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Abstract		

Transcription	factor	(TF)	binding	specificity	is	determined	via	a	complex	interplay	between	the	TF’s	

DNA	binding	preference	and	cell-type	specific	chromatin	environments.	The	chromatin	features	that	

correlate	with	TF	binding	in	a	given	cell-type	have	been	well	characterized.	For	instance,	the	binding	

sites	 for	 a	 majority	 of	 TFs	 display	 concurrent	 chromatin	 accessibility.	 However,	 concurrent	

chromatin	features	reflect	the	binding	activities	of	the	TF	itself,	and	thus	provide	limited	insight	into	

how	 genome-wide	 TF	 binding	 patterns	 became	 established	 in	 the	 first	 place.	 To	 understand	 the	

determinants	 of	 TF	 binding	 specificity,	 we	 therefore	 need	 to	 examine	 how	 newly	 activated	 TFs	

interact	with	sequence	and	preexisting	chromatin	landscapes	to	determine	their	binding	sites.		

Here,	 we	 investigate	 the	 sequence	 and	 preexisting	 chromatin	 determinants	 of	 TF	 binding	 by	

examining	 genome-wide	 binding	 of	 TFs	 that	 have	 been	 induced	 in	well-characterized	 chromatin	

environments.	 We	 develop	 a	 bimodal	 neural	 network	 that	 jointly	 models	 sequence	 and	 prior	

chromatin	 data	 to	 interpret	 the	 genome-wide	 binding	 patterns	 of	 induced	TFs.	We	 find	 that	 the	

preexisting	 chromatin	 landscape	 is	 a	differential	 global	determinant	of	TF	binding;	 incorporating	

prior	chromatin	features	substantially	improves	our	ability	to	explain	the	binding	specificity	of	some	

TFs,	but	not	others.	Furthermore,	by	analyzing	the	per-site	predictors	of	TF	binding,	we	show	that	TF	

binding	in	previously	inaccessible	chromatin	tends	to	correspond	to	the	presence	of	more	favorable	

cognate	 DNA	 sequences.	 Our	 model	 thus	 provides	 a	 framework	 for	 modeling,	 interpreting,	 and	

visualizing	the	joint	sequence	and	chromatin	landscapes	that	determine	in	vivo	TF	binding	dynamics.		
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Introduction	 	 	

Sequence-specific	transcription	factors	(TFs)	interact	with	the	genome	by	binding	their	cognate	DNA	

sequence	 motifs,	 using	 both	 direct	 base	 interactions	 and	 DNA	 structural	 feature	 recognition1–3.	

However,	the	presence	of	cognate	motif	instances	alone	is	a	poor	predictor	of	TF	binding4,5.	Most	TFs	

bind	to	only	a	small	fraction	of	their	potential	target	motif	instances	in	a	given	cell	type,	and	the	cohort	

of	sites	which	are	bound	can	vary	greatly	across	cell	 types6–8.	These	observations	suggest	 that	TF	

binding	specificity	is	constrained	by	cell-specific	chromatin	landscapes7,9,10.	For	example,	cell-specific	

nucleosome	organization	and	stability	can	enable	or	prevent	some	TFs’	access	to	DNA5,11,12,	whereas	

certain	 so-called	 “pioneer”	 TFs	 may	 be	 able	 to	 override	 such	 constraints12,13.	 Cooperative	 and	

antagonistic	 interactions	 with	 other	 regulatory	 proteins	 may	 also	 constrain	 cell-specific	 TF	

binding14,15.	However,	it	remains	unclear	how	DNA	sequence,	chromatin	structure,	and	interactions	

with	other	regulators	act	in	concert	to	determine	cell-type	specific	binding	across	a	range	of	TFs.	

Computational	models	of	genome-wide	TF	occupancy	are	often	developed	with	the	goal	of	gaining	

insight	into	cell-type	specific	TF	binding	mechanisms.	Several	methods	integrate	DNA	sequence	with	

information	about	the	chromatin	landscape	in	which	the	TF	is	binding	(i.e.	“concurrent”	chromatin	

information)	 to	 characterize	 genome-wide	 TF	 binding	 specificity16–18.	 However,	 TFs	 and	 their	

recruited	 regulatory	 complexes	 often	 alter	 local	 chromatin	 landscapes	 upon	 binding	 to	 DNA19,20.	

Therefore,	concurrent	chromatin	landscapes	are	not	determinants	of	TF	binding	but	rather	parallel	

measurements	of	TF	binding	itself.	Models	that	integrate	DNA	sequence	and	concurrent	chromatin	

information	can	thus	only	provide	limited	insights	into	how	a	TF’s	DNA-binding	occupancy	became	

established	in	the	first	place.		

In	order	 to	understand	 the	 chromatin	determinants	of	 in	 vivo	TF	binding	 specificity,	we	must	

examine	 chromatin	 landscapes	 that	 exist	 in	 a	 given	 cell	 type	 prior	 to	 TF	 expression,	 and	 then	

characterize	which	 sites	become	bound	by	 the	TF	upon	 induction.	Here,	we	develop	a	principled	

framework	to	jointly	model	TF	binding	as	a	function	of	DNA	sequence	and	the	preexisting	chromatin	

environment.	 Specifically,	 we	 model	 genome-wide	 TF	 binding	 through	multi-modal	 deep	 neural	

networks	that	can	learn	separate	representations	for	the	heterogeneous	sequence	and	preexisting	

chromatin	 data	 type	 modalities,	 while	 integrating	 these	 distinct	 representations	 with	 readily	

interpretable	deeper	 layers21.	Modeling	TF	binding	as	a	 function	of	both	DNA	sequence	and	prior	

chromatin	 enables	 us	 to	 estimate	 the	 relative	 contribution	 of	 the	 preexisting	 cell-type	 specific	

chromatin	 landscape	 to	 an	 induced	 TF’s	 binding	 specificity,	 and	 allows	 us	 to	 ask	whether	 these	

contributions	differ	across	TFs.		
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First,	we	demonstrate	our	approach	by	examining	the	binding	determinants	of	 the	pro-neural	

bHLH	TF	Ascl1	when	it	is	over-expressed	in	mouse	embryonic	stem	(mES)	cells22.	Specifically,	we	

characterize	 the	 degree	 to	 which	 genome-wide	 Ascl1	 binding	 depends	 on	 the	 prior	 mES	 cell	

chromatin	landscape.	We	further	use	our	network	to	examine	the	DNA	sequence	and	prior	chromatin	

determinants	of	Ascl1	binding	at	individual	sites,	demonstrating	that	Ascl1	binding	occurs	across	a	

continuum	of	sequence	and	prior	chromatin	constraints.	Second,	we	expand	our	analysis	to	examine	

the	differential	sequence	and	prior	chromatin	drivers	across	12	TFs	induced	in	cell-types	in	which	

the	prior	chromatin	accessibility	landscape	has	been	characterized	(mES	cells	and	NIH-3T3	fibroblast	

cells)22,23.	While	we	focus	here	on	systems	in	which	TF	expression	is	induced	in	cell	lines,	our	methods	

are	 broadly	 applicable	 to	 study	 any	 dynamic	 regulatory	 system	 in	which	 chromatin	 accessibility	

landscapes	can	be	assayed	before	TF	binding	activity	occurs.		

