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Abstract— Transcription factors (TFs) are proteins that are fundamental to transcription and regulation of 13 
gene expression. Each TF may regulate multiple genes and each gene may be regulated by multiple TFs. 14 
TFs can act as either activator or repressor of gene expression. This complex network of interactions 15 
between TFs and genes underlies many developmental and biological processes and is implicated in several 16 
human diseases such as cancer. Hence deciphering the network of TF-gene interactions with information 17 
on mode of regulation (activation vs. repression) is an important step toward understanding the regulatory 18 
pathways that underlie complex traits. There are many experimental, computational, and manually curated 19 
databases of TF-gene interactions. In particular, high-throughput ChIP-seq datasets provide a large-scale 20 
map or transcriptional regulatory interactions. However, these interactions are not annotated with 21 
information on context and mode of regulation. Such information is crucial to gain a global picture of gene 22 
regulatory mechanisms and can aid in developing machine learning models for applications such as 23 
biomarker discovery, prediction of response to therapy, and precision medicine. In this work, we introduce 24 
a text-mining system to annotate ChIP-seq derived interaction with such meta data through mining PubMed 25 
articles. We evaluate the performance of our system using the gold standard small scale manually curated 26 
TRUSST database. Our results show that the method is able to accurately extract mode of regulation with 27 
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F-score 0.77 on TRRUST curated interaction and F-score 0.96 on intersection of TRUSST and ChIP-28 
network. We provide a HTTP REST API for our code to facilitate usage. 29 

Availability: Source code and datasets are available for download on GitHub: 30 

https://github.com/samanfrm/modex  31 

HTTP REST API: https://watson.math.umb.edu/modex/ 32 

 33 

Index Terms— Text mining, information extraction, name entity recognition, biological NLP, biomedical 34 
literature, gene regulatory network, mode of regulation. 35 

 36 

1. INTRODUCTION  37 

Gene regulatory networks are essential in many cellular processes, including metabolism, signal 38 
transduction, development, and cell fate [1]. At the transcriptional level, regulations of genes are 39 
orchestrated by concerted action between Transcription Factors (TFs), histone modifies, and distal cis-40 
regulatory elements to finely tune and modulate expression of genes. Sequence-specific Transcription 41 
Factors play a key role in regulating gene transcription at the transcriptional level. They bind specific DNA 42 
motifs to regulate promoter activity and either enhance (activate) or repress (inhibit) expression of the 43 
genes. Deciphering transcriptional regulatory networks is crucial for understanding cellular mechanisms 44 
and response at a molecular level and can shed light on molecular basis of complex human diseases  [2–5]. 45 
Moreover, knowledge on interactions between genes and biomolecules is an essential building block  in 46 
several pathway inference and gene enrichment analysis methods that aim to annotate an altered set of 47 
transcripts with biological function [6,7]. There are several sources of publicly available biomolecular 48 
interactions, including, signaling pathways, metabolic pathways, and protein-protein interactions [8–10]. 49 
Databases of transcriptional regulatory network include JASPAR [11], the Open Regulatory Annotation 50 
database (ORegAnno) [12] , Swissregulon [13], the Transcriptional Regulatory Element Database (TRED) 51 
[14], the Transcription Regulatory Regions Database (TRRD) [15], TFactS [16], TRRUST [17], and the 52 
Human Transcriptional Regulation Interactions database (HTRIdb) [17]. These databases include 53 
biologically validated and computationally inferred gene regulatory interactions and have been assembled 54 
with a variety of approaches, including reverse engineering approaches based on high-throughput gene 55 
expression experiments [18–20], text mining approaches [21], and manual curation [22]. These databases 56 
are a valuable source of gene regulatory information, however, there are several constraints that limit their 57 
usability. For example, databases of computationally predicted and expression-driven interactions are 58 
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typically very noisy. Importantly, the majority of the databases do not report the direction of regulation (up 59 
or down) - which is crucial to understanding the functional behavior of the cell.   60 

