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Abstract

The Fisher-KPP model supports travelling wave solutions that are successfully used to

model numerous invasive phenomena with applications in biology, ecology, and combustion

theory. However, there are certain phenomena that the Fisher-KPP model cannot replicate,

such as the extinction of invasive populations. The Fisher-Stefan model is an adaptation

of the Fisher-KPP model to include a moving boundary whose evolution is governed by a

Stefan condition. The Fisher-Stefan model also supports travelling wave solutions; however,

a key additional feature of the Fisher-Stefan model is that it is able to simulate population

extinction, giving rise to a spreading-extinction dichotomy. In this work, we revisit travelling

wave solutions of the Fisher-KPP model and show that these results provide new insight into

travelling wave solutions of the Fisher-Stefan model and the spreading-extinction dichotomy.

Using a combination of phase plane analysis, perturbation analysis and linearisation, we

establish a concrete relationship between travelling wave solutions of the Fisher-Stefan model

and often-neglected travelling wave solutions of the Fisher-KPP model. Furthermore, we

give closed-form approximate expressions for the shape of the travelling wave solutions of

the Fisher-Stefan model in the limit of slow travelling wave speeds, c� 1.
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1 Introduction

The Fisher-KPP model [1, 2, 3, 4, 5, 6] is a one-dimensional reaction-diffusion equation com-

bining linear diffusion with a nonlinear logistic source term,

∂ũ

∂t̃
= D̃

∂2ũ

∂x̃2
+ λ̃ũ

(
1− ũ

K̃

)
, (1)

where ũ(x̃, t̃) ≥ 0 is the population density that depends on position x̃ ≥ 0, and time t̃ > 0.

The dimensional parameters in Fisher-KPP model are the diffusivity D̃ > 0, the proliferation

rate λ̃ > 0 and the carrying capacity density K̃ > 0. Solutions of the Fisher-KPP model

on a semi-infinite domain that evolve from initial conditions with compact support asymptote

to a travelling wave with a minimum wave speed, c̃min = 2
√
λ̃D̃ in the long time limit,

t̃ → ∞ [1, 2, 3, 4, 5, 6]. The Fisher-KPP model also gives rise to travelling wave solutions

with c̃ > c̃min for initial conditions that decay sufficiently slowly as x̃ → ∞ [1, 2, 3, 4, 5, 6],

although for most practical applications we are interested in travelling wave solutions that

move with the minimum wave speed since initial conditions with compact support are more

often relevant [7, 8, 9, 10].

The Fisher-KPP model and its extensions have been used successfully in a wide range of

applications including the study of spatial spreading of invasive species in ecology [11, 12, 13,

14]. In cell biology, the spatial spreading of invasive cell populations has been modelled using

the Fisher-KPP model and its extensions for a range of applications including in vitro cell

biology experiments [15, 16, 17, 18, 19] and in vivo malignant spreading [20, 21, 22]. Other

areas of application include combustion theory [23, 24] and bushfire invasion [25]. Some of

the extensions of the Fisher-KPP model involve working with different geometries [9, 16], such

as inward and outward spreading in geometries with [26] and without [27] radial symmetry.

Other variations include: (i) considering models with nonlinear diffusivity [28, 29, 30, 31, 32,

33]; (ii) incorporating different nonlinear transport mechanisms [34, 35, 36]; (iii) models of

multiple invading subpopulations [31, 37]; and (iv) multi-dimensional models incorporating

anisotropy [38]. The Fisher-KPP model gives rise to travelling wave-like solutions that do not

allow the solution to go extinct. A cartoon of this kind of behaviour is shown schematically in

Figure 1(a)-(c) where an invading cell population will propagate indefinitely on a semi-infinite
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domain.

Figure 1: Schematic showing the evolution of a cell population. (a)-(c) The evolution
of an invading cell population at t = 0, t1, and t2, with t2 > t1 > 0. In this case the population
invades in the positive x direction indefinitely, provided that the domain is infinite. (d)-(f) The
evolution of a cell population at t = 0, t1, and t2, with t2 > t1 > 0. In this case the population
tends to extinction. Note that we have deliberately made the initial distribution of cells in (a)
and (d) identical.

We are concerned here with the Fisher-Stefan model [39, 40, 41, 42, 43, 44, 45]

∂ũ

∂t̃
= D̃

∂2ũ

∂x̃2
+ λ̃ũ

(
1− ũ

K̃

)
, (2)

∂ũ

∂x̃
= 0 at x̃ = 0, (3)

ũ(L̃(t̃), t̃) = 0 (4)

dL̃(t̃)

dt̃
= −κ̃∂ũ

∂x̃
at x̃ = L̃(t̃), (5)

where ũ(x̃, t̃) ≥ 0 is the population density that depends on position 0 ≤ x̃ ≤ L(t) and time

t̃ > 0. The parameters in Fisher-Stefan model are the same as in the Fisher-KPP model, as well
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as the Stefan parameter κ̃ > 0, which relates the time rate of change of L̃(t̃) with the spatial

gradient of the density, ∂ũ/∂x̃, at the moving boundary x̃ = L̃(t̃).

