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Abstract9

Motivated by, but not limited to, association analyses of multiple genetic variants, we propose10

here a summary statistic-based regression framework. The proposed method requires only variant-11

specific summary statistics, and it unifies earlier methods based on individual-level data as spe-12

cial cases. The resulting score test statistic, derived from a linear mixed-effect regression model,13

inherently transforms the variant-specific statistics using the precision matrix to improve power14

for detecting sparse alternatives. Furthermore, the proposed method can incorporate additional15

variant-specific information with ease, facilitating omic-data integration. We study the asymptotic16

properties of the proposed tests under the null and alternatives, and we investigate efficient p-value17

calculation in finite samples. Finally, we provide supporting empirical evidence from extensive18

simulation studies and two applications.19

Keywords: Correlated test statistics; Regression; Sparse alternatives; Set-based test; Summary20

statistics; SKAT-O.21

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2019. ; https://doi.org/10.1101/673103doi: bioRxiv preprint 

https://doi.org/10.1101/673103
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 Introduction22

Set-based analyses of multiple variables are increasingly important in many current scientific stud-23

ies. For example, in modern genome-wide association studies (GWAS) and next-generation se-24

quencing (NGS) analyses, one might be interested in jointly analyzing multiple (rare) genetic25

variants influencing a complex, heritable trait (also known as gene- or pathway-based studies),26

identifying one genetic variants influencing multiple traits (also known as pleitrotropy studies), or27

combining evidence from multiple studies as in the classical meta-analysis.28

Without loss of generality, let us focus on set-based analyses of multiple rare genetic variants.29

In this setting, myriad statistical tests have been proposed, which fit into three general categories30

(Derkach et al., 2014; Lee et al., 2014): the linear or burden tests (e.g. Morgenthaler and Thilly31

(2007); Li and Leal (2008); Madsen and Browning (2009)), the quadratic or variance-component32

tests (e.g. Pan (2009); Neale et al. (2011); Wu and Lin (2011)), and the hybrid tests combining33

evidence from the linear and quadratic tests (e.g. Lee et al. (2012); Derkach et al. (2013)).34

These earlier methods have been studied extensively, however, they can be improved in sev-35

eral aspects. First, these methods may not perform well in the spare-signal setting where only a36

small proportion of the variants are true signals and variants are highly correlated (Xu et al., 2016).37

Second, individual/subject-level data may not be available due to logistical challenges or data con-38

fidentiality agreement, so it is beneficial to explicitly develop summary statistic-based association39

tests. In addition, it is important to ensure that summary statistic-based methods can also incor-40

porate additional covariates, such as variant-specific functional annotation information. Finally,41

earlier work have shown the performance of a simple minimum-p value approach (Derkach et al.,42

2013) is comparable with that of the optimal sequence kernel association test, SKAT-O (Lee et al.,43

2012). This suggests that a grid search for the ‘optimal’ weighting factor may not be necessary,44

and it is desirable to develop new robust hybrid test statistics with theoretically justified weights.45

To this end, we propose a flexible and unifying linear mixed-effect regression model that46
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requires only variant-specific summary statistics, and we show that earlier methods based on47

individual-level data are special cases of the proposed testing framework. The statistics derived48

from the regression model (based on summary statistics) inherently transforms the variant-specific49

statistics using the precision matrix; this transformation has been proposed to increase signal50

strength when the signals are sparse in other settings (Fan et al., 2013; Cai et al., 2014). Thus,51

the proposed regression framework provides an intuitive way to utilize correlations among genetic52

variants to improve power for detecting sparse alternatives. Furthermore, the proposed method53

can incorporate additional variant-specific information as covariate(s). For example, the covariate54

could be the available functional annotation for the set of variants. Both our simulation studies and55

real data application show that we could have remarkable power gain when the included covariate56

contains useful information, while power loss is minimal when the covariate is uninformative.57

Although the proposed method is motivated by jointly analyzing of multiple rare genetic vari-58

ants, the general set-based analytical framework can be used for other settings, for example,59

meta-analysis (Han and Eskin, 2011), PrediXcan incorporating association evidence with gene-60

expression data (Gamazon et al., 2015), and pleiotropy association study between one genetic61

variant and multiple phenotypes (Liu and Lin, 2018b). We will provide a detailed discussion on62

the differences and connections between the proposed method and the earlier work, as well as the63

additional utilities of the proposed method including enhancing the performance of polygenic risk64

score (Purcell et al., 2009).65

The remainder of the paper is organized as follows. As a proof-of-principle for the proposed66

set-based regression approach, we first review existing association methods for analyzing a set of67

rare genetic variants based on individual-level data in Section 2. In Section 3, we outline the pro-68

posed regression framework based on summary statistics and derive a catalogue of association test69

statistics from fixed-, random-, or mixed-regression models. We then demonstrate the analytical70

equivalency between some of the new statistics and the existing ones for rare variants analyses,71

and we investigate efficient p-value calculation in finite samples and study asymptotic properties72
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of the tests. Finally, we discuss covariate adjustment. To provide supporting empirical evidence,73

we present numerical results from simulation studies in Section 4 and from two application studies74

in Section 5. We conclude with remarks and discussions in Section 6, and we give theoretical75

proofs and additional numerical studies in the supplementary material.76

2 Existing association tests for jointly analyzing a set of rare77

genetic variants78

2.1 Regression set-up using individual-level data79

Let yyy = (y1, · · · ,yn)
′ denote the phenotype values of n unrelated individuals, and for a set of J

genetic variants of interest, let GGGi = (Gi1,Gi2, · · · ,GiJ)
′, i = 1, · · · ,n, denote the corresponding

genotype data. Assume yi follows a exponential family distribution with mean µi and dispersion

parameter ϕ = 1 (without loss of generality) given GGGi, f (yi|µi) = exp{θ(µi)yi−b(θi)+c(yi)}, the

corresponding generalized linear model is

g(µi) = β0 +β1Gi1 + · · ·+βJGiJ. (1)

Individual-level covariate information such as age and sex, if available, should be added to the80

model but are omitted for the moment. This omission does not change the validity of the methods81

to be discussed, and for clarify of the presentation we also only consider canonical link functions82

in this paper.83

To evaluate the phenotype-genotype association relationship, we are interested in testing the

null hypothesis that H0 : βββ = (β1, · · · ,βJ)
′ = 000. Let GGG j = (G1 j,G2 j, · · · ,Gn j)

′ be the genotype

vector for variant j, j = 1, · · · ,J, and GGG = (GGG1, · · · ,GGGJ), the corresponding score vector is sss =