A high-throughput experimental approach for identifying regulatory interaction is chromatin 61 
immunoprecipitation followed by sequencing (ChIP-seq). In ChIP-seq methodologies, antibodies that 62 
recognizes a specific TF are used to pull down attached DNA for sequencing. The ENCODE (Encyclopedia 63 
of DNA Elements) consortium [23] has produced vast amount of publicly available high-throughput ChIP-64 
seq experiments that are processed and deposited into databases such as GTRD [24] and ChIP-Atlas [25] 65 
(>35,000 experiments). These databases can be utilized to construct a high coverage transcriptional 66 
regulatory network. Although these interactions are experimentally derived, they are still very noisy as the 67 
experiments are performed under different conditions and in different cell lines. Moreover, ChIP-seq does 68 
not provide direct information on mode of regulation.  69 

The most reliable source of regulatory information is obtained by manual curation of peer-reviewed 70 
biomedical literature by domain experts and can be considered as the gold standard. Commercial vendors 71 
such as Ingenuity (www.ingenuity.com) offer pathway inference analysis algorithms on such manually 72 
curated networks of regulatory interactions. There are also public sources of curated causal gene regulatory 73 
interactions, such as TRRD, TRED, TFactS, and TRRUST. However, these databases are very small in 74 
their scope, covering only a fraction of TF-gene interactions. Overall, manual curation of biomedical 75 
literature is very time consuming, requires extensive resources, and does not scale to the pace at which 76 
biomedical literature is expanding  [26].  For this reason, biomedical text mining has been extensively used 77 
to automate the process of biomolecular relation extraction from the literature. As literature lacks 78 
standardized representation of text, automatic routines for information extraction from textual context is 79 
very challenging [27].  80 

There is a vast amount of literature on text-mining for various application [27]. Essential text mining steps 81 
for biomedical relation extraction can be divided into 3 steps: (1) information retrieval (IR), (2) entity 82 
recognition (ER), and (3) information extraction (IE). Together, they can be utilized to identify and extract 83 
specific biological knowledge from literature [28,29]. 84 

IR tools retrieve relevant text information from articles, abstracts, paragraphs, and sentences corresponding 85 
to subject of interest. A popular  IR approach for biomedical application is the use of Boolean model logic 86 
(AND/OR) for extracting relevant information containing specific biological terms [27]. Prominent IR tools 87 
that use the Boolean logic model are iHOP [30] and PubMed. PubMed utilizes human-indexed MeSH terms 88 
to reduce the search space and retrieve relevant abstracts containing user specified keywords. iHOP builds 89 
on PubMed and is able to detect co-occurrence of terms. A limitation of iHOP is that the terms must occur 90 
in the same sentence. 91 
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After the IR step, ER must be used to identify relation between biological entities. This is a challenging 92 
step as entity names are not unique. Therefore, ER tools must take textual context into consideration to 93 
accurately detect entities. For example, gene names may have different variations in ortho-graphical 94 
structure (e.g. ABL1, Abl1, Abl-1) or multiple synonyms (e.g. ABL1, ABL, CHDSKM, Abelson tyrosine-95 
protein kinase 1). ER methods, typically divide the task into two steps, (1) identify the entities and their 96 
location in the context, and (2) assign unique identifiers to the entities [27]. Fortunately,  multiple 97 
terminological databases, such as  Gene Ontology [31], UMBLS [32], BioLexicon [32], and Biothesaurus 98 
[32] provide information on biological entities and name variations and can be used to detect biological 99 
entities such as genes or proteins [33–35]. 100 

Lastly, Relation Extraction (RE) is an IR tasks for extracting pre-defined facts relating to an entity or entities 101 
in the text [36]. In biomedical domain, multiple RE methods have been developed to extract information 102 
relating to genes [17], such as Mutation-Disease associations, protein-protein interaction [37,38], pathway 103 
curation [39], gene methylation and cancer relation [40], biomolecular events [41], metabolic reactions [42] 104 
and gene-gene interactions [43].  For gene regulatory networks, which is the focus of this paper, the RE 105 
system must detect and extract a causal relation between a protein and a gene (e.g., A regulated B). This 106 
task is very complex, even  for human experts [44]. To illustrate, consider the causal relation “aatf 107 
upregulates c-myc” that should be deduced from the following sentence: “down-regulation of c-myc gene 108 
was accompanied by decreased expressions of c-myc effector genes coding for htert, bcl-2, and aatf” [45]. 109 
Extracting a positive regulatory interaction between aatf and c-myc is quite challenging using simple RE 110 
methods. For example, the RE method, may naively annotated the interaction as negative because of the 111 
keyword “decreased”. However, by taking “down-regulation” into account, the RE method would able to 112 
correctly extract a positive regulation from this sentence. 113 