As with the Fisher-KPP model, solutions of the Fisher-Stefan model, (2)-(5), can also lead

to constant speed, constant shape travelling waves in the long time limit, as t̃→∞ [39, 40, 41,

42, 43, 44, 45]. Interestingly, for the same initial condition but different choice of parameter κ̃,

the Fisher-Stefan model can also give rise to a very different outcome whereby the population

tends to extinction, ũ(x̃, t̃)→ 0 on 0 < x̃ < L̃e as t̃→∞ [39, 40, 41, 42, 43, 44, 45]. This major

difference between the Fisher-KPP model and Fisher-Stefan model is of great interest because

the Fisher-KPP model never leads to extinction, regardless of the choice of parameters. One

way of interpreting this difference is that the Fisher-Stefan model is able to capture and predict

additional details that are of practical interest because it is well known that many initially

small translocated populations will become extinct [46]. This is one of the shortcomings of the

Fisher-KPP model since this model implies that every small initial population always leads to

successful invasion.

The Fisher-Stefan model is an adaptation of the Fisher-KPP model that includes a moving

boundary, x = L(t), inspired by the classical Stefan problem [47, 48]. The classical Stefan

problem is a one-dimensional model of heat conduction that includes a phase change, such as

the conduction of heat associated with the melting of ice into water [47, 48]. An interesting

mathematical and physical feature of the classical Stefan problem is that the interface between

the two phases can move with time, giving rise to the notion of a moving boundary problem [47,

48]. Unlike classical models of heat conduction without any phase change [49], the solution

of the Stefan problem requires the specification of two boundary conditions at the moving

interface [47, 48]. First, the temperature at which the phase change occurs is specified at the

moving boundary. This is analogous to Equation (3) in the Fisher-Stefan model. Second, the

Stefan condition specifies a balance of latest heat energy to specific heat energy at the moving

boundary, relating the time rate of change of position of the moving boundary to the flux of

heat at the boundary [47, 48]. This is analogous to Equation (5) in the Fisher-Stefan model.

The moving boundary problem (2)-(5) with λ̃ = 0 represents a one-phase Stefan problem

which has an initial domain of solid, 0 < x̃ < L̃(0), at some initial temperature ũ(x̃, 0), insulated

at x̃ = 0. The interval x̃ > L̃(0) is initially occupied by liquid assumed to already be at the
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fusion temperature. For this particular problem formulation, the interface L̃(t̃) propagates into

the liquid region as the heat energy contained within the solid is continually used as latent

energy to convert the liquid to solid. The process continues until ũ(x̃, t̃)→ 0 and L̃(t̃)→ L̃e as

t̃→∞, where a simple energy balance shows that

L̃e = L̃(0) +
κ̃

D̃

∫ L̃(0)

0
ũ(x̃, 0) dx̃. (6)

We shall return to this result later. A more general two-phase Stefan problem involves heat

conduction in both phases, again separated by a moving boundary [47, 48]. Just like the

Fisher-KPP model, there are many extensions of the classical Stefan problem such as dealing

with higher-dimensions [50, 51, 52, 53] as well as modifying the moving boundary condition [54].

2 Results and discussion

2.1 Nondimensionalisation

We introduce the dimensionless variables, x = x̃
√
λ̃/D̃, t = λ̃t̃ and u = ũ/K̃, to rescale the

Fisher-KPP equation as

∂u

∂t
=
∂2u

∂x2
+ u(1− u), (7)

on x ≥ 0 and t > 0. It is useful to note that Equation (7) involves no free parameters, and that

all solutions of Equation (7) with compactly supported initial conditions will eventually lead

to travelling waves that move with speed cmin = 2. In this work we always specify the initial

condition to be

u(x, 0) = α [1−H(β)] , (8)

where H(x) is the usual Heaviside function, and α and β are positive constants so that we have

u(x, 0) = α for x < β and u(x, 0) = 0 for x > β. All numerical solutions of Equation (7) that

we consider specify ∂u/∂x = 0 at x = 0 and ∂u/∂x = 0 at x = x∞. Here x∞ is chosen to

be sufficiently large so that we can numerically approximate the infinite domain problem on

0 ≤ x <∞ by the finite domain problem 0 ≤ x ≤ x∞ [31]. Full details of the numerical method

used to solve Equation (7), together with benchmark test cases to confirm the accuracy of our

numerical solutions are given in the Supplementary Material.
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To nondimensionalise the Fisher-Stefan model we employ the same dimensionless variables

as in the Fisher-KPP model with L(t) = L̃(t̃)
√
λ̃/D̃ and κ = κ̃/D̃ so that we have

∂u

∂t
=
∂2u

∂x2
+ u (1− u) , (9)

∂u

∂x
= 0 at x = 0, (10)

u(L(t), t) = 0, (11)

dL(t)

dt
= −κ∂u

∂x
at x = L(t). (12)

It is relevant to note that the nondimensional Fisher-Stefan model involves one parameter,

κ > 0. For all numerical solutions of Equations (9)-(12) in this work we always apply the initial

condition (8) such that L(0) = β. Full details of the numerical method used to solve Equations

(9)-(12), together with benchmark test cases to confirm the accuracy of our numerical solutions,

are given in the Supplementary Material.