GGG′′′(yyy− µ̄y111nnn), where 111nnn is a n× 1 unit vector and µ̄y =
1
n ∑n

i=1 yi. The jth element of the score
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function is s j = ∑i(yi − µ̄y)Gi j, which captures the linear relationship between phenotype yyy and

genotype GGG j. The variance-covariance matrix of sss is

ΣΣΣ000 = g−1
1 (µ̄y)GGG′(In −111nnn111′nnn/n)GGG, (2)

where g1(·) denotes the first derivative of the link function g, and In is a identity matrix of size n.84

2.2 Existing methods based on the score vector s85

Numerous methods have been proposed to evaluate H0 : βββ = (β1, · · · ,βJ)
′ = 000, among which86

there are three popular classes, namely the burden or linear (e.g. Madsen and Browning (2009)),87

variance-component or quadratic (e.g. Wu and Lin (2011)), and hybrid combing the linear and88

quadratic (e.g. Lee et al. (2012)); see Derkach et al. (2014) for a review.89

Although it is not always obvious, most test statistics are functions of sss. For example, the90

original burden test (also known as the weighted-sum test) (Madsen and Browning, 2009) first91

constructs a ‘super-variant’ for which the genotype is the weighted average across genotypes of92

the J variants, G∗ = ∑J
j=1 w jGi j, where www = (w1,w2, · · · ,wJ)

′ is a pre-specified weighting fac-93

tor often associated with minor allele frequency (MAF); Madsen and Browning (2009) chose94

w j = 1/
√

MAF j(1−MAF j), while Morgenthaler and Thilly (2007) preferred equal weighting95

using w j = 1, j = 1, · · · ,J. Burden type of tests then performs the phenotype-genotype associa-96

tion analysis via regression, g(µi) = β ∗
0 + β ∗G∗ = β ∗

0 + β ∗∑J
j=1 w jGi j, and testing H0 : β ∗ = 0.97

However, it is not difficult to show that the score test statistic derived from the above regression98

using the ‘super-variant’ G∗ is proportional to T1 = (www′sss)2, where (www′ΣΣΣ000www)−1 T1 is asymptotically99

chi-square distributed with 1 degrees of freedom (d.f.), χ2
1 .100

This T1 test is also termed as CAST by Morgenthaler and Thilly (2007), the sum test by Pan101

(2009), and the linear-class test by Derkach et al. (2014), among others. Because T1 is based on102

the weighted average of s j and s j can be positive or negative depending on the direction of effect103
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(i.e. sign of β j in model (1)), T1 is only powerful when a large proportion of variants are causal104

and effects are in the same direction.105

Variance-component tests, such as SKAT (Wu and Lin, 2011), SSU (Pan, 2009), and C-alpha106

(Neale et al., 2011), offer an alternative approach that belongs to the quadratic class of tests107

(Derkach et al., 2014). Again, although most of the original tests started with the regression model108

(1), this class of tests can be formulated as T2 = sss′′′AAAsss, where AAA is a positive or semi-definite sym-109

metric matrix, and T2 asymptotically follows a weighted chi-square distribution. For example,110

Derkach et al. (2014) has noted that AAA = III leads to C-alpha of Neale et al. (2011) and SSU of Pan111

(2009), while AAA = diag{a1, · · · ,aJ} leads to SKAT of Wu and Lin (2011), where a j depends on112

the MAF of variant j; see Table 1 of Derkach et al. (2014) for a summary. These quadratic tests113

are robust to heterogenous effect directions, but they are less powerful than linear tests when most114

variants are causal and with the same direction of effects.115

Since the true genetic model is unknown, omnibus hybrid tests combining T1 and T2 tests116

have been been proposed. For example, Lee et al. (2012) proposed SKAT-O, a weighted linear117

combination of a burden-type of test and SKAT, Qρ = ρ(www′sss)2 +(1−ρ)sss′′′AAAsss = ρT1 +(1−ρ)T2,118

where ρ can be interpreted as the unknown pairwise correlation between β j under the alternative,119

AAA = diag{w2
1, · · · ,w2

J}, and w j depends on the MAF of variant j, j = 1, · · · ,J. A grid search for the120

‘optimal’ ρ is then performed, 0 = ρ1 < ρ2 < · · · < ρm = 1. Let pρ be the corresponding p-value121

based on Qρ , the test statistic for SKAT-O is Tskato = min{pρ1, · · · , pρm}. The asymptotic p-value122

of Tskato can be calculated with one-dimensional numerical integration.123

Instead of considering data-driven ‘optimal’ ρ then adjusting for the inherent selection bias,124

Derkach et al. (2013) proposed two simpler yet competitive hybrid test statistics, TFisher and TMinp.125

Let pT1 and pT2 be the p-values corresponding to T1 and T2, respectively, the Fisher and Minp126

statistics take the form of TFisher =−2log(pT1)−2log(pT2), TMinp = min{pT1 , pT2}. If pT1 and pT2127

are asymptotically independent under the null hypothesis, TFisher has an asymptotic distribution of128

χ2
4 , and TMinp has an asymptotic distribution of Beta(1,2).129
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Previous work have shown that TMinp and Tskato perform similarly, and they are slightly more130

powerful than TFisher when T1 has no power (Derkach et al., 2013). In contrast, TFisher has better131

power than TMinp and Tskato when both T1 and T2 have some power. However, we expect all three132

hybrid tests to have little power under sparse alternatives (Donoho and Jin, 2004; Barnett et al.,133

2017) when only a small proportion of variants in the set is causal.134

To improve performance, we first note that if variants are correlated with each other, we can135

consider for example ΣΣΣ−1
000 sss instead of sss in constructing a more powerful test under sparse alterna-136

tives. Second, it is clear that we only need variant-specific summary statistics sss = (s1, · · · ,sJ)
′ for137

jointly analyzing the J variants of interest. Further, the fact that TMinp and Tskato having similar138

performance suggests that a grid search for ρ might not be necessary, and an easy-to-compute yet139

theoretically justified ‘optimal’ ρ could exist. Lastly, when additional variant-specific information140

z j (e.g. variant j being non-synonymous or not) is available, we can improve power by incorpo-141

rating z j, j = 1, · · · ,J. Intuitively we can achieve this by modifying w j proportional to z j, but a142

less add-hoc approach is desirable. To this end, we will consider a flexible and unifying regression143

framework that (i) requires only s j and ΣΣΣ000, (ii) yields T1 and T2, and hybrid statistics similar to144

Tskato as special cases, and (iii) provides new test statistics that incorporate the precision matrix145

ΣΣΣ−1
000 if desired, as well as account for covariate information z j, j = 1, · · · ,J, if available.146

3 A regression framework based on summary statistics147

Here we assume sss = (s1, · · · ,sJ)
′ is available, summarizing the association relationship between148

the phenotype of interest and a set of J genetic variants as detailed in Section 2. We also assume149

that ΣΣΣ000 is known or estimated accurately from a reference panel. We let zzz = (z1, · · · ,zJ)
′ represent150

variant-specific information available (Ionita-Laza et al., 2016), which can be multi-dimensional151

but assumed to be one single covariate for notation simplicity.152
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3.1 Fixed-effect and random-effect models153