Construction of a causal transcriptional regulatory network by traditional means of text mining is hampered 114 
by these challenges and as a result, fully automated text-mining based models are limited in their scope and 115 
accuracy [27].  Combining experimentally-derived regulatory interactions from high-throughput sources 116 
with text-mining approaches can bridge the gap between the two approaches and address their 117 
shortcomings.  118 

In this work, we present a hybrid model ModEx, to mine the biomedical literature to extract and annotate 119 
causal transcriptional regulatory interactions derived from high-throughput ChIP-seq datasets. Specifically, 120 
we applied our text-mining method to extract experimental TF-gene relations reported in ChIP-Atlas 121 
(assembled from all publicly available ChIP-seq experiments) from biomedical literature and annotated the 122 
retrieved interaction with meta-data, such as full supporting sentences, PubMed ID, and importantly mode 123 
of regulation, which is missing from ChIP-seq data. It is important to note that our approach bypasses 124 
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several of the challenges of fully automated text-mining methods, including query translation for a 125 
particular interaction, relevant citation retrieval, entities recognition and regulatory annotation. We 126 
evaluated the performance of our model using the TRRUST network [22], which contains 9,396 manually 127 
curated regulatory interactions. Our model was able to achieve an F-score 0.77 in retrieving and annotating 128 
the TRUSST network. When applied to TRRUST reported interaction that are also present in ChIP-seq 129 
data, the method achieved an F-score of 0.96. 130 

 131 

2. MATERIALS AND METHODS 132 

We begin by a brief overview of our text mining approach for extracting and annotating ChIP-seq derived 133 
TF-gene interactions with meta-data. We acquired all citations from PubMed abstracts by submitting 134 
quarries to the database with appropriate Boolean logic regarding entities and their synonyms. State-of-the-135 
art external ER systems such as PubTator [46] and beCAS [47] along with our ER system were utilized to 136 
obtain a list of biological entities in the abstract. We then used the  Stanford dependency parser [48] to 137 
extract dependencies on different sentences and merge the parse trees into a parse graph. The major 138 
advantage of this parse graph is its potential to identify long-range dependency relations across sentence 139 
boundaries. Candidate relations were created by extracting subtrees connecting pairs of entities from the 140 
dependency graph. Finally, we extracted the mode of regulation based on two sets of manually-annotated 141 
positive and negative causal categories (consisting > 100 verbs and their inflections). In the subsequent 142 
sections we describe the details of our text-mining system. 143 

 144 

2.1 Data sets 145 

PubMed database was used to query the entities relating to interaction in ChIP-Atlas. PubMed provides 146 
more than 25 million biomedical and life sciences journal articles. TRRUST regulatory network [49] was 147 
utilized as gold standard to evaluate the performance of ModEx. TRRUST is a manually-curated database 148 
of human transcriptional regulatory network with partial information on mode of regulation. It contains 149 
9,396 regulatory interactions of 800 human transcription factors, 5,066 of which are annotated with 150 
information on mode of regulation (3,148 repression and 1,918 activation). We also obtained TF-gene 151 
interaction data from ChIP-seq experiments, deposited on the ChIP-Atlas database [25]. This database 152 
contains all publicly available high-throughput ChIP-seq experiments. We assembled regulatory networks 153 
from these interactions using various cutoff criteria for ChIP-seq peak signal score and distance to the TSS. 154 
The least stringent criterion results in a network with 4 million interactions between 758 TFs and 18,874 155 
target genes. There is no reported mode of regulation in this database.  156 
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2.2 Extraction of relevant citations 157 

For each regulatory interaction in our assembled ChIP-derived network, we developed an IR system to 158 
retrieve the information from the literature. Figure 1 illustrates the overall workflow of our IR component 159 
to fetch relevant citations associated with the regulatory interaction. We built a query based on the entities 160 
participated in the interactions to retrieve abstracts from PubMed database.  161 

