 392 (41.7%)  85 (36.6%)    133 (46.2%)  838 (42.0%) 

Unknown     0 (0.0%)    1 (0.1%)  26 (11.2%)    13 (4.5%)  5 (0.2%) 
Phenotypes (# of cases)        

 Mortality 605 (38.6%) 224 (23.8%)  194 (83.6%) 263 (91.3%)  217 (10.87%) 
CVD Prevalent 154 (9.8%) 49 (5.2%)  N/A N/A  94 (4.71%) 

 Incident 296 (18.9%) 108 (11.5%)  83 (35.8%) 99 (34.4%)  94 (4.71%) 
CHD Prevalent 112 (7.1%) 40 (4.3%)  N/A N/A  94 (4.71%) 
 Incident 193 (12.3%) 83 (8.8%)  48 (20.7%) 57 (19.8%)  68 (3.41%) 

 Cell Type Proportions mean (range) mean (range)  mean (range) mean (range)  mean (range) 
CD8 0.15 (0.00 - 0.48) 0.10 (0.00 - 0.27)  0.09 (0.00 - 0.38) 0.06 (0.00 - 0.22)  0.10 (0.00-0.36) 
CD4 0.19 (0.00 - 0.52) 0.16 (0.00 - 0.44)  0.20 (0.00 - 0.48) 0.15 (0.00 - 0.52)   0.19 (0.02-0.44) 
B-cell 0.07 (0.00 - 0.58) 0.06 (0.00 - 0.56)  0.08 (0.00 - 0.26) 0.06 (0.00 - 0.76)  0.04 (0.00-0.52) 

Monocyte 0.13 (0.02 - 0.26) 0.09 (0.02 - 0.19)  0.10 (0.00 - 0.27) 0.09 (0.01 - 0.35)  0.12 (0.05-0.30) 
Granulocyte 0.45 (0.15 - 0.98) 0.55 (0.16 - 0.93)  0.44 (0.11 - 0.75) 0.57 (0.03 - 0.92)  0.49 (0.02-0.85) 

NK cells N/A 0.07 (0.00 - 0.36)  0.12 (0.01 - 0.38) 0.09 (0.00 - 0.36)  0.02 (0.00-0.13) 
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Table 2. ARIC discovery meta-analysis identified 34 independent mtDNA-CN associated CpGs. Validation meta-analysis included CHS AA, CHS EA and FHS EA 
cohorts (P<0.05 and same direction, bolded cells). All cohort meta-analysis (ARIC AA, ARIC EA, CHS AA, CHS EA and FHS EA) identified 6 validated CpGs (P<5x10-8, 
shaded cells). 

Marker Name Chr Position Gene‡ 

ARIC Meta-Analysis (N=2507) Validation Meta-Analysis 
(N=2528) 

All Cohort Meta-Analysis (N=5035) 

Estimate Standard 
Error 

P-value Estimate Standard 
Error 

P-value Estimate Standard 
Error 

P-value 

cg21051031 5 93,905,482 KIAA0825 0.0080 0.0005 1.66E-47 0.0015 0.0007 2.45E-02 0.0056 0.0004 1.48E-42 
cg26094004 17 42,075,116 PYY -0.0098 0.0009 4.54E-28 -0.0043 0.0012 5.05E-04 -0.0079 0.0007 4.13E-28 
cg26563141 2 88,124,876 RGPD2; 