We first consider a fixed-effect (FE) model that models the common effect present among s j, j =

1, · · · ,J,

sss = µwww+ εεε, (3)

where www = (w1, · · · ,wJ)
′, εεε = (ε1, · · · ,εJ)

′, and εεε ∼ N(000,ΣΣΣ000). Based on this model, we aim to test

H0 : µ = 0, and the corresponding score test statistic is

TFE =
(
www′ΣΣΣ−1

000 www
)−1

(www′ΣΣΣ−1
000 sss)2. (4)

The equivalence between (www′ΣΣΣ000www)−1 T1 (= (www′ΣΣΣ000www)−1 (www′sss)2) in Section 2 and TFE above is ap-154

parent, if we let w in TFE to be ΣΣΣ000www (Table 1).155

Alternatively, we can consider the following random effect (RE) model,

sss = ηηη + εεε, (5)

where ηηη ∼ N(000,τ2RRR), RRR is a predefined positive or semi-definite symmetric matrix, and εεε ∼

N(000,ΣΣΣ000). If we test the following hypothesis, H0 : τ2 = 0, the corresponding score test statistic is

TRE =
(

2tr
(
ΣΣΣ−1

000 RRR
)2
)−1/2 (

sss′ΣΣΣ−1
000 RRRΣΣΣ−1

000 sss− tr(ΣΣΣ−1
000 RRR)

)
= c−1/2

2 (Q(sss)− c1), (6)

where c1 = tr(ΣΣΣ−1
000 RRR) is the mean of Q(sss) and c2 = 2tr(ΣΣΣ−1

000 RRR)2 is the variance of Q(sss). The156

analytical equivalence between T2 = sss′AAAsss and Q(sss) = sss′ΣΣΣ−1
000 RRRΣΣΣ−1

000 sss (the key element of TRE) is157

also apparent, if we let RRR = ΣΣΣ000AAAΣΣΣ000 (Table 1). In addition, if we let RRR = ΣΣΣ000WWWRRRρWWWΣΣΣ000, where158

WWW = diag{w j} and RRRρ = ρ111JJJ111′JJJ +(1−ρ)IIIJJJ , then Q(sss) = ρT1 +(1−ρ)T2 = Qρ , the key element159

of Tskato.160
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3.2 Mixed-effect model161

The fixed-effect model (3) captures the common underlying effect, while the random-effect model

(5) accounts for potential heterogeneity. A logical next step to consider a mixed-effect (ME) mod-

elling framework that includes models (3) and (5) as special cases,

sss = µwww+ηηη + εεε, (7)

where ηηη ∼ N(0,τ2RRR) and εεε ∼ N(0,ΣΣΣ000). If we test the following null hypothesis,

H0 : µ = 0,τ2 = 0, (8)

the corresponding score vector is
(
www′ΣΣΣ−1

000 sss, 1
2sss′ΣΣΣ−1

000 RRRΣΣΣ−1
000 sss− 1

2tr(ΣΣΣ−1
000 RRR)

)′
, and the test statistic is

TME =
(
www′ΣΣΣ−1

000 www
)−1

(www′ΣΣΣ−1
000 sss)2 + c−1

2
(
sss′ΣΣΣ−1

000 RRRΣΣΣ−1
000 sss− c1

)2
, (9)

where c1 = tr(ΣΣΣ−1
000 RRR) and c2 = 2tr(ΣΣΣ−1

000 RRR)2 as before for TRE .162

Intuitively, following the construction of TME , we can also consider another hybrid test statistic,

T12, by combining T1 = (www′sss)2 and T2 = sss′AAAsss weighted by the corresponding standard deviations,

T12 =
(
www′ΣΣΣ000www

)−1
(www′sss)2 + č−1

2
(
sss′AAAsss− č1

)2 (10)

where č1 = tr(ΣΣΣ000AAA) is the mean of T2 under the null and č2 = 2tr(ΣΣΣ000AAA)2 is the variance of T2.163

The connection between T12 with Tskato is also immediate. However, there are two key differences.164

First, given a ρ , Tskato relies on Qρ = ρ(www′sss)2 +(1−ρ)sss′′′AAAsss = ρT1 +(1−ρ)T2. In contrast, T12165

combines T1 and the square of centralized T2 (not T2 itself). That is, T12 =
√

2sd−1
T1

T1+(sd−1
T2

(T2−166

meanT2))
2. Secondly, Tskato searches for the ‘optimal’ ρ that minimizes the p-value associated with167

Qρ then adjusts for selection bias. In contrast, T12 uses the corresponding variances. Lastly, we168
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note that when J is large, centralized T2 is approximately normally distributed with mean zero169

under the null. Thus (sd−1
T2

(T2 −meanT2))
2 is χ2

1 distributed asymptotically, and it is on the same170

scale as sd−1
T1

T1.171

The score test statistic derived directly from the mixed-effect model (7) is TME , which uses172

ΣΣΣ−1
000 sss, instead of sss, to account for the correlation between the tested variants. Transforming sss by173

the precision matrix has been considered previously in other settings, for example, by Cai et al.174

(2014) for a two-sample high-dimensional means test. As illustrated in Cai et al. (2014), the175

transformation could improve power under sparse alternatives in the presence of high correlation.176

Inspired by Hall and Jin (2010), we can also consider Cholesky decomposition of ΣΣΣ000, CCCΣΣΣ000CCC′ =

IIIJJJ , and use CCCsss instead of sss. This will result in another new hybrid test statistic,

T̃ME =
(
www′www

)−1
(www′CCCsss)2 +

(
2tr
(
RRR2))−1 (

sss′CCC′RRRCCCsss− tr(RRR)
)2
. (11)

In the two-class classification context, Fan et al. (2013) has shown that ΣΣΣ−1
000 leads to better perfor-177

mance than CCC. In our setting, we will study both TME and T̃ME for completeness.178

3.3 Additional covariate adjustment179

Increasingly, additional variant-specific information, zzz= (z1, · · · ,zJ), such as functional annotation180

or gene-expression evidence are available and should be utilized to increase power (Finucane et al.,181

2015). One could consider directly modifying www to reflect the additional information, but a princi-182

pled approach is lacking. The proposed regression framework, however, can naturally incorporate183

zzz as a covariate into the mixed-effect model (7),184

sss = µwww+θzzz+ηηη + εεε. (12)

If we are interested in testing, H0 : µ = 0,θ = 0,τ2 = 0, the corresponding score test statistic
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is