 162 

 163 

 164 

Fig. 1. The Information Retrieval framework. The steps are as follows: first, a Boolean query is built according 165 
to the associated entities in the regulatory interaction. It uses several external databases to complement the query 166 
with more synonyms and aliases. Then, the query is submitted to the PubMed databased and abstracts are 167 
retrieved for processing. Abstracts with no regulatory events are excluded for further analysis. 168 

 169 
Each query was supplemented with synonyms acquired from several external resources, including HGNC, 170 
Entrez, and UniprotKB to fetch more relevant abstracts. All related citations were acquired by submitting 171 
a query with appropriate Boolean logic (AND/OR) on entities and their synonyms. A MeSH descriptor term 172 
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(e.g. Humans) was also incorporated in the query to reduce the search space. For examples the query for 173 
AATF and MYC regulatory interaction is, “humans[mesh terms] AND (AATF[sym] OR BFR2[sym] OR 174 
CHE-1[sym] OR CHE1[sym] OR DED[sym]) AND (MYC[sym]  OR MRTL[sym] OR MYCC[sym] OR 175 
BHLHE39[sym] OR C-MYC[sym])”. 176 

The queries were submitted via the PubMed engine, a search engine that provides access to the MEDLINE 177 
database of references and abstracts on life sciences and biomedical articles. In our implementation we 178 
utilized Biopython [50] to run the queries through PubMed engine. We applied a filter on retrieved abstracts 179 
and retained only those containing expert-generated “regulatory events” as presented in Table 1. Each 180 
category contains more than 50 verbs and their inflections. For example, the ATTF-MYC query outlined 181 
above, resulted in 4 relevant abstracts (PMIDs: 20549547, 17006618, 17006618, 20924650).  182 

 183 

TABLE 1.  Regulatory events categories 184 

Category NO. Events Examples 

Positive 500 increase, induce, activate, enhance, up-regulate, …  

Negative 511 reduce, decrease, suppress, block, down-regulate, decrease, …  

 185 

2.3 Gene and regulatory event recognition 186 

The next step in the pipeline is to identify biological entities within the abstracts. Figure 2 shows the NER 187 
component of our system. Two external state-of-the-art NER systems were utilized to annotate the retrieved 188 
abstracts with an accurate and complete list of biological entities. The first system is PubTator [51], a web-189 
based system for assisting biocuration. PubTator utilizes a HTTP REST interface, equipped with multiple 190 
state-of-the-art text mining algorithms to run queries. Using this system, we queried the retrieved PMIDs 191 
and obtained entity annotations in a JSON encoded text. Additionally, we utilized BeCAS [51] (another 192 
online NER tool) to improve the coverage of the entities. BeCAS, like PubTator, provides a RESTful API 193 
for biomedical name identification. It can run queries directly on provided text or PMIDs and returns 194 
associated annotations as an XML document. 195 

 196 
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 197 

 198 

Fig. 2. The Gene and regulatory event recognition workflow. Each PubMed ID retrieved by IR component are 199 
submitted to the external NER tools (PubTator and BeCAS) for annotating genes in the abstracts. It follows 200 
complementary annotations using our internal NER component including a lookup table for covering acronyms, and 201 
a similarity search to identify lexical variations for gene names.  202 

To further enhance the NER system, we implemented and added an additional NER component as follows. 203 
Abstracts were normalized to uppercase format and searched for gene acronyms using a manually-curated 204 
lookup table [52]. This table includes long term / short term pair association to recognize entities, which 205 
were missed by the external NER tools. For instance, AR is a short term for “Androgen Receptor” and was 206 
only detected as an entity (transcription factor) using this lookup table. Furthermore, we utilized a name 207 
similarity metric to identify strings with lexical variations such as whitespace and punctuations. For 208 
instance, “IL-12” and “IL12” are two lexical variations of “Interleukin 12”. The former version was not 209 
identified by the External NER systems. In our implementation, we set the entity detection threshold based 210 
on Jaro similarity [53] of 0.9 or larger between the query entity and the string in the abstract.  211 

Next, we normalized the annotated word or a group of words corresponding to a gene to their HGNC symbol 212 
for simplification of downstream analysis. Regulatory events were also annotated using our expert-213 
generated categories (Table 1). Figure 3 illustrates the normalization of gene names and annotation of 214 
regulatory events. Sentences that contained no regulatory event were excluded from further analysis. 215 