To illustrate key features of the Fisher-KPP and Fisher-Stefan models we present numerical

solutions of both models in Figure 2. Results in Figure 2(a) show the time evolution of the

solution of the Fisher-KPP model from an initial condition with compact support. Plotting

solutions at equally spaced values of time suggests that the solution approaches a travelling wave

that moves in the positive x direction with constant speed and constant shape. Our numerical

solutions confirm that the speed of propagation is c = 2, as expected. Results in Figure 2(b)

show the time evolution of the solution of the Fisher-Stefan model (9)-(12) for the same initial

condition used in Figure 2(a) together with a particular choice of κ. Again, plotting solutions at

equally spaced values of time suggests that the solution approaches a travelling wave that moves

in the positive x direction with constant speed and constant shape. In this case, for our choice

of κ, our numerical solution suggests that c = 1.2, which is slower than the minimum wave speed

for the Fisher-KPP model. Another important difference between the travelling wave solutions

in Figure 2(a)-(b) is that the travelling wave solution of the Fisher-KPP model does not have

compact support since u(x, t) > 0 for all x ≥ 0 and t > 0. This feature of the Fisher-KPP model

has been previously criticised as being biologically implausible [7, 8, 30] (and this observation

has motivated extensions of the Fisher-KPP model to include various nonlinear diffusion terms

so that the resulting travelling waves have compact support [7, 8, 30]). In contrast, owing to the
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boundary conditions at x = L(t), the travelling wave solution of the Fisher-Stefan has compact

support since we have u(L(t), t) = 0 for t > 0. Therefore, we have identified two features of

the Fisher-Stefan model that are appealing when compared to the Fisher-KPP model: (i) the

Fisher-Stefan model permits population extinction whereas the Fisher-KPP model implies that

all initial populations successfully invade; and (ii) travelling wave solutions of the Fisher-Stefan

model have compact support whereas travelling wave solutions of the Fisher-KPP model do

not.

Results in Figure 2(c) show the time evolution of the solution of the Fisher-Stefan model for

the same initial condition used in Figure 2(a)-(b), but this time we choose a slightly smaller value

of κ. In this instance, plotting the solutions at the same intervals of time as in Figures 2(a)-(b)

indicates that the solution does not tend towards a travelling wave, and instead appears to go

extinct. Figure 2(d) shows a magnified view of the solution in Figure 2(c) so that we can see

additional details as the population tends to extinction. From these magnified solutions we see

that L(0) = 1. By t = 20 we have L(20) ≈ 1.4, and after this time the solution rapidly tends to

zero. Together, the results in Figure 2(b)-(d) illustrate the spreading-extinction dichotomy since

for certain choices of κ we observe spreading as a travelling wave in Figure 2(b), whereas keeping

everything else identical except for choosing a smaller value of κ we observe the population going

extinct in Figure 2(c)-(d). These initial comparisons in Figure 2 indicate that the Fisher-KPP

and Fisher-Stefan models appear to be very different when they are described in terms of partial

differential equations. Since both the Fisher-KPP and Fisher-Stefan models support travelling

wave solutions we will now explore these models in the phase plane.

2.2 Phase plane analysis

Numerical solutions of the Fisher-KPP model in Figure 2(a) suggest that we seek travelling

wave solutions with travelling wave coordinate z = x − ct, where c > 0 is the constant speed

of propagation in the positive x direction. In the travelling wave coordinate, Equation (7)

simplifies to a second order nonlinear ordinary differential equation

d2U

dz2
+ c

dU

dz
+ U(1− U) = 0, (13)

where −∞ < z <∞, with U(−∞) = 1 and U(∞) = 0.
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Figure 2: Numerical solutions of the Fisher-KPP and the Fisher-Stefan models. (a)
Numerical solutions of the Fisher-KPP equation evolving into a travelling wave solution with
the minimum wave speed, c = 2. (b) Numerical solutions of Fisher-Stefan model evolving into
a travelling wave solution with c = 1.2. (c) Numerical solutions of the Fisher-Stefan model
leading to extinction. (d) Magnified region of the solution in (c), for 0 ≤ x ≤ 2, to clearly show
the dynamics of the extinction behaviour. For the Fisher-Stefan model we set κ = 20 in (b) and
κ = 0.45 in (c). Numerical solutions of the Fisher-Stefan model are obtained with ∆ξ = 1×10−4,
whereas numerical solutions of the Fisher-KPP model are obtained with ∆x = 1 × 10−4. For
both the Fisher-KPP and Fisher-Stefan models we set ∆t = 1× 10−3 and ε = 1× 10−8. For all
results presented here the initial condition is Equation (8) with α = 0.5 and β = 1.
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Our treatment of the analysis of travelling wave solutions of the Fisher-Stefan model is very

similar except that we must first assume that our choice of initial condition and κ in Equation

(9)-(12) is such that a travelling wave solution forms, as in Figure 2(b). In this case, writing

Equation (9) in the travelling wave coordinate gives rise to the same second order nonlinear

ordinary differential equation, Equation (13) with U(−∞) = 1. The other boundary condition

is treated differently and to see this difference we express the Stefan condition (12) in terms of

z, giving

dL(t)

dt
= −κdU

dz
, (14)

at z = L(t) − ct. For a travelling wave solution we have dL(t)/dt = c, so that the differential

equation (13) holds on −∞ < z < 0. The boundary conditions are given by U(−∞) = 1, and

−κdU

dz
= c, (15)

at z = 0. Therefore, while the Fisher-KPP and Fisher-Stefan models presented as partial

differential equations appear to be very different, when we seek travelling wave solutions of

these models in the travelling wave coordinate we find that the equations governing the phase

planes for the two models are the same, with differences only at one boundary condition.