	

Results	

	

A	bimodal	neural	network	integrates	DNA	sequence	and	prior	chromatin	accessibility	to	

predict	TF-DNA	binding		

To	estimate	the	dependence	of	TF	binding	on	the	preexisting	chromatin	accessibility	landscape,	we	

use	a	stepwise	forward	classification	approach.	Specifically,	we	first	train	a	neural	network,	MS,	to	

predict	TF	binding	using	DNA	sequence	features	alone.	We	then	assess	whether	an	expanded	network	

architecture	that	 incorporates	sequence	and	chromatin	 features,	MSC,	 leads	to	an	 improvement	 in	

predictive	 accuracy.	 Any	 such	 improvement	 points	 to	 predictive	 information	 in	 the	 preexisting	

chromatin	landscape	that	is	not	captured	by	sequence	alone.		

To	model	the	sequence	specificity	driving	TF	binding,	we	use	convolutional	neural	networks	due	

to	their	ability	to	outperform	both	PWMs	and	k-mer	based	string	kernels	at	TF	binding	prediction	

tasks24,25.	Specifically,	our	sequence-only	network	MS	uses	a	convolutional	layer	followed	by	a	long	

short-term	memory	 (LSTM)	 layer	 and	multiple	 dense	 layers	 (Fig.	1a).	While	 convolutional	 filters	

identify	 short	discriminative	PWMs	at	bound	sequences,	LSTMs	and	deeper	 layers	are	 capable	of	

integrating	 information	 from	 convolutional	 filters	 to	 model	 higher-order	 sequence	

dependencies18,24,26.	 We	 note	 that	 in	 order	 to	 test	 if	 preexisting	 chromatin	 landscapes	 drive	 TF	

binding	specificity,	we	must	ensure	that	our	sequence-only	model	does	not	learn	sequence	features	

associated	with	the	preexisting	chromatin	accessibility	 landscape	 itself.	We	prevent	such	 features	

from	being	learned	using	careful	design	of	the	training	mini-batches	(see	Methods).		
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Figure	1:	Bimodal	neural	network	architecture	containing	A)	a	sub-network	that	trains	on	sequence	features	
and	B)	a	sub-network	that	trains	on	prior	chromatin	features.	Sub-network	activations	are	combined	using	a	
single	sigmoid-activated	node	in	order	to	aid	interpretability	of	sequence	and	prior	chromatin	binding	pre-
determinants.		

	

Methods	that	model	multiple	modalities	in	TF	binding	predictions	tasks	often	use	early-fusion;	

i.e.	 they	 integrate	 the	 modalities	 into	 a	 single	 input	 vector17,25.	 However,	 low-level	 correlations	

between	heterogeneous	sequence	and	chromatin	accessibility	inputs	may	not	always	be	meaningful	

or	interpretable.	To	incorporate	preexisting	chromatin	features	into	our	predictive	framework,	we	

define	a	bimodal	network	architecture	that	models	the	sequence	and	chromatin	accessibility	through	

independent	 sub-networks	 combined	 with	 an	 additive	 sigmoidal	 dense	 node	 (Fig.	 1b).	 DNA	

sequences	 from	500bp	windows	are	used	as	 input	 to	 the	sequence	sub-network,	whereas	binned	

ATAC-seq	 and	 histone	mark	 ChIP-seq	 data	 are	 used	 as	 input	 to	 the	 chromatin	 sub-network	 (see	

Methods).		

To	 test	 our	 framework,	 we	 focused	 on	 characterizing	where	 the	 bHLH	 TF	 Ascl1	 binds	when	

expressed	in	mES	cells.	Specifically,	we	trained	the	networks	to	predict	Ascl1	ChIP-seq	data,	assayed	

after	12	hours	of	ectopic	Ascl1	expression	in	mES	cells.	We	incorporated	publicly	available	ATAC-seq	
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as	 well	 as	 H3K27ac,	 H3K27me3,	 H3K4me1/me2/me3,	 H2A.Z,	 acH2A.Z,	 H3K9ac,	 H3K36me3	 and	

H3K9me3	ChIP-seq	data	from	mES	cells	as	inputs	into	the	chromatin	sub-network	(see	Methods).	

Due	to	the	 imbalanced	nature	of	 the	problem,	we	use	the	genome-wide	area	under	the	precision-

recall	curve	(auPRC)	as	a	performance	metric	for	both	the	sequence-only	and	the	bimodal	sequence-

chromatin	networks.		

	
Figure	 2:	 A)	 The	 distribution	 of	 neural	 network	 classification	 performance	 (auPRC)	 on	 held-out	
chromosomes	10-14	for	the	prior	chromatin-only	(MC),	sequence-only	(MS),	sequence	and	ChIP	input	control	
(MSI)	and	the	sequence	and	prior	ES	chromatin	(MSC)	models.	B)	The	precision-recall	curves	for	the	sequence-
only	model	compared	to	the	precision-recall	curves	for	the	sequence	and	prior	ES	chromatin	models.	Model	
performance	 for	 held-out	 chromosome	 10	 is	 highlighted	 in	 solid	 yellow	 and	 blue	 lines	 for	 illustration;	
performance	for	chromosomes	11-14	is	represented	with	lighter	(alpha=0.2)	traces.		

	

We	 find	 that	 the	 bimodal	 sequence	 and	 preexisting	 chromatin	 model	 MSC	 outperforms	 the	

sequence-only	model	MS	when	trained	on	induced	Ascl1	ChIP-seq	data	(Fig.	2a).	While	the	median	

auPRC	across	test	chromosomes	for	the	sequence	model	MS	is	0.42,	the	median	auPRC	for	the	joint	

sequence	and	preexisting	chromatin	model	Msc	is	0.59	(Fig.	2a).	The	improved	performance	of	the	

Msc	model	is	driven	mostly	by	improved	specificity.	At	a	fixed	false	positive	rate	(FPR=0.01),	a	large	

majority	of	Ascl1-bound	sites	are	correctly	predicted	by	both	models	(Suppl.	Fig.	1a).	However,	at	a	

fixed	 recall	of	80%,	 the	number	of	 false	positives	predicted	by	 the	 joint	 sequence	and	chromatin	

network	is	less	than	half	the	number	of	false	positives	predicted	by	the	sequence-only	network	(Fig.	

2b).	As	a	negative	control,	a	joint	sequence	and	chromatin	model	trained	using	a	sequenced	input	

control	experiment	instead	of	pre-induction	chromatin	data	leads	to	only	a	marginal	improvement	in	
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performance	 over	 the	 sequence-only	 model	 (auPRC=0.45;	 Fig.	 2a).	 We	 also	 confirmed	 that	 an	

additive	 bimodal	 design	 does	 not	 perform	worse	 than	 a	 model	 with	more	 complex	 interactions	

between	 sequence	 and	 prior	 chromatin	 features	 (Suppl.	 Fig.	 1b).	 Incorporating	 prior	 chromatin	

features	therefore	leads	to	an	increase	in	specificity	of	induced	Ascl1	binding	predictions,	suggesting	

that	Ascl1	binding	is	somewhat	dependent	on	the	preexisting	chromatin	landscape.		

	

A	 range	 of	 sequence	 and	prior	 chromatin	 constraints	 determine	 induced	Ascl1	 binding	 at	

individual	sites	in	mouse	embryonic	stem	cells	

Our	bimodal	network	design	has	a	distinct	advantage	in	that	it	integrates	outputs	from	the	sequence	

and	chromatin	sub-networks	in	an	easily	interpretable	additive	fashion.	Specifically,	let	MSC	be	the	

model	 that	 incorporates	 both	 sequence	 and	 preexisting	 chromatin	 features.	 The	 sequence	 and	

chromatin	sub-networks	can	be	thought	of	as	transforming	the	input	feature	vectors	𝑥"	and	𝑥#	into	a	

network	 embedded	 space.	 If	𝜙"(𝑥") 	and	𝜙#(𝑥#) 	represent	 transformed	 feature	 vectors,	 then	 the	

network	 output	 node	𝑦"# 	acts	 an	 additive	 logistic	 model	 that	 estimates	 the	 coefficients	 for	 the	

embedded	sequence	and	chromatin	feature	vectors.		