 216 
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 217 

Fig. 3.  An example of gene entity normalization and regulatory events annotation. All of the words or group of 218 
words associated to target entities (purple color) are normalized to their HGNC symbol for simplification. Causal 219 
regulatory events also are annotated according to their categories, and sentences with no regulatory event are 220 
excluded for further consideration.  221 

2.4. Extracting mode of regulation 222 

For each causal interaction, its associated annotated sentences within relevant abstracts were submitted to 223 
the Stanford dependency parser [48] and a dependency parse tree was generated. Dependency trees 224 
extracted from different sentences were merged into a single large graph. The merging process is 225 
straightforward; Each dependency relation includes one head word/node and one dependent word/node. 226 
Nodes from different dependency relations representing the same word were. PMID was recorded for each 227 
edge in the parse tree to indicate its source. Each edge in the parse tree was assigned a weight based on the 228 
number of occurrences of dependency relations. The rational for using this weighted parse tree is that it can 229 
be used to identify long-range dependency relations across sentence boundaries that would otherwise be 230 
missed. Figure 4 shows the relation extraction workflow of our method. Absolute frequency of a 231 
dependency relation obtained from the merging step can somewhat reflect the semantic relation of the head 232 
word and the dependent word.  233 

 234 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 15, 2019. ; https://doi.org/10.1101/672725doi: bioRxiv preprint 

https://doi.org/10.1101/672725
http://creativecommons.org/licenses/by/4.0/


 10 

 235 

 236 

Fig. 4. Regulatory sign extraction workflow. A long-range dependency graph is constructed by merging all of 237 
dependency trees corresponding to the evidence sentences. The weights of the graph are the number of occurrences 238 
of dependency relations. Candidate regulatory signs are identified using common subtrees with at least one regulatory 239 
event in the graph. Finally, a sign of regulation is assigned to the query interaction through the ranking task. 240 

Our system, ModEx, creates candidate relations by extracting subtrees with common ancestors connecting 241 
the pair of query genes as leaves. These subtrees must contain at least one causal event describing the 242 
candidate relation between the given pair of genes. Subtrees were extracted by applying a Depth First 243 
Search along with a boolean visited array to avoid possible loops. Nodes with two paths to the entities were 244 
considered as a root of the subtree. Next, we utilized a rule based approach to describe relations using three 245 
commonly used language constructs [36]. The first rule is effector-relation-effectee (e.g. A activates B). 246 
The second rule is relation-of-effectee-by-effector (e.g. Activation of A by B). These rules were applied to 247 
both paths from root to query entities to identify their regulatory dependency. Figure 5a illustrates the 248 
regulatory relation extraction using these rules. Some sentences in the literature have complex structures, 249 
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which cannot be captured by these language constructs. To address this, we also incorporated a negation 250 
rule to increase the performance of the RE system. For example, consider the following sentence: “LMP1 251 
suppresses the transcriptional repressor ATF3, possibly leading to the TGFβ-induced ID1 upregulation” 252 
[54]. In the first pass the system assigns a positive mode to the interaction between ATF3 and ID1. 253 
However, there is a negative interaction between the TF and target gene. The negation rule considers the 254 
negative event “suppresses” related to ATF3 and switch the positive mode to negative. Figure 5b shows a 255 
subtree reflecting the negation rule.  256 

 257 

 258 

 259 

Fig. 5. Examples to illustrate the rules for finding the regulatory sign. panel (a) shows an example for simple rule 260 
(effector-relation-effectee) in which the RE system can assign a positive sign to this candidate pattern. In panel (b), 261 
we can see the impact of the negation rule to extract accurate sign to this pattern. Two paths from root to query entities 262 
contain negative regulatory events which carries an activation/positive sign for the pattern. 263 

We then ranked each subtree based on the sign of regulatory interaction between the query genes. The 264 
weights of the graph encode repetition of regulatory relations across sentences and abstracts. we considered 265 
the weights when there were more than one regulatory event associated with the target gene. In this case, 266 
an event with higher weight was selected for ranking the subtree. We also considered distance of events to 267 
the target gene when the weights in the subtree were equal. The closest event to the target entity will take 268 
the highest priority for determining the interaction sign. Finally, we investigated signs in every candidate 269 
subtree and assigned a total sign of regulation to the interaction using a voting scheme.  270 