We first examine travelling wave solutions of the Fisher-KPP model by re-writing Equation

(13) as a first order dynamical system

dU

dz
= V, (16)

dV

dz
= −cV − U(1− U), (17)

for −∞ < z < ∞. This dynamical system has two equilibrium points: (1, 0) and (0, 0). A

travelling wave solution corresponds to a heteroclinic trajectory between these two equilibrium

points. Linear analysis shows that the eigenvalues at (1, 0) are
(
−c±

√
c2 + 4

)
/2 so that the

local behaviour at (1, 0) is a saddle point [5]. The eigenvalues at (0, 0) are
(
−c±

√
c2 − 4

)
/2,

meaning that the local behaviour at (0, 0) is a stable spiral for c < 2 and a stable node if

c ≥ 2 [5]. Therefore, to avoid nonphysical negative solutions near (0, 0) we require c ≥ 2, giving

rise to the well known minimum wave speed for the Fisher-KPP model [5, 55].
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The shape of the heteroclinic orbit between (0, 0) and (1, 0) are given by the solution of

dV

dU
=
−cV − U(1− U)

V
. (18)

Neither the system (16)–(17) or Equation (18) have exact solutions for an arbitrary choice of

c > 0. Therefore, we will consider numerical solutions of these ordinary differential equations

when we present and visualise the phase planes in this work, with details of the numerical

methods given in the Supplementary Material. The solution of Equation (18) gives V (U), while

the solution of the system (16)–(17) gives U(z) and V (z), and we will use both approaches

where relevant. All phase planes presented in this work are generated using a combination of

exact and numerical methods that are outlined in the Supplementary Material.

Results in Figure 3 show a suite of phase planes for the Fisher-KPP model for a range of

c. The phase plane in Figure 3(a) shows the flow, the location of the equilibrium points and

the heteroclinic orbit for c = 10, which approaches (0, 0) without spiralling. When we plot the

solution in terms of the density, U = U(z), in Figure 3(b), we see that this solution is positive

and monotonically decreasing. Similar results are presented in Figure 3(c)-(d) for c = 2. In

contrast, Figure 3(e) shows the phase plane for c = 0.5 where we see that the heteroclinic

orbit approaches (0, 0) as a spiral, indicating that U(z) < 0 in certain regions. This oscillatory

behaviour is often invoked to justify the condition that c ≥ cmin = 2 for the Fisher-KPP model

and the possibility of travelling waves with c < 2 is typically ignored [5].

Since travelling wave solutions of the Fisher-KPP and Fisher-Stefan models are governed by

the same phase planes, it is worthwhile to examine how the phase planes in Figure 3 relate to

the travelling wave solutions of the Fisher-Stefan model. As previously stated, travelling wave

solutions of the Fisher-Stefan model satisfy a different boundary condition, (15). The trajectory

in the phase plane must intersect with, and terminate at, (0,−c/κ). The phase planes and

heteroclinic orbits for the Fisher-KPP model in Figure 3(a)-(b) and Figure 3(c)-(d) show that

such an intersection is impossible for these choices of c ≥ 2. In particular, the linearisation

about (0, 0) means that whenever c ≥ 2, the stable node at (0, 0) precludes the possibility of

such an intersection, illustrating that there is no travelling wave solution for the Fisher-Stefan

model with c ≥ 2. In contrast, for c < 2, the trajectory intersects the V -axis at some point,

(0,−c/κ), as indicated by the orange disc in Figure 3(e). Therefore, this additional boundary
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Figure 3: Phase planes and density profiles for the Fisher-KPP equation with various
choices of c. (a) Phase plane and heteroclinic trajectory for c = 10. (b) The corresponding
density profile for the heteroclinic trajectory in (a). (c) Phase plane and heteroclinic trajectory
for c = 2. (d) The corresponding density profile for the heteroclinic trajectory in (c). (e) Phase
plane and heteroclinic trajectory for c = 0.5. (f) The corresponding density profile for the
heteroclinic trajectory in (e). Equilibrium points at (1, 0) and (0, 0) are shown with black discs.
The blue arrows show the flow associated with the dynamical system, and the solid orange line
shows the heteroclinic trajectory that runs between (0, 0) and (1, 0). The orange disc in (c)
shows the location where the heteroclinic trajectory intersects with the U(z) = 0 axis where
V (z) < 0.
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condition for the Fisher-Stefan model together with the linearisation about (0, 0) indicates that

travelling wave solutions for the Fisher-Stefan model require c < 2. Under these conditions,

the trajectory in the phase plane corresponding to the travelling wave solutions runs between

(1, 0) and (0,−c/κ), and since this trajectory never leaves the fourth quadrant we avoid the

issue of negative densities. This is a very interesting result because the standard phase plane

analysis of travelling wave solutions of the Fisher-KPP model typically discard any solutions

for which c < 2 based on physical grounds [5, 4]. In this work we show that it is precisely these

normally-discarded solutions that actually form the basis of the travelling wave solutions of the

Fisher-Stefan model provided that we only consider that part of the trajectory between (1, 0)

and (0,−c/κ), where U(z) ≥ 0. Therefore, by revisiting the travelling wave solutions of the

Fisher-KPP model we are providing insight into the properties of travelling wave solutions of

the Fisher-Stefan model.

We now provide additional results in Figure 4 comparing trajectories in the phase plane for

a wider range of c. The trajectories for c = 10 and c = 2 show a heteroclinic orbit that runs

between (1, 0) and (0, 0) without spiralling around the origin. These trajectories are associated

with travelling wave solutions of the Fisher-KPP model for these choices of c. Additional

results for c = 1 and c = 0.5 are also shown, and these trajectories clearly spiral near to the

origin. However, both of these trajectories cross the V -axis at some point, shown with an

appropriately coloured disc in Figure 4, where U(z) = 0 and V (z) < 0, which satisfies the

Fisher-Stefan boundary condition. Therefore, the trajectories in Figure 4 with c < 2 are shown

as a combination of solid and dashed lines. Those parts of the trajectories shown in solid

correspond to the travelling wave solution of the Fisher-Stefan model, whereas the dashed parts

of the trajectories are not associated with the travelling wave solution. Finally, we also include

a trajectory in Figure 4 for c = 0. In this case the trajectory forms a homoclinic orbit with

(1, 0). Although this trajectory does not correspond to any travelling waves with c > 0, later

we will show it is important when constructing approximate perturbation solutions for c� 1.