TME, cov = sss′ΣΣΣ−1
000 uuu(uuu′ΣΣΣ−1

000 uuu)−1uuu′ΣΣΣ−1
000 sss+ c−1

2
(
sss′ΣΣΣ−1

000 RRRΣΣΣ−1
000 sss− c1

)2
, (13)

where uuu = (www,zzz), c1 = tr(ΣΣΣ−1
000 RRR), and c2 = 2tr(ΣΣΣ−1

000 RRR)2. Similarly as before, we can construct185

T12, cov and T̃ME, cov versions of T12 and T̃ME that account for covariate information, but for a more186

focused study we will not examine the difference between these tests here. Table 1 summarizes all187

the tests discussed so far.188

3.4 Asymptotic distributions of the proposed test statistics189

The asymptotic distributions of the existing tests, T1, T2, Tskato, TFisher, and TMinp, have been pre-190

viously established as n → ∞, assuming that individual-level data are available. Here, we are191

interested in the asymptotic distribution of the various tests when J → ∞. In the next section,192

we will study finite sample behaviour of the tests. We begin with some mild conditions needed193

for Theorem 1. For two sequences of real numbers {a1J} and {a2J}, denote a1J = o(a2J) if194

limJ→∞(a1J/a2J) = 0, and CCCΣΣΣ000CCC′ = IIIJJJ .195

Condition 1. Let b j be the jth element of the vector bbb, j = 1, · · · ,J, where bbb = www′CCC′, and let λ j be196

the jth eigenvalue of the matrix CCCRRRCCC′, j = 1, · · · ,r. Denote bmax = max j b j and λmax = max j λ j.197

bmax = o
(√

www′ΣΣΣ−1
000 www

)
and λmax = o

(√
tr(RRRΣΣΣ−1

000 )2
)
.198

Condition 2. Let b̌ j be the jth element of the vector b̌bb, j = 1, · · · ,J, where b̌bb = www′CCC−1, and let199

λ̌ j be the jth eigenvalue of the matrix (CCC−1)′RRRCCC−1, j = 1, · · · ,r. Denote b̌max = max j b̌ j and200

λ̌max = max j λ̌ j. b̌max = o
(√

www′ΣΣΣ000www
)

and λ̌max = o
(√

tr(RRRΣΣΣ000)2
)
.201

Condition 3. Let λ̃ j be the jth eigenvalue of the matrix RRR, j = 1, · · · ,r. Denote wmax = max j w j202

and λ̃max = max j λ̃ j. wmax = o(
√

www′www) and λ̃max = o(
√

tr(RRR2)).203

Theorem 1. Under the null hypothesis of (8),204
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(a) Assume Condition 1 holds, then, TME
d−→ χ2

2 , as J → ∞.205

(b) Assume Condition 2 holds, then, T12
d−→ χ2

2 , as J → ∞.206

(c) Assume Condition 3 holds, then, T̃ME
d−→ χ2

2 , as J → ∞.207

When J is small, significance evaluation based on the above asymptotic distributions may not208

be adequate. In Theorem 2 we provide an approximation for the finite-sample distribution of TME ;209

results for T12, and T̃ME are similar. Note that the main computational cost involved in Theorem 2210

is the calculation of eigenvalues λ j, j = 1, · · · ,J.211

Theorem 2. Let λ j be the jth eigenvalue of the matrix CCCRRRCCC′′′, j = 1, · · · ,r, then212

TME
D
= u2

1 +

(
2

r

∑
j=1

λ 2
j

)−1( r

∑
j=1

λ j(v2
j −1)

)2

,

where u1 and v j, j = 1, · · · ,r, are independent N(0,1), and D
= denotes equality in distribution.213

We note that the above finite and asymptotic results are with respect to J. The validities of TME ,214

T12, and T̃ME do not require n → ∞ explicitly, as long as sss is multivariate normal. The distributions215

of the existing tests, T1, T2, Tskato, TFisher, and TMinp for finite J have been established. As J → ∞,216

it is easy to show that both T1 and T2 are asymptotically χ2
1 distributed under some mild conditions217

that are similar to the ones specified above. The constructions of Tskato, TFisher, and TMinp depend218

on p-values of Qρ , T1, or T2, thus we do not pursue their asymptotic distributions with respect to J.219

3.5 Power comparison220

We first establish the asymptotic distributions of TME , T12, and T̃ME (as J → ∞) under the alterna-221

tive, H1 : µ = µ1,τ2 = τ2
1 , requiring some mild conditions on the www, RRR, ΣΣΣ000 as specified in Theorem222

3.223
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Condition 4. Let λ j be the jth eigenvalue of the matrix CCCRRRCCC′, j = 1, · · · ,r. c−1 ≤ λmin ≤ λmax ≤ c224

for some constant c > 0.225

Theorem 3. Under the alternative hypothesis H1,226

(a) Assume Conditions 1 and 4 hold, then227

TME
d−→ π2

0 χ2
1
(
φ2

0/π2
0
)
+π2

1 χ2
1
(
(φ1 +φ2)

2/π2
1
)
, as J → ∞,

where φ0 = µ1

√
www′′′ΣΣΣ−1

000 www, φ1 = 2−1/2τ2
1

√
tr(ΣΣΣ−1

000 RRR)2, φ2 = µ2
1 www′′′ΣΣΣ−1

000 RRRΣΣΣ−1
000 www

/√
2tr(ΣΣΣ−1

000 RRR)2,228

π2
0 = 1+τ2

1 www′′′ΣΣΣ−1
000 RRRΣΣΣ−1

000 www
/

www′′′ΣΣΣ−1
000 www, and π2

1 = 1+
(
τ4

1 tr(ΣΣΣ−1
000 RRR)4+2τ2

1 tr(ΣΣΣ−1
000 RRR)3)/tr(ΣΣΣ−1

000 RRR)2.229

(b) Assume Conditions 2 and 4 hold, then230

T12
d−→ π̌2

0 χ2
1
(
φ̌2

0/π̌2
0
)
+ π̌2

1 χ2
1
(
(φ̌1 + φ̌2)

2/π̌2
1
)
, as J → ∞,

where φ̌0 = µ1www′′′www
/√

www′′′ΣΣΣ000www, φ̌1 = τ2
1 tr(RRR2)

/√
2tr(ΣΣΣ000RRR)2, φ̌2 = µ2

1 www′′′RRRwww
/√

2tr(ΣΣΣ000RRR)2, π̌2
0 =231

1+ τ2
1 www′′′RRRwww

/
www′′′ΣΣΣ000www, and π̌2

1 = 1+
(
τ4

1 tr(RRR4)+2τ2
1 tr(ΣΣΣ000RRR333)

)/
tr(ΣΣΣ000RRR)2.232

(c) Assume Conditions 3 and 4 hold, then233

T̃ME
d−→ π̃2

0 χ2
1
(
φ̃2

0/π̃2
0
)
+ π̃2

1 χ2
1
(
(φ̃1 + φ̃2)