𝑙𝑜𝑔𝑖𝑡(𝑦"#) = 	𝛽0 + 𝛽2𝜙"(𝑥") + 𝛽3𝜙#(𝑥#)		

	The	weighted	activations	𝑆56 	for	each	sub-network	can	then	be	interpreted	as	scores	assigned	by	sub-

network	𝑗	to	genomic	locus	𝑖:	

𝑆56 = 𝛽5𝜙58𝑥569	

Here,	𝛽5 	is	the	weight	assigned	to	sub-network	𝑗,	and	𝜙58𝑥569	is	the	non-linear	transformation	applied	

by	sub-network	𝑗	to	input	feature	vector	𝑥56.	The	bimodal	network	thus	maps	each	genomic	locus	to	a	

two-dimensional	space	defined	by	the	weighted	sequence	and	chromatin	sub-network	activations.		

We	 make	 use	 of	 the	 two-dimensional	 network	 embedding	 to	 examine	 the	 sequence	 and	

chromatin	 sub-network	 activations	 at	 individual	 Ascl1	 binding	 sites.	 We	 embed	 Ascl1-bound	

genomic	 regions	 (orange)	 as	well	 as	 randomly	 sampled	 unbound	 genomic	 regions	 into	 the	 two-

dimensional	network	transformed	space	(Fig.	3a).	As	stated	in	the	previous	section,	a	large	majority	

of	Ascl1	binding	sites	receive	high	activation	scores	from	the	overall	MSC	network.	Interestingly,	the	

high	overall	scores	at	Ascl1	binding	sites	correspond	to	a	broad	range	of	compensatory	sequence	and	

chromatin	sub-network	activations	in	the	two-dimensional	embeddings.	Ascl1-bound	sites	with	low	

sequence	scores	are	on	average	scored	highly	by	the	chromatin	sub-network.	Conversely,	bound	sites	

with	low	chromatin	scores	are	on	average	scored	highly	by	the	sequence	sub-network.	We	quantify	
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this	 effect	 using	 the	median	 sequence	 score	 at	 bound	 sites	 (SM)	 as	 a	 threshold	 to	 show	 that	 the	

marginal	chromatin-score	distributions	differ	at	high-scoring	(𝑆"6 	>	SM)	versus	low-scoring	(𝑆"6 	<	SM)	

Ascl1	binding	sites	(Fig.	3b).	Thus,	the	network	learns	a	model	in	which	Ascl1	binds	target	sequences	

that	 exhibit	 a	 broad	 range	 of	 sequence	 and	 chromatin	 sub-network	 scores,	 and	 some	 degree	 of	

compensation	between	sequence	and	prior	chromatin	predicts	genome-wide	Ascl1	binding.	

	

	
Figure	3:	A)	The	contribution	of	sequence	and	preexisting	chromatin	to	binding	predictions	at	Ascl1	binding	
events	(orange)	and	randomly	sampled	unbound	genomic	windows	(grey).	B)	Distributions	of	chromatin	sub-
network	scores	from	A)	for	Ascl1	binding	events	with	sequence	scores	greater	than	or	less	than	the	median	
sequence	network	score.	
	
Motif	multiplicity	 and	motif	 flanks	drive	 variation	 in	 sequence	 sub-network	 activations	 at	

individual	Ascl1	binding	sites	

Next,	 we	 aimed	 to	 interpret	 the	 trained	 network	 to	 identify	 the	 sequence	 and	 prior	 chromatin	

features	that	drive	the	observed	variation	in	sequence	and	chromatin	sub-network	activations	at	in	

vivo	TF	binding	sites.	First,	we	used	integrated	gradients	based	feature	attribution27	to	confirm	that	

the	network	 learns	 features	associated	with	Ascl1’s	cognate	E-box	binding	preference	(Suppl.	Fig.	

2a,b).	Interestingly,	we	noticed	that	at	many	loci,	multiple	Ascl1	binding	E-box	motifs	were	assigned	

high	attribution	scores	 (Suppl.	 Fig.	2),	 suggesting	 that	motif	multiplicity	 is	 a	predictive	 feature	of	

Ascl1	binding.		

Since	gradient-based	 feature	 attribution	can	be	 susceptible	 to	network	parameterizations,	we	

also	used	an	orthogonal	strategy	to	confirm	that	motif	multiplicity	defined	the	high-scoring	Ascl1	

binding	sites.	We	first	calculated	the	number	of	Ascl1	cognate	E-box	motif	instances	in	each	500bp	

window	 bound	 by	 Ascl1	 (Fig.	 4a).	 We	 divided	 bound	 loci	 into	 categories	 based	 on	 their	 motif	
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multiplicity,	and	measured	the	sequence	sub-network	activations	 in	each	category.	Only	5%	of	all	

Ascl1-bound	 loci	 lack	 exact	matches	 to	 the	 core	 Ascl1	 E-box	motif	 CAGSTG,	 and	 these	 loci	were	

assigned	the	lowest	median	scores	by	the	sequence	sub-network	(Fig.	4b).	However,	a	large	fraction	

of	Ascl1-bound	windows	contains	more	than	one	exact	match	to	the	Ascl1	binding	E-box	CAGSTG,	

and	the	number	of	motif	occurrences	is	strongly	positively	correlated	with	sequence	sub-network	

scores	(Fig.	4b).	To	systematically	examine	the	relationship	between	motif	multiplicity	and	sequence	

sub-network	scores,	we	inserted	between	one	and	four	randomly	spaced	motif	instances	in	a	set	of	

randomly	 simulated	 sequences.	 We	 found	 that	 the	 sequence	 sub-network	 scores	 increase	 with	

increasing	motif	multiplicity,	 indicating	 that	 the	 network	 indeed	 uses	multiplicity	 as	 a	 feature	 in	

predicting	Ascl1	binding	(Fig.	4c).		

	

	
	
Figure	 4:	 A)	 Frequencies	 of	 CAGSTG	 k-mers	 at	 all	 Ascl1	 binding	 sites.	B)	 Sequence	 sub-network	 scores	
increase	 with	 motif	 multiplicity	 at	 Ascl1	 binding	 windows.	 C)	 Embedding	 CAGSTG	 motifs	 in	 simulated	
sequences	confirms	that	the	network	uses	the	number	of	motif	occurrences	as	predictors	of	sequence	scores.	
D)	&	E)	Embedding	the	CAGSTG	motif	with	defined	1bp	or	2bp	flanks	shows	that	the	network	sequence	scores	
for	Ascl1	are	driven	by	motif	flanks.		
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In	addition	to	the	primary	motif,	motif	flanking	nucleotides	have	been	shown	drive	genome-wide	

Ascl1	 binding	 specificity	 in	mES	 cells22.	 To	 test	whether	 the	 nucleotides	 flanking	 the	Ascl1	motif	

CAGSTG	affect	sequence	sub-network	activations,	we	used	two	complementary	simulation	strategies.	