2.3 Relationship between κ and c

It is interesting to recall that all solutions of the Fisher-KPP model with compact support

will always eventually form a travelling wave with the minimum, c = cmin = 2. In contrast,
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Figure 4: Family of trajectories in the phase plane for various choices of c. Heteroclinic
trajectories running between (1, 0) to (0, 0) for c = 10, 2, 1 and 0.5, as indicated. An additional
trajectory with c = 0 forms a homoclinic trajectory to (1, 0). Equilibrium points at (1, 0) and
(0, 0) are shown with black discs. For the trajectories with 0 < c < 2 the intersection with the
U(z) = 0 axis is shown with an appropriately coloured disc: green for c = 1; blue for c = 0.5;
and red for c = 0.
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Figure 5: Relationship between c and κ for the Fisher-Stefan model. The blue curve
is obtained by solving Equation (18) and calculating the value of κ corresponding to the in-
tersection of (0,−c/κ). The red circles are obtained by solving Equations (2-4) and using the
full time dependent solutions to estimate the eventual long time travelling wave speed, c. The
black circle denotes the approximate critical value of κcrit. The Fisher-Stefan model is solved
with ∆ξ = 1 × 10−4, ∆t = 1 × 10−3, ε = 1 × 10−8 and the initial condition given by Equation
(8), where α = 0.5 and β = 1. The inset shows the comparison of the numerical solution the
perturbation solutions. The green line represents the O(1) perturbation solution, and the red
line represents the two-term O(c) perturbation solution.
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the question of whether travelling wave solution will form for the Fisher-Stefan model for a

particular initial condition, and if so, what speed those travelling wave solutions move depends

upon the choice of κ. To explore this relationship we use a combination of phase plane analysis

and numerical solutions of the Fisher-Stefan model (9)-(12). By repeatedly solving the phase

plane equations, (16) for different values of c < 2, we are able to estimate the point at which

the trajectory leaving (1, 0) first intersects the V -axis and then use the boundary condition,

V = −c/κ at U = 0, to calculate the corresponding values of κ. The solid blue curve in

Figure 5 shows this relationship. We find that as we examine increasing values of c towards the

threshold value of c = 2, κ appears to grow without bound. This numerical result suggests that

κ→∞ as c→ 2−.

In addition to exploring the relationship between κ and c in the phase plane, we also solve

the Fisher-Stefan model (9)-(12) numerically with a particular choice of initial condition given

by Equation (8) with β = 1 and α = 0.5. We allow such numerical solutions to evolve for a

sufficient duration of time that the resulting solution appears to settle into a travelling wave,

from which we can estimate the speed, c. Repeating this procedure for various values of κ

enables us to estimate how our choice of κ influences c. Additional results, shown as red discs

in Figure 5, confirm that long time travelling wave solutions from the partial differential equation

description compare very well with the relationship implied by the phase plane analysis.

As we stated in Section 2.2, whenever we are working in the phase plane we make the implicit

assumption that a travelling wave solution has been generated. Yet, when we compare results

in Figure 2(b)-(c) we know that long time travelling wave solutions do not always form, since

this outcome depends upon the choice of κ. We explore this in Figure 5 by holding the initial

condition constant in the numerical solution of Equations (9)-(12) and choosing a sequence of

increasingly small values of κ. The numerical solutions suggest that for this initial condition

there is a threshold value, κcrit ≈ 0.48. If κ > κcrit we observe long time travelling wave solutions

and for κ < κcrit the population eventually becomes extinct. This approximate threshold value

is shown in Figure 5 as a black disc, and the relationship between κ and c obtained in the phase

plane is shown as a solid line for κ > κcrit and as a dashed line for κ < κcrit.
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2.4 Critical length and the spreading-extinction dichotomy

We will now provide insight into the spreading-extinction dichotomy by examining time-dependent

numerical solutions of Equations (9)-(12) in Figure 6. Figure 6(a) show numerical solutions for

a particular choice of κ where we see some very interesting behaviour. At t = 30 the solution

appears to be decreasing, almost to extinction, whereas by t = 60 and t = 90 the solution

recovers from the initial decline to eventually form a travelling wave. Results in Figure 6(b)

show details at intermediate values of t to clearly highlight this initial decline followed by the

recovery. Figure 6(c) shows estimates of L(t) as a function of t, where we see that L(t) increases

slowly at early time before eventually increasing at a constant rate, corresponding to a travelling

wave solution. In contrast, Figure 6(d) shows the solution of Equations (9)-(12) for the same

initial condition as in Figure 6(a) with the only difference being that κ is reduced. Figure 6(d)

indicates that the population appears to be almost extinct at t = 90, and additional results

magnified in Figure 6(e) show that the population never recovers, and instead goes extinct as t

increases. Figure 6(f) shows L(t) as a function of t, where we see that the spreading population

initially increases its domain before eventually stalling.