2/π̃2
1
)
, as J → ∞,

where φ̃0 = µ1www′′′CCCwww
/√

www′′′www, φ̃1 = τ2
1 tr(CCCRRRCCC′′′RRR)

/√
2tr(RRR2), φ̃2 = µ2

1 www′′′CCC′′′RRRCCCwww
/√

2tr(RRR2),234

π̃2
0 = 1+ τ2

1 www′′′CCCRRRCCC′′′www
/

www′′′www, and π̃2
1 = 1+

(
τ4

1 tr(RRRCCCRRRCCC′′′)2 +2τ2
1 tr(RRRCCCRRRCCC′′′RRR)

)/
tr(RRR2).235

To compare the asymptotic power between TME and T12, first let us consider the simple case of236

no random effect, i.e. τ1 = 0. In that case, π0 = π̌0 = π1 = π̌1 = 1. Thus TME is reduced to TFE ,237

and T12 is reduced to (www′′′ΣΣΣ000www)−1T1 based on Theorem 3. Further, TME is at least as powerful as T12238

provided that φ2
0/φ̌2

0 = www′′′ΣΣΣ000wwwwww′′′ΣΣΣ−1
000 www

/
(www′′′www)2 ⩾ 1. In fact, the above inequality always holds as239
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long as ΣΣΣ000 is a positive definite symmetric matrix. This reveals that if the true underlying model240

for sss is a fixed-effect model, then TME is more powerful than T12. Our analytical conclusion here241

is consistent with that observed by Liu and Lin (2018a) for jointly analyzing multiple phenotypes.242

Second, if we consider a local alternative assuming τ2
1 λmax = o(1), then π0 = 1+ o(1), π̌0 =243

1+o(1),π1 = 1+o(1), and π̌1 = 1+o(1). As a result, TME is at least as powerful as T12 provided244

that φ2
0/φ̌2

0 = www′′′ΣΣΣ000wwwwww′′′ΣΣΣ−1
000 www

/
(www′′′www)2 ⩾ 1, φ2

1/φ̌2
1 = tr(ΣΣΣ000RRR)2tr(ΣΣΣ−1

000 RRR)2/tr2(RRR2) ⩾ 1, φ2/φ̌2 =245

www′′′ΣΣΣ−1
000 RRRΣΣΣ−1

000 www
www′′′RRRwww

·
√

tr(ΣΣΣ000RRR)2√
tr(ΣΣΣ−1

000 RRR)2
⩾ 1. The first two inequalities always hold as long as RRR and ΣΣΣ000 are246

positive definite symmetric matrices. The last one depends on the specific structures of www,RRR, and247

ΣΣΣ000 which we will exam by means of simulation.248

4 Simulation studies249

To compare the finite-sample performance of TME , T̃ME , and T12, with Tskato, TMinp, and TFisher,250

we conduct extensive simulation studies, examining the effects of different correlation structures251

and signal sparsities. For the purpose of mimicking the rare variants association study scenario to252

obtain the summary statistics, sss and ΣΣΣ000, we follow the individual-level data generating framework253

used in Derkach et al. (2014). We assume E(yi|GGGi) = β0+β1Gi1+ · · ·+βJGiJ , where yi is normally254

distributed with variance σ2 = 1, and Gi j is Bernoulli with Pr(Gi j = 1) = p j, i = 1, · · · ,n and255

j = 1, · · · ,J, and p j is approximately twice the minor allele frequency of variant j. Given this set-256

up, sss ∼ N(µµµ,ΣΣΣ000), where µµµ = (np1(1− p1)β1, · · · ,npJ(1− pJ)βJ)
′, ΣΣΣ0 = {σ2

jk}J×J , σ2
jk = np j(1−257

p j) for j = k and σ2
jk = n(p jk − p j pk) for j ̸= k, and p jk = P(Gi j = 1,Gik = 1).258

In the subsequent studies, we consider J = 10, 50, 100, 500, and 1000, p j randomly drawn259

from Unif (0.005,0.02), j = 1, · · · ,J, and βββ = 000 under the null and following various different260

structures under alternatives. For diag{σ−1
j j }ΣΣΣ000 diag{σ−1

j j }, we consider an AR(1) pattern with261

correlation ρ̃ , and ρ̃ = 0.2, 0.5, and 0.8. For www and AAA in Tskato, TMinp, TFisher, and T12, we choose262

the commonly used w j = 1/
√

p j(1− p j) and AAA = diag{w2
j} without loss of generality. For www and263
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RRR in TME and T̃ME , we choose the same w j and let RRR = AAA for a fair comparison.264

4.1 Type I error265

To examine the validity of the proposed tests, TME , T̃ME , and T12, we generate sss from N(000,ΣΣΣ000),266

independently, 106 times for each J and ρ̃ combination. Table 2 provides the empirical type I267

error rates for α = 5%,1%,0.1%, and 0.01% estimated based on the 106 replications for ρ̃ = 0.5;268

results similar for other ρ̃ values (see Supplementary Material). T.,asy represents the asymptotic269

results based on Theorem 1. For T.,apr based on Theorem 2, 107 independent random variables270

u1 and v j are generated for each replication. The results in Table 2 show that for small J, in271

combination with stringent α level, p-value evaluation based on the asymptotic distributions in272

Theorem 1 is not adequate. In that case, the approximate solution in Theorem 2 should be used.273

For the existing methods, Tskato, TMinp, and TFisher, we observed in our simulation studies that274

Tskato is slightly conservative for the α levels considered regardless of the size of J, TMinp is also275

slightly conservative for small J but has correct test size when J > 50, and TFisher has inflated type276

I error when correlation is strong; see supplementary material for detailed simulation results.277

4.2 Power without covariates278

We consider two different simulation designs to evaluate power. For both designs, Pc, the propor-279

tion of causal variants for a given set of J variants, is randomly drawn from Unif(0.01,0.1) for the280

case of sparse signal, and Pc ∼ Unif (0.1,0.5) for moderately sparse case. Among the causal vari-281

ants, the proportion of deleterious variants with β j > 0, Pd ∼Unif(0.5,0.75). We note that for each282

Pc and Pd combination, the locations of the signals (β j ̸= 0) are randomly drawn from {1,2, · · · ,J},283

without replacement. This randomness helps us to comprehensively explore the effect of different284

correlation structures between causal variants, between non-causal variants, as well as between285

causal and non-causal variants.286
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Table 2: Type I error evaluation. Empirical test sizes for α = 5%, 1%, 0.1%, and 0.01%, estimated based
on 106 replications independently simulated under the null. For p-value evaluation, T.,asy represents using
the asymptotic distributions in Theorem 1, and T.,apr represents using the approximate solution in Theorem
2 with 107 independent simulated N(0,1) variables. Results here are for ρ̃ = 0.5 in ΣΣΣ0; results for other ρ̃
values are provided in the Supplementary Material.