 271 

2.5. ModEx HTTP Interface 272 
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We implemented an HTTP REST server for users to programmatically annotate gene regulatory networks 273 
using ModEx. Clients should make HTTP requests to the server with a particular format, specifying the 274 
query entities and optional MeSH term to annotate. The query has to be requested in the following format: 275 
TFEntrezID_TargetEntrezID_MeSHterm[optional]. For instance, a query to the server for AATF-MYC 276 
should be formatted as “/signex/26574_4609_humans”. The server returns extracted annotation along with 277 
associated citations and sentences from PubMed database if any evidence exist. The server can be accessed 278 
at: https://watson.math.umb.edu/modex/ 279 

 280 

 281 

3 RESULTS 282 

3.1 Classification Performance 283 

We evaluated the performance of our method using the TRRUST database, a manually-curated network or 284 
regulatory interaction with partial information on mode of regulation. TRRUST is a high-quality database 285 
and can be considered as gold standard for our benchmark. We applied our method to 5,066 regulatory 286 
interactions in TRRUST for which information on mode of regulation was available. Table 2 shows the 287 
summary statistic of the results. 288 

 289 

TABLE 2. Summary statistics of performing ModEx on TRRUST 290 

System Without 
evidence 

With 
evidence 

Detected with 
sign 

modEx 182 4884 

4225 

Positive Negative 

2659 1566 

 291 

Our method did not detect any PubMed abstracts for 182 of interactions. ModEx detected 4,225 signs 292 
corresponding to 4,225 regulatory interactions including 2,659 positive and 1,566 negative interactions. We 293 
compare the identified signs by ModEx with reported signs in the TRRUST database. Our system correctly 294 
extracted 2,216 positive and 1,024 negative signs with overall accuracy of 0.76. Figure 6 shows the 295 
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classification result of ModEx on the TRRUST database using various metrics (Precision, Recall and F-296 
score).   297 

 298 

 299 

Fig. 6. Classification results of ModEx on TRRUST 300 

We also compared the citations of the 4,884 retrieved by our system with the citations reported in the 301 
TRRUST database. All citations match, with accuracy of 1.0. This validation using the gold standard 302 
demonstrates the ability of our system to correctly identify relevant citations, extract causal interactions 303 
between TF and gene, and detect mode of regulation. We used our system to annotate the remining 304 
interactions in the TRUSST database for which no mode of regulation is reported.   305 

3.2 ChIP-Atlas Analysis 306 

We next sought to extract and annotate ChIP-seq derived TF-gene causal regulatory interactions from 307 
literature using our system. Such meta-data and evidence from literature can increase the confidence in the 308 
TF-gene interactions identified by ChIP-seq experiments and further shed light on the mechanism of 309 
interaction. Information on mode of regulation in particular can be helpful to enhance the accuracy of 310 
enrichment algorithms for regulatory pathway inference [55].  311 

We applied ModEx to ChIP-seq interactions, with moderately stringency criteria, i.e., binding distance 312 
within 1k of the TSS and ChIP peak score > 950, resulting in 43,444 interactions. The system was able to 313 
detect and annotate 1,592 of interactions in PubMed database. Table 3 outlines the results.  314 

 315 
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TABLE 3. Summary statistics of performing ModEx on ChIP-Atlas 316 

System Overall 
With  

evidence 
Detected with 

sign 

ModEx 43,444 5,133 

1,592 

Positive Negative 

1,421 171 

 317 

Some of the retrieved annotated ChIP-seq interactions also appear in the TRRUST database (69 total). We 318 
compared the identified mode of regulations of ChIP-seq interactions with the reported signs in the 319 
TRRUST database. Figure 7 summarizes the classification results. As can be seen the agreement is very 320 
high, indicating that our method can reliably identify and annotate ChIP interaction when they are reported 321 
in literature. Additionally, we compared our acquired evidence (PMIDs) by ModEx with citations reported 322 
in TRRUST. Our IR module was able to fetch the relevant evidence from PubMed database with accuracy 323 
0.88.     324 