Du and colleagues [39] provide a formal proof of the existence of a critical length, Lcrit = π/2,

such that if ever L(t) > Lcrit the population will evolve to a travelling wave, whereas if L(t)

never exceeds this critical length then the population will eventually become extinct. Here

we provide some simple physical and mathematical arguments to confirm this result. Visual

inspection of the time dependent solutions of Equations (9)-(12) in Figure 6(b) and (e) confirm

that we have u(x, t) � 1 close to the time when population recovers (Figure 6(b)) or fails

to recover from the initial decline (Figure 6(e)). This observation suggests that we can study

the spreading-extinction dichotomy using an approximate linearised model where U(x, t) � 1.

Under these conditions we can approximate the Fisher-Stefan model with

∂U
∂t

=
∂2U
∂x2

+ U , (19)

for 0 < x ≤ L, with ∂U/∂x = 0 at x = 0 and U = 0 at x = L. In this approximate analysis we

treat the domain length as a fixed quantity and this allows us to write down the exact solution
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of the linear equation (19) as

U(x, t) =
∞∑
n=1

An cos(γnx)et(1−γ
2
n), (20)

where γn = π(2n − 1)/(2L), n = 1, 2, 3, . . . , and An are constants chosen so that the solution

matches the initial condition, U(x, 0). The solution of the linearised model (20) can be further

simplified by assuming that the dynamics near the time of population recovery, or decline, can

be approximated by taking a leading eigenvalue approximation so that

17

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 16, 2019. ; https://doi.org/10.1101/673202doi: bioRxiv preprint 

https://doi.org/10.1101/673202


Figure 6: Numerical solutions of the Fisher-Stefan model showing both travelling wave and extinction phenomena. The first
row represents the invasion phenomenon, and the second row represents the extinction. (a) Time evolution of the density profiles for invading
cell population. (b) Magnified density profiles in (a) from x = 0 to 2 at intermediate times. (c) Progression of L(t) superimposed with the
critical length of π/2. (d) Time evolution of the density profiles for extinction. (e) Magnified density profiles in (d) from x = 0 to 2 at
intermediate times. (f) Progression of L(t) superimposed with the critical length of π/2. For both simulations, ∆ξ = 1×10−4, ∆t = 1×10−3,
ε = 1 × 10−8, and the initial condition given by Equation (8), where α = 0.5 and β = 1. Results in (a)-(c) correspond to κ = 0.5, while
results in (d)-(f) correspond to κ = 0.4.
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Û(x, t) ∼ A1 cos
(πx

2L

)
et(1−π

2/[4L2]). (21)

With this approximate solution we formulate a conservation statement describing the time

rate of change of the total population within the domain,

dn

dt
=

∫ L

0
Û(x, t) dx+

∂Û(L, t)

∂x
, (22)

where n(t) =
∫ L
0 Û(x, t) dx is the total population within the domain. The first term on the

right of Equation (22) is the rate of increase of the total population owing to the source term

and the second term on the right of Equation (22) is the rate of decrease of the total population

owing to diffusive loss at the boundary at x = L. Setting dn/dt = 0, and substituting Equation

(21) into (22) gives L = Lcrit = π/2, corroborating the results of Du and colleagues [39]. We

interpret this as follows. Once a time-dependent solution of Equations (9)-(12) evolves such

that L(t) > π/2, the net positive accumulation of mass in the system means that a travelling

wave solution will eventually form, as in Figure 6(a)-(c). Alternatively, if the time dependent

solution of Equations (9)-(12) evolves such that L(t) never exceeds π/2, the net loss of mass in

the system means that the population will always go extinct, as in Figure 6(d)-(f). It is also

worthwhile to note that since the result that Lcrit = π/2 is governed by a linearised model (19),

this outcome will hold for any generalisation of the Fisher-Stefan model that can be linearised

to give Equation (19). For example, if we extended the Fisher-Stefan model to consider a

generalised logistic source term, u(1−u)m, where m > 0 is some exponent [56, 57, 58, 59], then

the same Lcrit = π/2 would apply.

2.5 Perturbation solution when c� 1

Now that we have used phase plane analysis and linearisation to establish conditions for trav-

elling wave solutions of the Fisher-Stefan model to form, we turn our attention to whether it is

possible to provide additional mathematical insight into the details of the shape of the travelling

wave solutions. It is well known that travelling wave solutions of the Fisher-KPP model travel

with speed c ≥ cmin = 2, and that it is possible to obtain approximate perturbation solutions to

describe the shape of the travelling wave solutions in large c limit [4, 5, 31]. We now attempt to
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follow a similar analysis to describe the shape of the travelling wave solution of the Fisher-Stefan

model for which c < 2, suggesting that we attempt to find a perturbation solution for small c:

V (U) = V0(U) + cV1(U) +O(c2). (23)

Substituting this expansion into Equation (18) we obtain ordinary differential equations gov-

erning V0(U) and V1(U) which can be integrated exactly. Ensuring that U(1) = 0 we obtain

V0(U) = ±
√
−U2 +

2U3

3
+

1

3
, (24)

V1(U) =
−(U − 2)(1 + 2U)3/2 −

√
27

5(U − 1)
√

1 + 2U
. (25)

Since we solve for both V0(U) and V1(U) we can construct both an O(1) perturbation solution

given by V (U) = V0(U) + O(c), as well as an O(c) perturbation solution given by V (U) =

V0(U) + cV1(U) + O(c2). To compare the accuracy of these perturbation solutions for the

shape of the V (U) curve in the phase plane we generate a series of numerical phase planes for

c = 0.05, 0.1, 0.2 and 0.5 in Figure 7. The numerical trajectories, shown in blue, run between

the equilibrium points (1, 0) and (0, 0), and pass through the point (0,−c/κ). In the numerical

solutions we highlight (0,−c/κ) with a blue disc. In each subfigure of Figure 7, we compare

the numerical trajectory with the O(1) perturbation solution in red. In each case the O(1)

perturbation solution runs between (1, 0) and first intersects the V -axis at (0,−1/
√