J α T12,asy T̃me,asy Tme,asy T12,apr T̃me,apr Tme,apr

10 5% 6.1558 5.4401 5.6556 5.7470 5.1676 5.2226
1% 3.1219 2.2454 2.4281 1.7649 1.3830 1.2969

0.1% 1.4531 0.7937 0.9427 0.2079 0.1575 0.1316
0.01% 0.7725 0.3260 0.4294 0.0196 0.0158 0.0141

20 5% 5.6845 5.0952 5.5795 5.4308 4.9646 5.2198
1% 2.5849 1.8642 2.4312 1.6450 1.2781 1.3667

0.1% 1.0219 0.5893 0.9643 0.2212 0.1565 0.1476
0.01% 0.4703 0.2167 0.4550 0.0246 0.0162 0.0149

50 5% 5.1085 4.9573 5.1317 5.0333 4.9307 4.9875
1% 1.9088 1.3816 1.7082 1.4498 1.1470 1.1475

0.1% 0.5952 0.3178 0.5002 0.2103 0.1446 0.1307
0.01% 0.2148 0.0852 0.1794 0.0230 0.0165 0.0132

100 5% 4.9508 4.9621 5.0064 4.923 4.9672 4.9664
1% 1.5279 1.2223 1.3854 1.2788 1.0938 1.1030

0.1% 0.3796 0.2207 0.3082 0.1846 0.1428 0.1273
0.01% 0.1149 0.0464 0.0831 0.025 0.0162 0.0138

500 5% 4.9335 4.9757 5.0020 4.9307 4.9759 4.9948
1% 1.1265 1.0426 1.0917 1.0720 1.0112 1.0238

0.1% 0.1662 0.1273 0.1547 0.1288 0.1094 0.1130
0.01% 0.0332 0.0176 0.0281 0.0202 0.0123 0.0139

1000 5% 4.9841 4.9887 4.9552 4.9743 4.9889 4.9436
1% 1.0475 1.0045 1.0254 1.0151 0.9886 0.9864

0.1% 0.1365 0.1127 0.1190 0.1183 0.1065 0.0951
0.01% 0.0205 0.0135 0.0162 0.0163 0.0116 0.0109
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Design one follows the approach of Derkach et al. (2014). That is, sss ∼ N(µµµ,ΣΣΣ0), where µµµ =287

(np1(1− p1)β1, · · · ,npJ(1− pJ)βJ)
′, n = 500, diag{σ−1

j j }ΣΣΣ000 diag{σ−1
j j } follows the AR(1) model288

with varying ρ̃ , and |β j| ∼ Unif (0.5,1.5) for both the sparse and moderately sparse cases. Design289

two assumes that sss is drawn from the mixed-effect model (7) with varying magnitudes of µ and τ2.290

Specifically, sss∼N(www∗β ,τ2IIIJ +ΣΣΣ0), where www∗ = (np1(1− p1)sign(β1), · · · ,npJ(1− pJ)sign(βJ))
′,291

β represents the common fixed effect of βββ , and τ2 captures the random effect. For this design,292

β ∼ Unif (0.5,1.5) for both the sparse and moderately sparse cases as in design one, and τ2 ∼293

Unif (1,2).294

For both designs, to compare power between methods we focus on J = 100 and α = 0.05295

without loss of generality; results for other parameter values are characteristically similar. The296

empirical power for α = 0.05 are estimated from 103 independently simulated replicates, and using297

the empirical critical values obtained from 104 corresponding null replicates. As the performances298

under sparse and moderate sparse cases share similar patterns, we present the results for the sparse299

case here and the other results in the supplementary material.300

Under simulation design one and the sparse signal case, Figures 1-2 show the empirical power301

of the proposed test statistics T12, T̃ME , and TME as compared to Tskato, TMinp, and TFisher, re-302

spectively, for ρ̃ = 0.5 and ρ̃ = 0.2; see supplementary material for ρ̃ = 0.8. In each figure,303

there are 200 randomly simulated models where p j ∼ Unif (0.005,0.02), Pc ∼ Unif (0.01,0.1),304

Pd ∼ Unif (0.5,0.75), and |β j| ∼ Unif (0.5,1.5); see supplementary material for the moderately305

sparse case where Pc ∼ Unif (0.1,0.5).306

Based on the results in Figures 1-2, first we note that when the correlation among variants is307

relatively strong (e.g. ρ̃ = 0.5 in Figures 1 and ρ̃ = 0.8 in supplementary material), TME derived308

from the proposed mixed-effect regression model, using ΣΣΣ−1
000 sss instead of sss, increases power. How-309

ever, this approach may not be advantageous when there is only weak correlation in conjunction310

with sparse signal (e.g. ρ̃ = 0.2 in Figures 2) as discussed in Section 3.2. Interestingly, the new311

test T12 (which has the same structure as TME but uses sss) and test T̃ME (uses CCCsss, where CCC′ΣΣΣCCC = IIIJ)312
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have comparable power with Tskato, but without the need to search for the ‘optimal’ ρ . Our sim-313

ulation results also confirm that the three existing hybrid tests, Tskato, TMinp, and TFisher, largely314

have similar performance, where Tskato and TMinp perform more similar with each other than with315

TFisher.316

The results for simulation design two and under the sparse case are shown in Figures 3-4,317

respectively, for ρ̃ = 0.5 and ρ̃ = 0.2; see supplementary material for ρ̃ = 0.8. In each figure,318

there are 200 randomly simulated models where p j, Pc, and Pd are simulated as in design one,319

while β ∼ Unif(0.5,1.5) and τ2 ∼ Unif (1,2); see supplementary material for additional results320

using other parameter values. As expected, when sss follows a mixed-effect model (7), the advantage321

of the proposed TME is enhanced. In this case, power of TME is considerably higher than the other322

tests even when ρ̃ = 0.2 for most of the 200 models simulated (Figures 4). We also note that in our323

power studies, we used the sub-optimal w j = 1/
√

p j(1− p j) and RRR = diag{w2
j}. Performance of324

TME can be further improved by using the oracle w j = np j(1− p j)sign(β j) and RRR = III.325

4.3 Power with covariates326

We now briefly study the effect of incorporating variant-specific additional information zzz=(z1, · · · ,zJ)
′.327

As discussed before, although one may revise w j to be proportional to z j, in additional to MAF,328

it is not immediately clear how to choose an ‘optimal’ weighting function. Thus, we only study329

the proposed TME,cov, derived directly from the regression model (12), and we consider simulation330

design two only. Without loss of generality, we assume z j to be an indicator variable, for exam-331

ple the variant being non-synonymous (z j = 1) or synonymous (z j = 0). For causal variants we332

let Pr(z j = 1) = 0.5, and for non-causal variants Pr(z j = 1) = 0. We consider both the case of333

informative zzz (θ ̸= 0 in model (12)) and the case of uninformative zzz (θ = 0).334