 325 

 326 

 327 

 328 

Fig. 7. Classification results of ModEx on intersctio on TRRUST and ChIP-Atlas 329 
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3.3 Directional enrichment analysis  330 

To demonstrate the utility of our annotated network, we used our network in conjunction with a directional 331 
enrichment analysis algorithm [55] to identify drivers of differential expressed genes. We utilized 332 
quaternaryProd, a gene set enrichment algorithm that can take advantage of direction of regulation on causal 333 
biological interaction graphs to identify regulators of differential gene expression. The algorithm can take 334 
a signed transcriptional regulatory network, such as TRRUST or our annotated ChIP-network along with a 335 
differential expression profile as input and outputs a set of candidate active regulators. The ability of the 336 
algorithm to identify regulators of differential gene expression relies heavily on the quality and the coverage 337 
of the regulatory network on which the queries are performed. To test the utility of our network, we used 338 
this algorithm along with differential expression profiles from controlled over-expression experiments used 339 
in the original study. The over-expression experiments consist of differential gene expression profile from 340 
a controlled in vitro E2F3 over expression [56] and c-Myc [56]. We inputted three networks into the 341 
algorithm (1) the original TRUSST network, (2) annotated TRUSST network, and (3) annotated TRRUST 342 
augmented with annotated ChIP-Atlas. By annotated TRRUST, we refer to the TRRUST network where 343 
interaction with no reported mode of regulation were annotated using our system. Differential gene 344 
expression analysis of these data sets resulted in 272, and 220 differentially expressed genes 345 
respectively.  Table 4 outlines the top 5 regulators predicted by the algorithm on E2F3 experiment sorted 346 
by the FDR corrected p-values of the scoring scheme. For the E2F3 experiment, E2F1 is returned as the top 347 
hypothesis regulator by the algorithm incorporating our annotated networks. E2F1 and E2F3 are close 348 
family members and have a very similar role as transcription factors that function to control the cell cycle 349 
and are similarly implicated in cancer [57]. It is interesting to note that original TRRUST database does not 350 
include enough information for algorithm to recover E2F1, however the signal strengthens when TRUSST 351 
is annotated with our system and a much more significant p-value is obtained when TRRUST is augmented 352 
with annotated ChIP-Atlas. This shows that annotating ChIP-seq data provides significant additional power 353 
to identify upstream regulators in conjunction with freely available causal networks. 354 

 355 

TABLE 4. Directional enrichment analysis results on E2F1 expression signatures 356 

TRRUST Annotated TRRUST Annotated TRRUST with ChIP-
Atlas 

Name Regulation Adj. P-Val Name Regulation Adj. P-Val Name Regulation Adj. P-Val 

REL Down 1.5e-3 E2F1 Up 1.2e-5 E2F1 Up 1.2e-7 

PROX1 Up 2.9e-3 PROX1 Up 2.1e-3 PROX1 Up 2.1e-3 

SUGP1 Down 3.2e-3 SUGP1 Down 2.4e-3 SUGP1 Down 2.4e-3 
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NFIL3 Up 6.3e-3 RELA Down 3.5e-3 RELA Down 3.5e-3 

TFDP1 Up 7e-3 TFDP1 Up 3.9e-3 TFDP1 Up 3.9e-3 

 357 

Application of the method to c-Myc differential expression profile shows the same pattern. The annotated 358 
TRRUST with ChIP-Atlas recovered MAX as one of the top 20 regulators with low p-value compared to 359 
TRRUST. It has been  demonstrated that oncogenic activity of c-Myc requires dimerization with MAX 360 
[58]. 361 

 362 

TABLE 5. Directional enrichment analysis results on c-Myc expression signatures  363 