RGPD1 
-0.0088 0.0013 2.42E-11 -0.0044 0.0010 7.42E-06 -0.0060 0.0008 2.20E-14 

cg03597491 11 113,945,432 ZBTB16 0.0038 0.0006 6.20E-11 -0.0011 0.0004 6.94E-03 0.0006 0.0003 7.05E-02 
cg04454285 16 86,016,317 IRF8 0.0033 0.0005 9.95E-11 0.0007 0.0004 1.25E-01 0.0018 0.0003 7.31E-08 
cg01351315 17 46,667,737 LOC404266 0.0049 0.0008 1.84E-10 -0.0004 0.0005 4.26E-01 0.0013 0.0004 3.54E-03 
cg21163717 8 21,769,903 DOK2 -0.0038 0.0006 2.13E-10 0.0001 0.0005 8.88E-01 -0.0014 0.0004 1.13E-04 
cg13488078 8 27,469,338 CLU 0.0045 0.0007 6.72E-10 -0.0002 0.0005 7.13E-01 0.0013 0.0004 1.47E-03 
cg01697902 14 25,046,117 CTSG 0.0041 0.0007 6.72E-10 0.0010 0.0005 4.19E-02 0.0020 0.0004 1.43E-07 
cg26894523 4 107,725 ZNF718 0.0036 0.0006 6.90E-10 -0.0008 0.0004 8.68E-02 0.0007 0.0004 4.67E-02 
cg10044470 14 104,866,284 C14orf144 -0.0059 0.0010 7.51E-10 -0.0002 0.0007 7.47E-01 -0.0021 0.0005 1.39E-04 
cg20605134 6 15,400,462 JARID2 0.0030 0.0005 9.41E-10 0.0008 0.0005 8.75E-02 0.0018 0.0003 6.76E-08 
cg17356733 21 34,774,627 IFNGR2 0.0044 0.0007 2.38E-09 -0.0008 0.0006 1.57E-01 0.0012 0.0005 7.50E-03 
cg11212901 17 22,020,759 MTRNR2L1 0.0042 0.0007 3.60E-09 0.0001 0.0007 9.74E-01 0.0022 0.0005 2.33E-05 
cg17586302 6 144,013,969 PHACTR2 0.0048 0.0008 4.24E-09 0.0007 0.0007 3.20E-01 0.0023 0.0005 7.39E-06 
cg22068629 19 2,446,633 LMNB2 0.0050 0.0009 9.85E-09 -0.0001 0.0006 9.01E-01 0.0016 0.0005 1.29E-03 
cg06358171 1 54,822,008 SSBP3 0.0057 0.0010 1.03E-08 -0.0003 0.0007 6.71E-01 0.0017 0.0006 2.30E-03 
cg25006194 12 94,288,553 CRADD 0.0040 0.0007 1.15E-08 -0.0001 0.0005 8.82E-01 0.0012 0.0004 2.13E-03 
cg13381110 18 60,646,614 PHLPP1 0.0065 0.0011 1.43E-08 -0.0003 0.0008 7.56E-01 0.0020 0.0007 2.55E-03 
cg03910874 6 209,712 LOC285766 -0.0038 0.0007 1.64E-08 -0.0004 0.0006 4.67E-01 -0.0020 0.0005 1.28E-05 
cg23304647 7 2,778,058 GNA12 0.0042 0.0007 1.84E-08 -0.0008 0.0005 1.65E-01 0.0010 0.0004 2.72E-02 
cg00705730 2 106,438,120 NCK2 0.0046 0.0008 2.04E-08 0.0007 0.0006 2.52E-01 0.0020 0.0005 2.40E-05 
cg00960906 5 31,769,846 PDZD2 -0.0050 0.0009 2.33E-08 -0.0009 0.0007 1.53E-01 -0.0024 0.0005 8.50E-06 
cg14531564 1 1,154,853 SDF4 -0.0039 0.0007 2.34E-08 0.0006 0.0006 3.52E-01 -0.0013 0.0005 3.79E-03 
cg14575356 6 130,013,903 ARHGAP18 0.0047 0.0008 3.14E-08 0.0023 0.0007 1.10E-03 0.0033 0.0005 1.22E-09 
cg12430029 17 55,446,979 MSI2 -0.0044 0.0008 3.19E-08 0.0007 0.0006 2.83E-01 -0.0012 0.0005 1.10E-02 
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cg23513930 3 10,334,717 GHRLOS; 
GHRL 