Figure 5 shows the results for J = 100 and ρ̃ = 0.5 under the sparse signal case where Pc = 0.1;335

Pd ∼ Unif (0.5,1) and p j ∼ Unif (0.005,0.02). Because of the additional information available336

from zzz, we decrease β to be drawn from Unif (0.1,1) and choose τ2 = 0. When zzz is informative,337
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Figure 1: Comparison of power for sparse signals and ρ̃ = 0.5 based on design ONE. Compare T12,
T̃ME , TME , TFisher, TMinp and Tskato using 200 alternative models with sparse signals simulated based on
design one. J = 100 and the proportion of the causal variants varies from 1% to 10%. Sample size n = 500
and α = 0.05.
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Figure 2: Comparison of power for sparse signals and ρ̃ = 0.2 based on design ONE. Compare T12,
T̃ME , TME , TFisher, TMinp and Tskato using 200 alternative models with sparse signals simulated based on
design one. J = 100 and the proportion of the causal variants varies from 1% to 10%. Sample size n = 500
and α = 0.05.
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Figure 3: Comparison of power for sparse signals and ρ̃ = 0.5 based on design TWO. Compare T12,
T̃ME , TME , TFisher, TMinp and Tskato using 200 alternative models with sparse signals simulated based on
design two. J = 100 and the proportion of the causal variants varies from 1% to 10%. Sample size n = 500
and α = 0.05.
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Figure 4: Comparison of power for sparse signals and ρ̃ = 0.2 based on design TWO. Compare T12,
T̃ME , TME , TFisher, TMinp and Tskato using 200 alternative models with sparse signals simulated based on
design two. J = 100 and the proportion of the causal variants varies from 1% to 10%. Sample size n = 500
and α = 0.05.
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θ ∼ Unif (1,4). As expected, there can be substantial power gain when incorporating informa-338

tive covariate information (left plot in Figure 5), at the cost of slightly reduced power when zzz is339

uninformative (right plot in Figure 5).340
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Figure 5: Power with and without covariates. Compare TME,cov and TME using 500 alternative models
with sparse signals simulated based on design two. J = 100, Pc = 0.1, Pd ∼U(0.5,1), β ∼U(0.1,1), ρ̃ =
0.5. Sample size n = 500 and α = 0.05.

5 Applications341

In this section, we examine nine test statistics through two data applications. The nine tests exam-342

ined include the four new methods, TME,cov, TME , T̃ME , and T12, and the existing methods, Tskato,343

TMinp, TFisher, as well as T1 and T2 for completeness; see Table 1 for a summary of the different344

tests. In the implementation of TME,cov, we use variants being non-synonymous or synonymous,345

annotated using the UCSC genome browser at https://genome.ucsc.edu/, as the variant-specific346

information.347

The first application highlights the advantage of the proposed TME in the presence of high348

or moderately high correlation between variants, and it also demonstrates that the method is not349
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limited to analyses of rare variants. The second application revisits the genetic analysis workshop350

17 (GAW17) rare variants data previously studied by Derkach et al. (2014). This application351

reveals the benefit of incorporating additional variant-specific information using TME,cov, derived352

from the proposed summary statistic-based mixed-effect regression model (12).353

5.1 Cystic Fibrosis (CF) data - common variants354

Cystic Fibrosis is a life-limiting genetic condition for which lung function is a primary co-morbidity355

of interest. To indirectly study gene-environment interactions, Soave et al. (2015) proposed a joint356

location-scale (JLS) test and applied it to lung function measures in CF individuals, n = 1,409357

from a Canadian sample and n = 1,232 from a French sample. They discovered and replicated358

the significance of the SLC9A3 complex set (35 common variants from four genes) based on the359

JLS test. However, the signal appears to come from the scale (interaction) component. For the360

traditional location (mean) test based on T2, the SLC9A3 complex set was only significant in the361

Canadian sample but not replicated in the French sample. Here we exam the performance of the362

nine tests applied to the French sample.363

To implement all the tests we use www = 111 and AAA = III, and RRR = III for fair comparison, since we did364

not find that MAF-dependent weighting enhance the performance of the tests. Because the number365

of variants of interest here is not large enough for using the asymptotic distributions, we obtain366

empirical p-values for all tests based on 104 permutation replicates.367

Results in Table 3 show that only some of the genes appear to be truly associated with lung368

function in CF. For SLC9A3, all tests have suggestive evidence with T1 having p-value < 0.05. For369

SLC9A3R1, benefiting from the correlation structure (Figure S9), the proposed TME and TME,cov370

(and T̃ME), which use ΣΣΣ−1
000 sss (and CCCsss) instead of sss, are significant. When jointly analyzing all four371

genes in the SLC9A3 complex set, none of the tests is statistically significant but T̃ME has the372

smallest p-value. A larger sample is needed to make a definitive conclusion of true association.373

The covariate information (non-synonymous vs. synonymous) appear not to be informative here,374
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but the performance of TME,cov is similar to that of TME .375

Table 3: Empirical p-values of the tests in the CF data application.

Empirical p-value
Gene J T1 T2 Tskato TMinp TFisher T12 T̃ME TME TME,cov

SLC9A3 7 0.0443 0.1198 0.079 0.0783 0.0541 0.0718 0.0586 0.0886 0.0860
EZR 10 0.2192 0.6856 0.3241 0.3209 0.3897 0.239 0.3602 0.3473 0.3474

SLC9A3R2 10 0.804 0.5951 0.6965 0.6984 0.709 0.9037 0.7999 0.9683 0.8791
SLC9A3R1 8 0.0999 0.1103 0.1471 0.1656 0.0846 0.1042 0.0250 0.0243 0.0243

4-gene jointly 35 0.8372 0.3079 0.4749 0.4738 0.5671 0.9261 0.1142 0.1710 0.1709

5.2 The Genetic Analysis Workshop 17 (GAW17) data - rare variants376

Here we apply the method to the GAW17 data provided by the 1000 Genomes Project (Consortium377

et al., 2010), focusing on the simulated quantitative trait Q2. The phenotype Q2 is influenced by378

72 variants in 13 genes but not by environmental factors, and the genotypes of these variants are379

obtained from a ‘mini-exome’ next-generation sequencing experiment. Available to us are 200380

replicates, simulated based on a true phenotype-genotype association model determined by the381

GAW17 study group but blinded to this analysis. We consider n = 321 unrelated Asian samples382