TRRUST Annotated TRRUST Annotated TRRUST with ChIP-Atlas 

Name Regulation Adj. P-Val Name Regulation Adj. P-Val Name Regulation Adj. P-Val 

MYBL2 Up 3.6e-3 MAFA Down 1.3e-2 USF2 Up 8.8e-3 

MXI1 Down 4.0e-3 MKL1 Down 1.3e-2 MAFA Down 1.3e-2 

AATF Up 4.0e-3 GLI3 Down 1.7e-2 MKL1 Down 1.3e-2 

ENO1 Down 4.0e-3 KAT2B Up 1.9e-2 GLI3 Down 1.7e-2 

NR1D1 Up 6.4e-3 SOX6 Down 1.9e-2 KAT2B Up 1.9e-2 

TLE3 Up 6.4e-3 HDAC1 Down 2.5e-2 SOX6 Down 1.9e-2 

TOP2B Down 6.4e-3 MYBL2 Down 2.6e-2 HDAC1 Down 2.5e-2 

L3MBTL1 Up 6.4e-3 HDAC7 Up 3.0e-2 MYBL2 Down 2.6e-2 

MAFA Down 6.4e-3 ILF3 Down 3.0e-2 HDAC7 Up 3.0e-3 

TLX1 Up 7.9e-3 ELK1 Up 3.6e-2 ILF3 Down 3.0e-2 

HLF Up 1.0e-2 GATA6 Up 3.9e-2 ELK1 Up 3.6e-2 

DLX5 Up 1.1e-2 PPARG Down 4.3e-2 GATA6 Up 3.9e-2 

HOXA1 Up 1.1e-2 SATB1 Up 4.4e-2 PLAG1 Up 4.0e-2 

MKL1 Down 1.2e-2 ARNT Up 4.8e-2 CREB1 Up 4.1e-2 

IFI16 Down 1.4e-2 RXRA Up 5.3e-2 PPARG Down 4.3e-2 

PRDM1 Down 1.5e-2 ZEB1 Down 5.5e-2 SATB1 Up 4.4e-2 

CEBPE Down 1.6e-2 E2F4 Down 5.5e-2 ZNF143 Up 4.6e-2 

HDAC1 Down 1.6e-2 PPARD Down 5.6e-2 ARNT UP 4.8e-2 

GLI3 Down 1.6e-2 XBP1 Up 6.5e-2 MAX Up 5.3e-2 

STAT4 Up 1.8e-2 DDIT3 Down 6.5e-2 RXRA Up 5.4e-2 

 364 
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Conclusion 365 

In this work we presented a fully automated text-mining system to extract and annotate causal regulatory 366 
interaction between transcription factors and genes from the biomedical literature. As a starting point, our 367 
method uses putative TF-gene interactions derived from high-throughput ChIP-seq or other experiments 368 
and seeks to collect evidence and meta-data in the biomedical literature to support the interaction. It should 369 
be noted that annotating a priori known interactions differs significantly in scope and complexity from 370 
general text-mining approaches for biomedical relation extraction. The later attempts to extract the causal 371 
relation from biomedical text directly, without prior knowledge of the entities and the interaction, whereas 372 
in our method the relation is know from biological experiments and curated databases a priori, thereby 373 
reducing the complexity significantly. This approach bridges the gap between data-driven methods and 374 
text-mining methods for constructing causal transcriptional gene regulatory networks and overcomes some 375 
of the drawbacks of either approach. With the rapid increase in high-throughput experiments and 376 
biomedical literature, hybrid method such as the one proposed can make a significant impact in biological 377 
knowledge retrieval.   378 

We used a gold-standard manually curated dataset and demonstrated that our approach can reliably identify 379 
the relevant literature and extract the correct interaction and meta-data. We applied our method to high-380 
throughput ChIP-seq data and provided literature support for ~1,500 interactions. Our annotated ChIP-381 
derived transcriptional regulatory interaction can be used in conjunction with directional enrichment 382 
methods that aim to identify regulators of differential gene expression. Moreover, we use our system to 383 
annotate the interactions in the TRRUST database for which more of regulation is not reported. Our system 384 
can also be used as a tool to mine the literature for investigate interactions in newly performed ChIP-seq 385 
experiments, where researchers are interested to investigate a specific interaction between a protein and a 386 
gene. To facilitate usage, we implemented an HTTP REST server for users to programmatically annotate 387 
gene regulatory networks using ModEx available to download at: https://watson.math.umb.edu/modex/. 388 
The annotated ChIP-network as well as annotated TRRUST can be obtained from:  389 
https://doi.org/10.6084/m9.figshare.8251502.v1 390 
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