0.0030 0.0006 3.28E-08 0.0014 0.0004 1.96E-03 0.0020 0.0003 3.71E-09 

cg01323964 7 65,219,171 SNORA22; 
CCT6P1 

0.0048 0.0009 3.35E-08 0.0001 0.0007 9.95E-01 0.0017 0.0005 8.20E-04 

cg03720100 6 30,720,263 IER3 0.0030 0.0005 3.73E-08 -0.0008 0.0005 8.46E-02 0.0008 0.0004 2.31E-02 
cg08899667 6 31,761,055 VARS -0.0051 0.0009 4.15E-08 -0.0035 0.0007 3.11E-06 -0.0041 0.0006 1.55E-12 
cg16276850 17 38,498,914 RARA 0.0047 0.0008 4.35E-08 -0.0004 0.0005 4.38E-01 0.0010 0.0004 2.77E-02 
cg17564205 12 89,992,940 ATP2B1 0.0017 0.0003 4.43E-08 0.0004 0.0004 2.66E-01 0.0012 0.0002 4.34E-07 
cg12578100 8 106,330,170 ZFPM2 0.0045 0.0008 4.49E-08 -0.0003 0.0007 6.58E-01 0.0017 0.0005 1.33E-03 
cg18548864 3 112,995,278 BOC 0.0031 0.0006 4.83E-08 0.0004 0.0005 4.46E-01 0.0016 0.0004 2.40E-05 

‡Gene is defined as the closest gene(s) which harbor the CpG within 1500 bp of the transcriptional start site and extending to the polyA signal. 
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Table 3. Results of pathway and functional analysis in ARIC Meta-analysis and TFAM knockout methylation and expression datasets with 
combined P-Value and ARIC P-Value <0.05. TFAM integrated (INT) P-value represents combined methylation and expression results. Combined P-value 
represents combined ARIC and TFAM methylation and expression results. A. KEGG pathways sorted by combined p-value. B. GO pathways sorted by 
combined p-value. 
A. 

Pathway Name ARIC 
P-value 

TFAM 
METH 

P-value 

TFAM 
RNA 

P-value 

TFAM 
INT 

P-value 

Combined Pathway P-value 
(ARIC, TFAM-METH,   

TFAM-RNA) 
path:hsa04080 Neuroactive ligand-receptor interaction 5.24E-12 4.41E-04 4.30E-04 8.77E-06 8.96E-16 
path:hsa05033 Nicotine addiction 8.99E-04 6.30E-05 9.32E-04 7.72E-06 1.61E-08 
path:hsa04024 cAMP signaling pathway 1.29E-05 2.32E-02 2.23E-01 3.25E-01 1.03E-05 
path:hsa04614 Renin-angiotensin system 1.04E-05 5.11E-02 1.00E+00 1.00E+00 6.37E-05 
path:hsa04723 Retrograde endocannabinoid signaling 1.89E-04 1.84E-02 1.56E-01 3.66E-03 6.48E-05 
path:hsa05032 Morphine addiction 1.26E-02 4.38E-02 5.15E-02 1.40E-03 1.88E-03 
path:hsa05031 Amphetamine addiction 3.54E-02 9.64E-02 4.23E-01 1.19E-01 4.18E-02 
path:hsa04724 Glutamatergic synapse 1.80E-02 9.49E-02 1.00E+00 1.00E+00 4.73E-02 

 
B. 

Function Name ARIC 
P-value 

TFAM 
METH 

P-value 

TFAM 
RNA 

P-value 

TFAM 
INT 

P-value 

Combined Function P-
value (ARIC, TFAM-METH,   

TFAM-RNA) 
GO:0007267 Cell-cell signaling 1.42E-03 1.71E-05 1.19E-02 1.42E-02 7.63E-08 
GO:0099537 Trans-synaptic signaling 1.88E-03 1.06E-05 6.27E-02 1.92E-02 2.89E-07 
GO:0099536 Synaptic signaling 1.88E-03 1.08E-05 6.34E-02 1.92E-02 2.97E-07 
GO:0007268 Chemical synaptic transmission 1.88E-03 2.22E-05 6.05E-02 1.87E-02 5.47E-07 
GO:0098916 Anterograde trans-synaptic signaling 1.88E-03 2.22E-05 6.05E-02 1.87E-02 5.47E-07 
GO:0099095 Ligand-gated anion channel activity 4.30E-02 8.02E-04 1.23E-04 3.74E-07 8.74E-07 
GO:0045202 Synapse 1.98E-04 9.81E-05 2.74E-01 5.92E-03 1.07E-06 
GO:0045211 Postsynaptic membrane 8.33E-03 1.03E-04 1.45E-01 6.19E-04 1.78E-05 
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Table 4. Methylation Status of Validated CpGs in TFAM KO cell lines (N=6). Bolded entries indicate differential expression P<0.05. 