First,	we	constructed	a	 single	500	bp	 reference	 sequence	 in	which	each	position	 is	 encoded	as	a	

[0.25,0.25,0.25,0.25]T	vector;	i.e.	each	base	[A,	T,	G,	C]T	occurs	with	equal	probability	at	each	position	

along	this	sequence.	We	embedded	all	combinations	of	the	Ascl1	CAGSTG	motif	flanked	by	a	single	

nucleotide	 on	 either	 end	 into	 this	 reference	 sequence,	 and	 extracted	 the	 sequence	 sub-network	

activation	at	 each	 such	 simulated	 sequence.	We	 find	 large	variation	 in	 the	 sequence	 sub-network	

output	 based	 on	 the	 flanking	 nucleotides,	 suggesting	 that	 the	 network	 is	 learning	motif	 flanking	

information	 as	 a	 predictor	 of	 induced	 Ascl1	 binding	 (Fig.	 4d).	 While	 certain	 8-mers	 such	 as	

GCAGCTGC	are	scored	highly	by	the	sequence	sub-network,	others	such	as	ACAGCTGCA	lead	to	low	

sequence	 sub-network	 scores.	 Since	 an	 artificially	 constructed	 reference	 baseline	may	 introduce	

biases	into	our	estimation	of	sequence	activations,	we	also	embed	the	Ascl1	motif	+	1bp	flanks	into	

10,000	randomly	generated	500bp	sequences,	resulting	in	scores	consistent	with	k-mers	embedded	

into	a	reference	sequence	(Suppl.	Fig.	3).	Embedding	Ascl1	motifs	+	2bp	flanks	results	in	a	further	

large	 variation	 in	 scores	 for	 each	 8-mer	 (motif	 +1bp	 flanks),	 suggesting	 that	 the	 network	 learns	

information	beyond	1bp	flanking	nucleotides	(Fig.	4e).	The	sequence	sub-network	thus	uses	both	

motif	multiplicity	and	flanking	nucleotide	information	to	assign	variable	sequence	scores	to	in	vivo	

Ascl1	binding	sites.	

	

Higher-order	chromatin	information	drives	variation	in	chromatin	sub-network	activations	

at	individual	Ascl1	binding	sites	

In	order	to	identify	the	drivers	of	prior	chromatin	sub-network	activations,	we	first	calculated	the	

distributions	 of	 chromatin	 sub-network	 activation	 scores	 at	 enrichment	 domains	 for	 each	 input	

histone	 modification	 ChIP-seq	 dataset.	 The	median	 scores	 for	 preexisting	 domains	 of	 chromatin	

accessibility,	 active	 histone	marks	 H3K4me1/2/3,	 H3K27ac,	 H3K9ac,	 and	 active	 histone	 variants	

H2A.Z	and	acH2A.Z	were	positive,	suggesting	that	some	degree	of	induced	Ascl1	binding	is	associated	

with	 regions	 that	 already	displayed	 signs	of	regulatory	activity	 in	 the	preexisting	pluripotent	 cell	

state.	Conversely,	median	scores	for	preexisting	H3K9me3	and	H4K20me3	domains	were	strongly	

negative	 (Fig.	 5a),	 suggesting	 that	 the	 chromatin	 sub-network	 uses	 preexisting	

repressive/heterochromatic	histone	modifications	as	negative	predictors	of	induced	Ascl1	binding.	

To	further	examine	the	determinants	of	variation	in	chromatin	activations	at	Ascl1-bound	sites,	
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we	divided	Ascl1	binding	sites	into	quartiles	based	on	their	chromatin	sub-network	activations	and	

calculated	their	composite	tag	enrichment	profiles	for	each	chromatin	track	(Fig.	5b).	We	found	that	

the	genomic	windows	associated	with	the	highest	chromatin	sub-network	activations	were	enriched	

for	 chromatin	 accessibility,	 H3K4me2,	 H3K4me3	 and	 H3K27ac	 in	 the	 prior	 cell	 state.	 Genomic	

windows	in	the	second	and	third	quartiles	were	enriched	for	H3K4me2	along	with	H3K4me1	and	

H2A.Z,	 but	 show	 lower	 chromatin	 accessibility,	 H3K9ac,	 and	 H3K27ac.	 The	 fourth	 data	 quartile,	

associated	with	the	lowest	chromatin	sub-network	activations,	lacked	significant	enrichment	for	any	

histone	modifications	(Fig.	5b).	

	
Figure	5:	A)	The	distribution	of	chromatin	sub-network	activation	scores	at	enrichment	domains	for	each	of	
12	mES	chromatin	datasets.	B)	Composite	plots	of	mES	chromatin	tag	enrichment	at	induced	Ascl1	binding	
sites	divided	 into	quartiles	based	on	their	associated	chromatin	sub-network	scores.	C)	Chromatin	and	D)	
sequence	sub-network	scores	vary	based	on	the	preexisting	chromatin	states	(annotated	with	ChromHMM).		

	

To	explicitly	test	for	the	association	of	chromatin	sub-network	activations	with	particular	prior	

chromatin	states,	we	segmented	the	genome	into	twelve	states	using	ChromHMM,	and	calculated	the	

chromatin	sub-network	activations	at	each	of	these	states	(Fig.	5c).	We	found	that	preexisting	active	

promoters	and	strong	enhancers	were	assigned	the	highest	median	chromatin	scores,	followed	by	

weak	enhancers	and	bivalent	promoters.	Consistent	with	our	previous	results,	Polycomb-repressed	

chromatin	(marked	by	H3K27me3),	heterochromatin	(marked	by	H3K9me3)	and	quiescent	genomic	
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regions	 were	 assigned	 the	 lowest	 median	 chromatin	 scores.	 Further,	 consistent	 with	 the	

compensatory	behavior	observed	in	the	network	embeddings,	sites	where	Ascl1	becomes	bound	in	

regions	associated	with	mES	quiescent	and	 repressed	 states	 contain	on	average	higher	 sequence	

scores	than	sites	in	mES	active	states	(Fig.	5d).		

	

The	preexisting	chromatin	accessibility	is	a	differential	determinant	of	in	vivo	TF	binding	

specificity		

Having	 examined	 in	 depth	 the	 ability	 of	 the	 network	 to	 characterize	 the	 sequence	 and	 prior	

chromatin	 determinants	 of	 TF	 binding	 for	 Ascl1,	 we	 next	 applied	 our	 method	 to	 compare	 the	

differential	 sequence	 and	 prior	 chromatin	 drivers	 across	 a	 broader	 range	 of	 TFs.	 We	 collected	

publicly	available	data	for	TFs	that	were	induced	and	profiled	via	ChIP-seq	in	cell-types	with	pre-

assayed	chromatin	accessibility	landscapes	(see	Methods).	Further,	to	maintain	consistency	across	

TFs,	we	considered	only	those	TFs	that	were	profiled	12	hours	post	induction,	resulting	in	a	dataset	

comprising	of	12	TFs,	induced	in	either	mES	cells	or	NIH-3T3	fibroblasts	(Suppl.	Table	3).		

We	first	asked	whether	incorporation	of	prior	chromatin	data	improves	the	ability	of	a	sequence-

only	model	 to	 predict	 genome-wide	 TF	 binding.	We	 find	 that	 the	 sequence	 and	 prior	 chromatin	

bimodal	network	MSC	outperforms	the	sequence-only	network	MS	for	all	12	TFs	analyzed	(Fig.	6a).	