3). We

show this point with a red disc. Comparing the red and blue trajectories in the fourth quadrant

clearly shows a discrepancy that increases with c, as expected. Similarly, in each subfigure of

Figure 7 we also compare the numerical trajectory with the O(c) perturbation solution shown

in green. In each case the O(c) perturbation solution runs between (1, 0) and first intersects

the V -axis at (0,−1/
√

3 + c(
√

27− 2)/5), and we show this point with a green disc. Comparing

the green and blue trajectories in the fourth quadrant shows that we have an excellent match

between the numerical and perturbation solutions. This comparison indicates that the O(c)

perturbation solution can be used to provide a highly-accurate approximation of the shape of

the travelling wave solutions of the Fisher-Stefan model for c < 0.5.

Using Equations (23)-(25) we can obtain additional analytical insight into the relationship

between c and κ that we previously explored numerically in Figure 5. Since the ordinate of the
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Figure 7: Comparison of numerical trajectories in the phase plane and perturbation
solutions for various choices of c. The blue lines are the numerical trajectories for c =
0.05, 0.1, 0.2 and 0.5 in (a)-(d), respectively. The red curves are the O(1) perturbation solution.
The green curves are the O(c) perturbation solution. The red, blue and green discs indicate the
intersection points of the trajectories with U(z) = 0.
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intersection point is V = −κ/c, we can develop approximate closed-form relationships between

c and κ. These relationships are plotted in the inset of Figure 5 for κ < 2 and c < 1. Comparing

the numerically deduced relationship between c and κ with the perturbation solutions shows a

good match, with the expected result that the O(c) perturbation solution leads to a particularly

accurate approximation.

Since our perturbation solutions provide good approximations to the V (U) curve in the

fourth quadrant of the phase plane, shown in Figure 7, we now compare the accuracy of the

perturbation solutions in the travelling wave coordinate system. For the O(1) perturbation

solution we have

dU

dz
= −

√
−U2 +

2U3

3
+

1

3
. (26)

Integrating Equation (26) with U = 0 at z = 0 gives an implicit solution

2(U − 1)
√

1 + 2U arctanh
√

1+2U
3√

3(U − 1)
√

1 + 2U
=

z√
3

+ 2 arctanh

√
1

3
. (27)

For the O(c) perturbation solution we have

dU

dz
= −

√
−U2 +

2U3

3
+

1

3
+ c
−(U − 2)(1 + 2U)3/2 −

√
27

5(U − 1)
√

1 + 2U
, (28)

for which we cannot find an exact solution. Nonetheless, Equation (28) can be integrated

numerically to give a numerical approximation of U(z).

Figure 8 shows a suite of travelling wave solutions obtained by solving Equations (9)-(12)

(in dashed blue) presented for c = 0.05, 0.1, 0.2 and 0.5. In each case the solutions are obtained

for a sufficiently long time that the full time dependent numerical solutions have settled into

a travelling wave. These travelling waves are then shifted so that u(x, t) = 0 at z = 0, where

z = x−ct. For each value of c, we superimpose plots of the O(1) solution, given by Equation (27)

(in solid red). The results show that the O(1) solution provides an excellent match to the shape

of the full numerical solutions of Equations (9)-(12) for c = 0.05. For larger c, however, the O(1)

solution provides a relatively poor approximation. Similarly, for each value of c we also plot

the O(c) solution (in solid green). Here we see that the O(c) perturbation solution provides an

excellent match, being indistinguishable from the full numerical solutions of Equations (9)-(12)
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for c < 0.1. In each subfigure of Figure 8 we also provide an inset showing a magnified region

just behind the leading edge of the wavefront to make the comparison between the numerical

solution of the partial differential equation and the two perturbation solutions clearer.

3 Conclusion

In this work we directly compare features of the travelling wave solutions of the well-known

Fisher-KPP model and solutions to the Fisher-Stefan model. A key feature of the Fisher-KPP

model is that any positive initial condition with compact support will always evolve into a

travelling wave that moves with the minimum wave speed, cmin = 2. Therefore, according to

the Fisher-KPP model, any initial population will lead to successful invasion. This feature is

a potential weaknesses of the Fisher-KPP model since it is well known that small translocated

populations do not always invade, and can become extinct [46]. In contrast, the Fisher-Stefan

model is an adaptation of the Fisher-KPP model with a moving boundary, x = L(t). In the

Fisher-Stefan model, the evolution of the moving boundary is governed by a one-phase Stefan

condition [39, 40, 41, 42, 43, 44, 45]. The Fisher-Stefan model can support travelling wave

solutions with speed c < 2. Since both the Fisher-KPP and the Fisher-Stefan model support

travelling wave solutions, both of these models can be used to simulate invasion processes.

However, unlike the Fisher-KPP model, the Fisher-Stefan model also predicts the extinction of

certain initial populations, giving rise to the spreading-extinction dichotomy [39, 40, 41, 42, 43,

44, 45].