Marker Name 

All Cohort Meta-Analysis Average 
Methylation 
in Negative 

Control 
Lines 

Average 
Methylation in 

TFAM 
Knockout 

Lines 

TFAM Differential Expression 

Mean 
Methylation Estimate Standard 

Error P-value Beta Estimate P-Value 

cg03964851 
0.83 0.0038 0.0004 7.34E-27 0.7685 0.7710 -0.0025 9.42E-01 (surrogate for 

cg21051031) 
cg26094004 0.55 -0.0079 0.0007 4.13E-28 0.6504 0.9001 -0.2497 2.91E-05 
cg26563141 0.37 -0.0060 0.0008 2.20E-14 0.3071 0.4187 -0.1116 1.25E-02 
cg14575356 0.55 0.0033 0.0005 1.22E-09 0.7906 0.7918 -0.0013 9.40E-01 

cg23513930 0.35 0.0020 0.0003 3.71E-09 Not on EPIC array and no surrogate available 

cg08899667 0.58 -0.0041 0.0006 1.55E-12 0.7931 0.7014 0.0917 3.33E-03 
*Note: Mean methylation for cg21051031 = 0.85 
 
 
 
 
Table 5. Differentially expressed genes (P=6.41x10-4) within 1Mb of differentially methylated CpGs. 

EWAS CpG Chr:Position 
Number 
of Genes 
Within 1 

Mb 

P-Value for 
TFAM 

Methylation 
Difference 

Gene 
P-value for 

TFAM 
Differential 
Expression 

Direction of 
Effect 

(following 
KO)* 

Distance 
from 
CpG 
(Kb) 

Description 

cg26094004 17:42,075,116 42 2.91E-05 
IFI35 3.76E-05 Increased 931.6 interferon induced protein 35 [Source:HGNC 

Symbol;Acc:HGNC:5399] 

RAMP2 5.51E-04 Increased 683.3 receptor activity modifying protein 2 
[Source:HGNC Symbol;Acc:HGNC:9844] 

cg26563141 2:88,124,876 4 1.25E-02 RPIA 5.04E-06 Decreased 566.8 ribose 5-phosphate isomerase A [Source:HGNC 
Symbol;Acc:HGNC:10297] 

cg08899667 6:31,761,055 32 3.33E-03 
HLA-DRB5 6.50E-07 Decreased 756.3 major histocompatibility complex: class II: DR 

beta 5 [Source:HGNC Symbol;Acc:HGNC:4953] 

MSH5 2.50E-04 Increased 1.8 mutS homolog 5 [Source:HGNC 
Symbol;Acc:HGNC:7328] 
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Table 6. Summary of phenotype associations from all-cohort meta-analysis for Validated CpGs. Bold entries highlight nominally significant 
associations (P<0.05). 
 

All Cohorts Meta 
Direction 

Expected 
Direction of 
Phenotype 

Association 

Prevalent CHD Prevalent CVD Incident CHD Incident CVD Mortality 

Beta Std. 
Error P-Value Beta Std. 

Error P-Value Beta Std. 
Error P-Value Beta Std. 

Error P-Value Beta Std. 
Error P-Value 

cg21051031 Positive Negative -0.56 1.95 7.74E-01 -0.67 1.88 7.23E-01 0.96 1.80 5.94E-01 -0.28 1.41 8.43E-01 -0.79 0.81 3.31E-01 

cg26094004 Negative Positive 2.91 1.48 4.89E-02 3.13 1.40 2.55E-02 0.89 0.93 3.39E-01 -0.13 0.77 8.63E-01 -0.78 0.49 1.16E-01 

cg26563141 Negative Positive 0.22 1.33 8.69E-01 -0.31 1.24 8.00E-01 0.13 0.94 8.88E-01 1.10 0.75 1.40E-01 0.98 0.45 2.87E-02 

cg14575356 Positive Negative -1.80 2.04 3.79E-01 -2.19 1.88 2.45E-01 2.71 1.34 4.36E-02 1.75 1.08 1.04E-01 0.12 0.68 8.63E-01 

cg23513930 Positive Negative 1.99 3.37 5.54E-01 0.88 3.07 7.75E-01 2.24 1.84 2.24E-01 0.50 1.49 7.39E-01 1.07 0.94 2.53E-01 

cg08899667 Negative Positive 3.65 1.76 3.81E-02 3.35 1.61 3.81E-02 1.57 1.10 1.54E-01 0.06 0.93 9.44E-01 2.08 0.59 3.93E-04 
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