However,	we	note	 that	 the	auPRC	 is	 susceptible	 to	 the	 imbalance	 in	 the	data,	 and	 thus	at	 a	 fixed	

misclassification	 rate	 for	 bound	 and	unbound	data,	 the	 auPRC	will	 be	 lower	 for	 a	 TF	with	 fewer	

binding	sites28.	Thus,	as	an	additional	measure	for	comparison	across	TFs,	we	measured	the	model	

recall	for	each	TF	at	a	fixed	false	positive	rate	(FPR)	of	0.01.	In	addition	to	reporting	the	recall,	we	

derived	the	posterior	distribution	of	 the	recall	 for	each	TF	to	quantify	our	degree	of	belief	 in	our	

reported	recall	estimates	(see	Methods,	Fig.	6b)29.	Binding	models	for	the	TFs	Dlx6,	Bhlhb8,	Six6	and	

Hlf	show	greater	than	2-fold	increases	in	recall	at	a	fixed	FPR,	suggesting	that	the	binding	of	these	

TFs	 are	 highly	 constrained	 by	 the	 prior	 chromatin	 accessibility	 environment.	 On	 the	 other	 hand,	

binding	models	for	Ascl1,	Neurog2,	Cdx2	and	Duxbl	show	a	smaller	gain	in	recall	at	a	fixed	FPR	on	

incorporation	of	prior	chromatin	accessibility	data	(Fig.	6b).	We	note	that	the	contribution	of	prior	

accessibility	to	the	binding	of	these	TFs	is	not	immediately	evident	in	direct	comparisons	with	prior	

cell	 type	 ATAC-seq	 data,	 as	 these	 TFs	 bind	 their	 target	 motifs	 in	 both	 pre-accessible	 and	 pre-

inaccessible	 chromatin.	 As	 a	 negative	 control,	 we	 show	 that	 using	 a	 sequenced	 input	 control	

experiment	as	input	to	the	chromatin	sub-network	instead	of	prior	ATAC-seq	does	not	lead	to	similar	

gains	in	model	performance	for	any	of	the	12	TFs	tested.	(Suppl.	Fig.	4).	The	differential	gain	in	model	
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predictive	ability	on	the	incorporation	of	preexisting	chromatin	accessibility	data	suggests	that	the	

prior	 chromatin	 accessibility	 landscape	 differentially	 constrains	 in	 vivo	 TF	 binding,	 and	 that	 our	

framework	can	identify	this	differential	contribution.		

	

Figure	6:	A)	Neural	network	classification	performance	evaluated	for	12	TFs	induced	in	ES	or	NIH3T3	cells	
for	sequence-only	model	MS	(yellow)	and	bimodal	sequence-chromatin	MSC	(blue)	models.	Boxplots	present	
the	auPRC	on	sequentially	held-out	chromosomes	chr10-chr15.	B)	Differential	gain	in	the	model	recall	at	a	
fixed	False	Positive	Rate	(FPR)	for	the	12	TFs.	C)	Pre-inaccessible	TF-bound	windows	are	scored	higher	than	
pre-accessible	bound	windows	by	 the	sequence	sub-network	 for	 the	TFs	DUXBL,	CDX2,	ASCL1,	NEUROG2,	
FOXA1	and	BHLHB8.	For	SOX2,	SOX15,	DLX6,	SIX6	and	RHOX11,	pre-inaccessible	bound	windows	are	assigned	
lower	median	scores	than	pre-accessible	bound	windows.		

	

Finally,	we	 focused	 on	TFs	 that	 can	 bind	 target	motifs	 in	 pre-inaccessible	 chromatin	 (TFs	 for	

which	at	least	10%	of	their	binding	occurred	in	pre-inaccessible	chromatin),	and	asked	whether	the	

network	 learns	 compensatory	 sequence-chromatin	 models	 for	 these	 TFs.	 Specifically,	 we	 asked	

whether	 the	 distribution	 of	 sequence	 scores	 for	 these	 TFs	was	 different	 between	 pre-accessible	

versus	pre-inaccessible	chromatin	(Fig.	6c).	We	found	that	the	network-assigned	sequence	scores	at	

pre-inaccessible	 binding	 regions	were	 consistently	 higher	 than	 sequence	 scores	 at	pre-accessible	
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binding	 regions,	 compatible	 with	 a	 model	 that	 allows	 certain	 sequence	 signatures	 to	 override	

unfavorable	 chromatin	 features.	 	 In	 summary,	 our	 results	 show	 that	 different	 degrees	 of	

compensation	between	sequence	and	prior	chromatin	landscapes	define	observed	in	vivo	TF	binding	

specificity,	with	TFs	that	bind	extensively	in	pre-inaccessible	chromatin	showing	stronger	signatures	

of	compensation.	

	

Discussion	

TFs	bind	subsets	of	their	cognate	motif	instances	in	a	cell-type	specific	fashion.	Such	specificity	in	TF	

binding	 results	 from	 an	 interplay	 between	 the	 TF’s	 inherent	 sequence	 preferences	 and	 cell-type	

specific	chromatin	landscapes6,30.	The	question	naturally	arises	as	to	which	local	chromatin	features	

might	enable	or	inhibit	a	given	TF’s	binding.	However,	if	we	can	measure	a	TF’s	binding	occupancy	

using	ChIP-seq,	it	has	by	definition	already	had	its	own	impact	on	chromatin	in	that	cell	type	(e.g.	by	

making	 its	 binding	 sites	 accessible	 or	 by	 recruiting	 histone	 modification	 enzymes).	 Concurrent	

chromatin	landscapes	therefore	predict	in	vivo	TF	binding	in	the	same	cell	type31,32,	but	cannot	be	

used	to	model	the	causal	determinants	of	that	binding.		

Here,	we	propose	an	interpretable	neural	network	architecture,	which	can	be	used	to	assess	the	

relative	contribution	of	DNA	sequence	and	preexisting	chromatin	features	in	specifying	an	induced	

TF’s	genome-wide	binding	sites.	We	demonstrate	our	approach	on	ChIP-seq	data	for	12	TFs	that	have	

been	ectopically	expressed	either	in	mouse	ES	cells	or	NIH-3T3	fibroblasts.	Our	model	suggests	that	

TFs	are	 constrained	differentially	by	 the	preexisting	 chromatin	accessibility	 landscape.	Predictive	

models	for	the	TFs	such	as	Dlx6	and	Bhlhb8	benefit	significantly	from	the	addition	of	prior	chromatin	

data,	suggesting	that	the	binding	of	these	TFs	is	strongly	constrained	by	cell-type	specific	chromatin	

landscapes.	On	the	other	hand,	predictive	models	for	TFs	that	bind	similar	numbers	of	pre-accessible	

and	pre-inaccessible	 loci	 in	 vivo	 (Ascl1,	Neurog2,	Duxbl	 and	Cdx2)	gain	more	 limited	 information	

upon	the	addition	of	prior	accessibility	information.	We	note	that	our	estimates	of	the	dependence	of	

TF	binding	on	prior	chromatin	may	still	be	cell-type	specific	as	opposed	to	an	innate	feature	of	a	given	

TF.	 For	 example,	 while	 our	 analyses	 suggest	 that	 binding	 sites	 for	 the	 pioneer	 factor	 Foxa1	 is	

dependent	on	prior	chromatin,	this	may	be	specific	to	the	measured	context	of	NIH-3T3	cells.	It	is	

possible,	for	instance,	that	TFs	that	cooperate	with	or	otherwise	predict	Foxa1	binding	are	already	

present	in	NIH-3T3	cells,	and	Foxa1	may	be	less	dependent	on	prior	chromatin	in	other	cell	types.		