The spreading-extinction dichotomy associated with the Fisher-Stefan model has been stud-

ied, mainly using rigorous mathematical approaches, leading to many important existence re-

sults [39, 40, 41, 42, 43, 44, 45]. One of the aims of this work is to provide a more practical

comparison of the Fisher-KPP and Fisher-Stefan models using standard tools of applied math-

ematics and engineering to provide insight into the similarities and differences between these

two models of invasion. It is interesting to note that the partial differential equation descrip-

tions of the Fisher-KPP and Fisher-Stefan models are very different, since the Fisher-KPP

model is associated with a fixed domain and the Fisher-Stefan model is a moving boundary

problem. In contrast, when we analyse the travelling wave solutions of both models we find

that the equations governing the trajectories in the phase plane are the same. Interestingly,
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Figure 8: Density profiles comparing the numerical solution of the Fisher-Stefan
equation with the perturbation solution for c � 1. (a) c = 0.05. (b) c = 0.1. (c) c
= 0.2. (d) c = 0.5. The solid blue line represents the travelling wave solution obtained from
the time-dependent Fisher-Stefan model, (2) and shifting the resulting travelling wave profile
so that U(0) = 0. The red solid line represents the travelling wave profile obtained from the
O(1) perturbation solution and the dashed green line represents the travelling wave profile
obtained from the O(c) perturbation solution. In each subfigure we show an inset magnifying
the travelling wave profiles so that the differences between the numerical and perturbation
solutions are visually distinct.
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standard phase plane arguments for the Fisher-KPP model lead us to conclude that travelling

wave solutions with speed less than the minimum cmin = 2 are not possible based on physical

arguments and therefore not normally recorded. In this work we show that the travelling wave

solutions of the Fisher-Stefan model require that c < 2, and it turns out that it is precisely these

normally-discarded solutions for the Fisher-KPP model that are relevant for the Fisher-Stefan

model.

In the non-dimensional Fisher-Stefan model there is one free parameter, κ > 0, that relates

the dynamics of the moving boundary, x = L(t), and the spatial gradient of the density function

at the moving boundary. By analysing trajectories in the phase plane associated with travelling

wave solutions of the Fisher-Stefan model we are able to arrive at a relationship between κ and c,

confirming that c→ 2− as κ→∞. However, all phase plane analysis of the Fisher-Stefan model

implicitly assumes that a travelling wave solution has formed, whereas numerical solutions of

the full partial differential equation description of the Fisher-Stefan model shows that for a fixed

initial condition there is a critical value κcrit: for κ > κcrit the solution eventually evolves to a

travelling wave, whereas for κ < κcrit the solution eventually goes extinct. The time-dependent

solutions of the partial differential equation models suggest that near this transition between

eventual extinction and eventual travelling wave formation, we have u(x, t) � 1, suggesting

that we can obtain insight using a linearised model. Working in a linearised framework we

obtain an approximate solution from which we form a conservation statement describing the

net accumulation of total population numbers in the domain. In the critical case where there is

zero net accumulation of mass in the domain, we find that there is a critical length, Lcrit = π/2,

and whenever L(t) exceeds π/2 the solution will always evolve to a travelling wave while if L(t)

never exceeds π/2 the density will always eventually go extinct. Using a comparison with the

Stefan problem, Equations (9)–(12) with λ̃ = 0, we can strengthen these results to be that if

L(t) exceeds

π

2
− κ

∫ L(t)

0
u(x, t) dx,

then a travelling wave will form. Or, if the population goes extinct with L(t)→ Le as t→∞,

then

L(0) + κ

∫ L(0)

0
u(x, t) dx < Le <

π

2
.

While it is well-known that there are no closed-form exact solutions describing travelling
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wave solutions of the Fisher-KPP equation for arbitrary c, it is possible to obtain approximate

perturbation solutions for c � 1 [4, 5]. Since travelling wave solutions for the Fisher-Stefan

model move with speed c < 2, we construct a perturbation solution for c � 1, leading to

approximate closed form solutions for the shape of the trajectory in the phase plane which

can be used to estimate the shape of the travelling wave. We find that the O(c) perturbation

solutions provide an excellent match to our full numerical solutions for c < 0.5, thereby providing

analytical insight into the relationship between the speed and shape of the travelling wave

solutions of the Fisher-Stefan model.

The purpose of this work is to compare the Fisher-Stefan and Fisher-KPP models of invasion.

Although we begin our work by pointing out that Fisher-Stefan model enables us to simulate

population extinction, whereas Fisher-KPP does not, there are also limitations of the Fisher-

Stefan model that warrant acknowledgement and discussion. For example, time-dependent

solutions of the Fisher-Stefan model that move in the positive x-direction, including travelling

wave solutions, involve a loss of the population at the free boundary, x = L(t), since ∂u/∂x < 0

at x = L(t). It could be difficult to justify this loss at the moving boundary based on biological,

ecological or physical grounds and/or to calibrate the model to estimate a relevant value of

κ. To address this point, it is worthwhile recalling that the Fisher-Stefan model makes use of

a one-phase Stefan boundary condition which is a simplification of a more realistic two-phase

Stefan boundary condition [47, 48]. In more realistic applications of invasion, such as malignant

cellular invasion into surrounding tissues, there will be a conversion of consumed tissue into

malignant cells at the interface [34, 60, 61, 62]. One way of interpreting this conversion from

tissues to cells is that there is a loss of one species, in this case the surrounding tissue, that is

converted into another species, in this case invasive cells. Therefore, while we appreciate that

the practical interpretation of loss at the moving boundary in the one phase Fisher-Stefan model

is difficult to justify, we anticipate that this loss at a moving boundary would be very natural

in an extended framework where the Fisher-Stefan model is re-cast as a two-phase problem.

Data Access This article has no additional data. Key algorithms used to generate results are

available on Github at GitHub.
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