(Han Chinese, Denver Chinese, and Japanese) and use only variants with MAF less than 0.05. The383

description of the variants is provided in Table 4. Among the 13 genes, GCKR is not analyzed since384

only one variant remained after variant screening. VNN1 does not have any causal rare variants385

but is kept for negative control.386

For each of the 200 alternative replicates, we calculate the empirical p-values (based on 104
387

permutation replicates) for the nine test statistics. For each test, the power for α = 0.05 is estimated388

as the proportion of the 200 replicates for which the empirical p-values ≤ 0.05. We separate the 11389

genes into three categories based on power as in Derkach et al. (2014) (which examined T1 and T2)390
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and Derkach et al. (2013) (which examined T1, T2, TMinp, and TFisher), and we also jointly analyze391

all genes within each category.392

In this application, because the correlation is weak among variants (Figure S10), we anticipate393

that methods relies on sss will have better power than those based on ΣΣΣ−1
000 sss or CCCsss. Indeed, results in394

Table 4 show that T12 has better performance than TME and T̃ME . However, this application clearly395

demonstrate the potential of incorporating informative covariates. For example, the power of an-396

alyzing RARB, PLAT and VLDLR is significantly improved using TME,cov, at the cost of slightly397

reduced performance if the included covariate is not (detectably) informative. Interestingly, TFisher398

has comparable performance as T12, and both outperform Tskato in almost all cases. Although the399

individual T1 and T2 tests may have the highest power for certain genes, the robustness of the hybrid400

tests is evident based on the overall performance exhibited in Table 4.401

6 Discussion402

In this paper, we considered a summary statistic-based regression framework to analyze a set of J403

variants simultaneously. As delineated in Table 1, the proposed approach is flexible and adaptive.404

The score test derived from the fixed-effect model, TFE , unifies the linear class of tests (also known405

as the burden tests), T1, derived from models requiring individual-level data, while TRE from the406

random-effect model connects the quadratic class or variance component tests, T2. Further, the407

score test derived from the random-effect model offers a new hybrid test, TME , that naturally ag-408

gregates information from TFE and TRE .409

In contrast to the well-known SKAT-O, it is worth emphasizing two notable differences. First,410

the proposed framework aggregates evidence across J variants based on ΣΣΣ−1
000 sss, a precision matrix-411

based transformation of the score vector, that can increase power for sparse alternatives (Fan et al.,412

2013; Cai et al., 2014). Secondly, when additional variant-specific information is available, it is413

straightforward to derive TME,cov that accounts for covariate effects. We have demonstrated these414
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Table 4: Empirical power of the tests in the GAW17 data application.

Empirical Power
Gene JC JN T1 T2 Tskato TMinp TFisher T12 T̃ME TME TME,cov

7 genes for which the maximum power is 10% or more
SIRT1 4 7 0.44 0.385 0.455 0.43 0.495 0.5 0.315 0.285 0.285
BCHE 6 9 0.29 0.39 0.405 0.39 0.435 0.445 0.45 0.46 0.41

PDGFD 3 5 0.295 0.385 0.385 0.38 0.425 0.45 0.37 0.31 0.26
SREBF1 4 5 0.495 0.25 0.440 0.440 0.445 0.400 0.440 0.405 0.355
RARB 1 5 0.06 0.135 0.095 0.110 0.085 0.090 0.090 0.100 0.215
PLAT 4 7 0.13 0.125 0.105 0.100 0.135 0.12 0.115 0.13 0.165

VLDLR 4 3 0.11 0.085 0.100 0.095 0.115 0.115 0.110 0.110 0.16
7-gene jointly 26 41 0.935 0.765 0.94 0.935 0.945 0.94 0.79 0.765 0.765

4 genes for which the maximum power is 10% or less
VNN3 2 2 0.035 0.04 0.035 0.035 0.04 0.04 0.04 0.04 0.035

INSIG1 3 1 0.05 0.03 0.03 0.03 0.035 0.035 0.025 0.025 0.015
LPL 1 3 0.03 0.065 0.035 0.035 0.04 0.035 0.025 0.035 0.050
VWF 1 3 0.025 0.01 0.01 0.01 0.015 0.01 0.035 0.04 0.045

4-gene jointly 7 9 0.075 0.01 0.06 0.06 0.055 0.045 0.055 0.055 0.045

1 gene for which there is no rare causal variants, used as a negative control
VNN1 0 3 0.015 0.045 0.045 0.045 0.035 0.04 0.04 0.04 0.045
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features of the proposed method using both analytical results and empirical studies.415

To exploit the assumption of signal sparsity, various supremum-type tests have been proposed416

including the generalized higher criticism (Barnett et al., 2017) for sparse signals, and most re-417

cently the generalized Berk-Jones statistic (Sun and Lin, 2017) for moderate sparse signals. These418

methods, tailored for common variants, are not easy to adjust for additional variant-specific in-419

formation when individual-level data are not available. See Lin and Zeng (2010) for a general420

discussion of the relative efficiency between mega- and meta-analysis.421

The proposed set-based testing framework is a general one, and it can be used for other set-422

tings such as pleiotropy studies of multiple phenotypes, where the analtyical unit is each of the423

phenotypes. In that context, Liu and Lin (2018b) also proposed a summary statistic-based linear424

mixed-effect regression model, but they focused on the special case of www = 111 and RRR = III. In ad-425

dition, Liu and Lin (2018b) derived two score test statistics, respectively, for testing µ = 0 and426

τ2 = 0 separately, then considered different ways to combine the evidence including SKAT-O type427

of statistics. In contrast, we derive TME from testing µ = 0 and τ2 = 0 jointly, and the weight-428

ing factors are inherently justified. We also study the asymptotic properties of the proposed tests429

under the null and alternatives, in addition to the study of covariate adjustments when only variant-430

specific information is available.431

The proposed method can also be used for the study of polygenic risk score (PRS)(Purcell432

et al., 2009), and the connection between PRS and burden type of tests (T1) has been noted by Pan433

et al. (2015). In principle, TME can overcome the poor statistical efficiency of T1 as adopted in434

the PRS test. However, the estimation of large precision matrices can be challenges and requires435

special considerations (Fan et al., 2016). The link between T1 and existing PrediXcan (Gamazon436

et al., 2015) for association and tissue-specific gene-expression data integration has also been noted437

(Xu et al., 2017). The performance of TME in this setting and comparison with other concurrently438

developed newer methods are of our future research interest.439

Fix-, random-, and mixed-effect models for summary statistics have been studied for meta-440
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analysis of GWAS (Han and Eskin, 2011). In that context, a likelihood ratio test was implemented441

for the mixed-effect model, and the resulting test is also known as the new random-effect meta-442

analysis. The original test of Han and Eskin (2011) was designed for meta-analysis of independent443

studies, and a modified procedure has since been developed by Lee et al. (2017) to account for444

correlations between studies but not covariate effects. Comparison between the two approaches445

for meta-analysis and other studies warrants future investigations.446
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