Related	to	our	work,	previous	studies	have	assessed	the	effects	of	prior	chromatin	landscapes	on	

the	binding	of	specific	TFs30,33–36.	For	example,	John	et	al.	showed	that	Glucocorticoid	Receptor	(GR)	
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preferentially	 binds	 pre-accessible	 chromatin	 upon	 hormone	 induction33.	 Donaghey	 et	 al.	

characterized	the	relationships	between	the	preexisting	chromatin	landscape	and	induced	FOXA2,	

GATA4,	and	OCT413,	each	of	which	showed	different	propensities	for	binding	pre-accessible	regions.	

Our	work	aims	to	provide	a	unified	predictive	framework	for	quantifying	and	formalizing	the	relative	

contributions	of	sequence	and	chromatin	pre-determinants	to	TF	binding	across	a	range	of	TFs.			

Interpretation	 of	 our	 binding	 models	 at	 individual	 binding	 sites	 suggests	 that	 sequence	 and	

preexisting	chromatin	 landscapes	are	not	 independent	predictors	of	TF	binding.	Rather,	sequence	

and	preexisting	chromatin	are	mutually	compensatory	features	that	define	a	continuum	of	sites	that	

may	be	bound	by	the	induced	TF.		While	genomic	loci	with	weaker	sequence	signatures	may	be	bound	

by	TFs	given	a	favorable	local	chromatin	environment,	the	same	signatures	might	not	be	sufficient	to	

drive	TF	binding	at	inaccessible	or	unfavorable	chromatin.	For	example,	Ascl1	is	more	likely	to	bind	

pre-inaccessible	loci	in	the	presence	of	certain	sequence	features	such	as	high	motif	multiplicity	and	

favorable	motif	flanks,	suggesting	that	indirect	co-operative	binding	may	be	a	potential	mechanism	

through	which	Ascl1	binds	nucleosomal	chromatin20,37.			

On	the	other	hand,	some	highly	accessible	active	promoters	and	enhancers	are	bound	even	with	

weaker	sequence	signatures,	as	defined	by	low	activation	scores	from	the	sequence	sub-network	in	

our	model.	We	note	that	some	TF-bound	regions	with	high	prior	chromatin	sub-network	activations	

and	 low	 sequence	 sub-network	 activations	 might	 represent	 artifactual	 ChIP-seq	 enrichment38.	

Alternatively,	 these	 regions	 may	 represent	 direct	 binding	 to	 weaker	 motifs,	 or	 indirect	 binding	

mediated	 by	 interactions	 with	 mES	 or	 NIH-3T3	 cell	 regulators39.	 While	 previous	 studies	 have	

proposed	 sequence-conditional	 binding	 to	 inaccessible	 chromatin	 for	 a	 few	 TFs30,40,41,	 our	work	

suggests	that	this	compensatory	mechanism	may	exist	across	a	broader	range	of	TFs.	

Finally,	 different	 TFs	 are	 expected	 to	 interact	 differentially	 with	 preexisting	 chromatin	

landscapes42–44,	and	the	same	TF	may	be	more	or	less	dependent	on	prior	chromatin	in	different	cell	

types.	It	will	therefore	be	of	interest	to	examine	how	the	relative	contributions	of	sequence	and	prior	

chromatin	vary	in	determining	the	binding	of	a	wider	range	of	TFs,	and	across	a	wider	array	of	cell	

types.	 Identifying	such	sequence	and	chromatin	predeterminants	of	TF	binding	will	be	crucial	 for	

understanding	 gene	 regulation	 in	 various	 dynamic	 systems	 such	 as	 development	 and	 cellular	

programming.		
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Methods	

	

ChIP-seq	&	ATAC-seq	data	(ES	cells):	Generation	of	the	inducible	iAscl1	and	iNeurog2	mouse	ES	

cell	lines	and	corresponding	ChIP-seq	data	is	more	completely	described	in	Aydin,	et	al.22.	Briefly,	

inducible	cell	lines	were	generated	using	the	inducible	cassette	exchange	(ICE)	method	as	previously	

described45.	 TF	 gene	 constructs	 are	 inserted	 in	 single	 copy	 into	 the	 expression-competent	HPRT	

locus.	The	resulting	iAscl1	and	iNeurog2	ES	cells	are	differentiated	on	untreated	plates	for	2	days	to	

form	embryoid	bodies,	and	then	expression	of	the	transgene	is	induced	via	Doxycycline.	Ascl1	and	

Neurog2	binding	was	assayed	by	ChIP-seq	12	hours	after	Dox	induction	using	the	anti-Ascl1	(Abcam,	

ab74065)	and	anti-Neurog2	(Santa	Cruz,	SC-19233)	antibodies.	We	assayed	histone	modifications	as	

well	as	chromatin	accessibility	in	EBs	with	ChIP-seq	and	ATAC-seq,	respectively	(Suppl.	Data	Table	

1).	 We	 collected	 additional	 publicly	 available	 histone	 modification	 and	 histone	 variant	 ChIP-seq	

datasets	 from	mouse	ES	cells	(Suppl.	Data	Table	2).	Together,	our	dataset	defining	the	chromatin	

environment	of	mouse	pluripotent	cells	consists	of	 the	 following	12	data	types:	ATAC-seq,	H2A.Z,	

acH2A.Z,	H3K27ac,	H3K27me3,	H3K9me3,	H3K4me1,	H3K4me2,	H3K4me3,	H3K9ac,	H4K20me3	and	

H3K36me3.		

	

ChIP-seq	&	ATAC-seq	data	 (NIH3T3	 cells):	ChIP-seq	 data	 for	 TF	 inductions	 in	mouse	NIH-3T3	

fibroblasts	was	 retrieved	 from	 Raccaud	 et	 al.	 (GSE119784)23.	 We	 filtered	 for	 TFs	 that	 were	 not	

expressed	as	defined	by	RNA-seq	in	the	NIH3T3	cell	line23.	We	used	NCIS	to	estimate	the	sequenced	

control-based	normalization	 factors	 for	each	TF	ChIP-seq	experimnent46.	 Further,	we	 filtered	out	

induced	TFs	that	had	a	multiGPS-reported	signal	fraction	<	0.01	and	were	single-replicate	ChIP-seq	

experiments	 (Suppl.	 Data	 Table	 3).	We	used	 five	ATAC-seq	 experiments	 (Suppl.	 Data	 Table	 4)	 as	

replicates	to	construct	the	network	ATAC-seq	input23.		

	

ChIP-seq	&	ATAC-seq	data	processing:	 Fastq	 files	were	 aligned	 to	 the	mouse	 genome	 (version	

mm10)	using	Bowtie	(1.0.1)47	with	options	“-q	–best	–strata	-m	1	–chunkmbs	1024”.	Only	uniquely	

mapped	 reads	were	 considered	 for	 further	 analysis.	MultiGPS	 (version	 0.74)	was	 used	 to	 define	

transcription	factor	DNA	binding	events48.	A	q-value	cutoff	of	0.01	(assessed	using	binomial	tests	and	

Benjamini-Hochberg	multiple	 hypothesis	 test	 correction)	was	 used	 to	 call	 statistically	 significant	

binding	 events	with	 respect	 to	 sequenced	 input	material	 collected	 from	 the	 same	 cell	 line.	Peak-

finding	 statistics	 are	 reported	 in	 Suppl.	 Table	 3.	 Paired-end	 ATAC-seq	 reads	 were	 aligned	 using	
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Bowtie2	 (2.2.2)	 using	 the	 “-q	 –very-sensitive”	 options49.	ChromHMM50	 was	 run	 using	 default	

parameters.		

	

Training	and	test	set	construction:	For	testing,	we	divided	the	genome	into	500bp	non-overlapping	

windows.	For	training,	we	use	500bp	overlapping	windows,	each	of	which	are	sequentially	offset	by	

50bp.	 Genomic	 windows	 overlapping	 peak	 calls	 with	 a	 p-value	 ≤	 5x10-5	 are	 labeled	 as	 bound.	

Windows	overlapping	non-significant	peaks	from	MultiGPS	are	labeled	ambiguous.	All	other	genomic	

windows	 (~99%)	 are	 labeled	 as	 unbound.	 The	 sequence	 sub-network	MSC	 takes	 as	 input	 500bp	

sequences.	Each	nucleotide	is	encoded	as	a	one-hot	vector,	such	that	only	the	index	corresponding	to	

the	input	nucleotides	is	set	to	one,	and	all	other	indices	are	set	to	zero.	For	each	chromatin	input	data	

track,	we	extract	 the	per-base	read	counts	at	each	genomic	 locus.	These	raw	coverage	counts	are	

binned	into	ten	50bp	discontinuous	bins	(covering	500bp	windows).	The	binned	read	counts	are	total	

tag	 normalized	 for	 each	 replicate,	 and	 we	 use	 the	 replicate	 average	 at	 each	 bin	 as	 input	 to	 our	

network.	The	chromatin	datasets	are	stacked,	resulting	in	a	10	x	k	chromatin	input,	where	k	is	the	

number	of	assayed	histone	modifications/chromatin	accessibility.	For	analyses	(mES	and	NIH3T3	

induced	TFs)	using	prior	ATAC-seq:	k=1.	For	analysis	of	the	mES	TFs	using	prior	ATAC-seq	and	other	

histone	modification	data:	k=12.		

	

Neural	network	architectures:	In	the	sequence	sub-network,	the	500bp,	one-hot	encoded	sequence	

input	is	first	subjected	to	a	1-dimensional	convolution	layer,	with	each	index	in	the	one-hot	encoding	

acting	as	a	channel	into	this	convolution.	The	convolutional	layer	consists	of	240	x	20bp	long	filters.	

The	convolutional	filters	within	15bp	intervals	are	max-pooled,	and	the	pooled	convolutional	output	

is	used	as	input	into	a	long	short-term	memory	(LSTM)	layer.	The	LSTM	outputs	a	32-vector,	which	

then	passes	through	two	dense	layers,	both	subjected	to	ReLU	activation	and	dropout.	The	activations	

from	 the	 final	dense	 layer	are	 input	 into	a	 single	 tanh	activated	dense	node.	The	 chromatin	sub-

network	uses	convolutional	filters	that	span	two	input	bins.	The	filters	are	followed	by	an	LSTM	to	

model	any	observable	tag	densities	discriminative	of	TF	binding.	The	LSTM	activations	are	input	into	

a	 single	 dense	 layer	 followed	 by	 a	 single	 tanh	 activated	 dense	 node.	 The	 activations	 of	 both	 the	

sequence	 and	 the	 preexisting	 chromatin	 sub-networks	 are	weighted	 by	 a	 final	 sigmoid	 activated	

node,	used	to	output	binding	probability.	The	network	is	trained	to	predict	ChIP-seq	by	minimizing	

the	binary	cross-entropy	loss	J:		
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𝐽 = 	−
1
𝑁	>𝑦6 log(𝑦BC) + (1 −	𝑦6)log	(1	 − 𝑦BC)

D

6E2

	

Area	 under	 the	 precision-recall	 curve	 is	 used	 as	 a	 metric	 to	 measure	 network	 performance.	

Chromosome	17	is	held	out	as	a	validation	chromosome.	Chromosomes	10-15	are	sequentially	held	

out	as	test	chromosomes	in	a	k-fold	training	procedure.	

	 	

Neural	 network	 training	 strategies:	 To	 prevent	 the	 sequence-only	 network	 from	 learning	

accessibility-related	 sequences,	 we	 customize	 the	 sampling	 used	 to	 construct	 mini-batches	 for	

gradient	descent-based	training.	We	construct	training	batches	such	that	in	each	batch,	the	bound	

and	unbound	training	instances	contain	equal	proportions	of	accessible	sites,	as	defined	by	ATAC-

seq	data	from	the	prior	cell	state.	This	sampling	strategy	reduces	model	false	positives	at	preexisting	

accessible	regions,	and	leads	to	an	improvement	in	sequence-only	model	performance	measured	on	

held-out	chromosomes	measured	via	the	area	under	the	precision	recall	curve	(auPRC)	(Supp.	Fig.	

5a,	b).		

The	 bimodal	 network	 aims	 to	 learn	 both	 sequence	 and	 prior	 chromatin	 signatures	 that	

characterize	genome-wide	TF	binding.	We	can	thus	no	longer	control	for	accessibility	distributions	

across	 bound	 and	unbound	 training	 sets	 to	 prevent	 spurious	 learning	 of	prior	 chromatin-related	

sequence	 signatures	 when	 training	 the	 bimodal	 network.	 To	 address	 this	 problem,	 we	 transfer	

weights	from	the	previously	trained	sequence-only	network	MS	to	the	sequence	sub-network	in	the	

bimodal	 network	MSC.	While	 the	 lower-level	 layer	 sequence	 sub-network	weights	 are	 kept	 fixed	

during	MSC	training,	the	weights	for	the	final	dense	layer	in	the	sequence	sub-network	are	trained	to	

fit	 the	 new	data.	 Since	 higher-level	 layers	 are	more	 likely	 to	 learn	 problem-specific	 features,	 re-

training	 the	 final	 dense	 layer	 allows	 the	 network	 to	 optimize	 the	 genome-wide	 binding	 problem	

without	 learning	 sequence	 motifs	 related	 to	 prior	 accessibility	 at	 the	 lower-layers51.	 The	 joint	

bimodal	network	MSC	can	then	be	trained	using	imbalanced	batches	constructed	by	random	sampling	

unbound	data	across	the	genome.	

	

Feature	 attribution	 with	 integrated	 gradients:	We	 use	 integrated	 gradients	 to	 estimate	 the	

relative	 importance	of	each	nucleotide	(𝑥6)6E2F 	for	each	 input	sequence	𝒙	of	 length	𝐿	bp.	 Integrated	

gradients	consider	how	predictions	at	 input	 feature	vectors	differ	 from	reference	 feature	vectors.	

More	specifically,	integrated	gradients	calculate	the	gradients	at	all	points	along	a	straight-line	path	

from	the	reference	feature	vector	𝒙𝒃	to	the	input	feature.	In	our	case,	we	define	a	reference	feature	
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as	a	sequence	vector	such	that	at	each	position,	each	nucleotide	is	equally	likely.	In	other	words,	our	

reference	sequence	 is	 a	4	 *	500	matrix,	with	each	column	defined	as	[0.25,	0.25,	0.25,	0.2s5].	We	

implemented	integrated	gradients	as	defined	in	Sundarajan	et	al.27.		

	

The	posterior	distribution	of	the	model	recall:	We	used	the	model	recall	at	a	fixed	false	positive	

rate	(FPR)	to	compare	model	performance	across	TFs.	TPs	are	true	positives	in	the	held-out	test	set,	

whereas	FNs	are	false	negatives	in	the	test	set.	

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃𝑠

𝑇𝑃𝑠 + 𝐹𝑁𝑠	

However,	we	note	that	ChIP-seq	signal	fractions	and	the	number	of	peaks	called	vary	widely	across	

TFs.	Models	trained	to	predict	binding	for	TF	ChIP-seq	experiments	that	contain	smaller	numbers	of	

peaks	(and	correlated	lower	signal	fractions)	suffer	from	having	access	to	limited	training	data.	In	

order	to	quantify	our	confidence	in	the	model	recall,	we	use	a	probabilistic	framework	that	models	

the	recall	for	each	TF	given	the	underlying	ChIP-seq	data.	Specifically,	analogous	to	Brodersen	et	al.29,	

we	consider	the	observed	model	recall	(measured	on	a	single	held-out	test	chromosome)	to	be	an	

actualization	of	an	underlying	true	recall	value	r	given	N	independent	Bernoulli	trials,	where	N	is	the	

number	of	binding	sites	in	the	held-out	test	chromosome.	Each	binding	site	can	be	either	labeled	a	

true	positive	(success)	or	a	false	negative	(failure)	by	the	network.	

	𝑅𝑒𝑐𝑎𝑙𝑙	~	𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁, 𝑟)	

We	derive	the	posterior	distribution	of	the	recall	r	assuming	a	beta	(parameters	a=1,	b=1)	prior	(for	

details,	see	Brodersen	et	al.29).	The	mode	of	this	posterior	distribution	is	the	observed	model	recall.	

If	a	TF	ChIP-seq	experiment	contains	a	small	number	of	peaks,	the	distribution	of	r	has	high	variance	

(e.g.	FoxA1,	Rhox11,	Fig.	6b).	On	the	other	hand,	a	low	variance	in	the	distribution	of	r	reflects	a	high	

degree	of	confidence	in	our	estimate	of	the	recall	(e.g.	Ascl1,	Bhlhb8,	Fig.	6b).		

	

Availability:	Open	 source	 code	 (MIT	 license)	 is	 available	 from	 https://github.com/seqcode/iTF.	

ChIP-seq	data	have	been	uploaded	to	GEO	under	accession	GSE114176.	
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Supplementary	Material	
	
	

	
	

Supplementary	Figure	1:	A)	The	receiver	operating	characteristic	(ROC)	curve	for	the	sequence-
only	 and	 the	 joint	 sequence	 and	 prior	 chromatin	models	 for	 a	 classifier	 trained	 to	 predict	 Ascl1	
binding.	At	a	fixed	false	positive	rate	(FPR)	of	0.05,	both	models	have	high	true	positive	rates	(TPR	>	
0.9).	B)	Model	auPRC	distributions	for	held-out	chromosomes	10-14.	The	performance	of	the	additive	
versus	interactive	sequence	and	prior	chromatin	networks	are	comparable,	confirming	that	we	are	
not	losing	predictive	ability	with	a	simpler	bimodal	architecture.		
	

	
	

	
	

Supplementary	Figure	2:	a)	&	b)	Feature	attribution	with	 integrated	gradients	at	 two	example	
Ascl1	binding	sites	(chr10:4710120-4710170	and	chr10:28136730-28136800).	
	
	

A)

B)
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Supplementary	Figure	3:	The	sequence	sub-network	scores	for	CAGSTG	k-mers	+1bp	flanks	
embedded	in	10,000	randomly	generated	sequence	windows	(background	nucleotide	frequency-
A/T:0.5	and	G/C:0.5).		
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Supplementary	Figure	4:	A)	Genome-wide	auPRC	distributions	on	held-out	chromosomes	10-14.	
The	addition	of	an	input	ChIP-seq	experiment	as	a	control	does	not	lead	to	improvement	in	model	
performance	when	compared	to	the	addition	of	pre-existing	chromatin	accessibility	data.		
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Supplementary	Figure	5:	Model	probabilities	for	Ascl1	at	unbound	genomic	windows	divided	by	
prior	accessibility.	A)	In	the	naïve	training,	a	large	number	of	pre-accessible	unbound	regions	(blue)	
are	incorrectly	assigned	a	model	probability	close	to	1.	In	chromatin-matched	training	B),	this	bias	is	
lost,	with	the	model	behaving	more	uniformly	across	pre-accessible	and	pre-inaccessible	unbound	
windows.		
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Supplementary	Table	1:	Prior	chromatin	datasets	for	mouse	embryoid	bodies,	generated	in	the	
same	cell	line	as	that	used	to	over-express	Ascl1	and	Neurog2	in	the	current	study.		
	
Data	 Replicates	 Cell	Type	 Cell	Line	
ATAC-seq1	 2	 EB	 Ainv15	
H3K27ac1	 2	 EB	 Ainv15	
H3K27me31	 2	 EB	 Ainv15	
H3K4me11	 2	 EB	 Ainv15	
H3K4me21	 2	 EB	 Ainv15	
H3K4me31	 2	 EB	 Ainv15	

	
	
Supplementary	Table	2:	Prior	chromatin	datasets	from	mouse	embryonic	stem	cells,	sourced	from	
referenced	publications.		
	
Data	 Replicates	 Cell	Type	 Cell	Line	
H3K9ac2	 2	 ES	 E14		
H3K9me32	 2	 ES	 E14	
H3K36me32	 2	 ES	 E14	
H2A.Z3	 1	 ES	 V6.5	
acH2A.Z3	 1	 ES	 V6.5	
H3K4me204	 2	 ES	 V6.5	

	
	
Supplementary	Table	3:	ChIP-seq	data	for	TFs	induced	in	NIH3T3	fibroblasts,	downloaded	from	
Raccaud	et	al5	and	mES	cells,	downloaded	from	Aydin	et	al6.	Processed	with	bowtie	(1.0.1)	and	
multiGPS	(version	0.74).		
	
Data	 Cell	Type	 Number	of	

Peaks	
Replicates	 mutliGPS	Signal	

Fraction	
bHLHb8	 NIH-3T3	 47,106	 2	 0.083,0.117	
Cdx2	 NIH-3T3	 15,650	 1	 0.029	
Dlx1	 NIH-3T3	 15,163	 1	 0.027	
Duxbl	 NIH-3T3	 21,668	 1	 0.04	
FoxA1	 NIH-3T3	 4,736	 2	 0.014,0.010	
Hlf	 NIH-3T3	 3,131	 1	 0.009	
Rhox11	 NIH-3T3	 4,653	 1	 0.01	
Six6	 NIH-3T3	 5,419	 1	 0.013	
Sox15	 NIH-3T3	 5,114	 1	 0.013	
Sox2	 NIH-3T3	 4,421	 1	 0.019	
Neurog2	 mES	 26,643	 3	 0.24,	0.11,	0.18	
Ascl1	 mES		 21,176	 3	 0.08,	0.11,	0.12	
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Supplementary	Table	4:	Replicates	of	ATAC-seq	experiments	used	as	prior	chromatin	data	in	
mouse	NIH3T3	fibroblasts5.		
		
Data	 Cell	Type	 Cell	Line	
ATAC-seq	 Mouse	Fibroblasts	 NIH3T3	
ATAC-seq	 Mouse	Fibroblasts	 NIH3T3	+	rtTA3G	control	
ATAC-seq	 Mouse	Fibroblasts	 NIH3T3	+	rtTA3G	control	
ATAC-seq	 Mouse	Fibroblasts	 NIH3T3	+	rtTA3G	control	
ATAC-seq	 Mouse	Fibroblasts	 NIH3T3	+	rtTA3G	control	
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