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ABSTRACT  

 

Evolve and resequence (E&R) experiments, in which artificial selection is imposed on organisms 

in a controlled environment, are becoming an increasingly accessible tool for studying the genetic 

basis of adaptation. Previous work has assessed how different experimental design parameters 

affect the power to detect the quantitative trait loci (QTLs) that underlie adaptive responses in such 

experiments, but so far there has been little exploration of how this power varies with the genetic 

architecture of the evolving traits. In this study, we use forward simulation to build a realistic 

model of an E&R experiment in which a quantitative polygenic trait experiences a short, but strong, 

episode of truncation selection. We study the expected power for QTL detection in such an 

experiment and how this power is influenced by different aspects of trait architecture, including 

the number of QTLs affecting the trait, their starting frequencies, effect sizes, clustering along a 

chromosome, dominance, and epistasis patterns. We show that all of the above parameters can 

affect allele frequency dynamics at the QTLs and linked loci in complex and often unintuitive 

ways, and thus influence our power to detect them. One consequence of this is that existing 

detection methods based on models of independent selective sweeps at individual QTLs often have 

lower detection power than a simple measurement of allele frequency differences before and after 

selection. Our findings highlight the importance of taking trait architecture into account in 

designing studies of molecular adaptation with temporal data. We provide a customizable 

modeling framework that will enable researchers to easily simulate E&R experiments with 
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different trait architectures and parameters tuned to their specific study system, allowing for 

assessment of expected detection power and optimization of experimental design.   

 

Keywords: experimental evolution, molecular adaptation, forward simulation, power analysis, 

temporal data, detecting selection 

 

 

INTRODUCTION 

 

Artificial selection experiments can provide insights into the mechanisms that allow 

populations to adapt to strong selection pressures (Hill and Caballero 1992; Fuller et al. 2005; 

Garland and Rose 2009). When combined with population-level genome sequencing, such 

experiments can also help us elucidate the genetic architecture of the selected traits by revealing 

the quantitative trait loci (QTLs) that underlie observed adaptive responses (Burke et al. 2010; 

Schlötterer et al. 2015). This rationale forms the basis of the evolve and resequence (E&R) method 

for QTL detection (Turner et al. 2011; Long et al. 2015), in which one seeks to identify the alleles 

that have systematically changed in frequency over the course of a selection experiment. Such 

E&R experiments have now been successfully performed in a wide range of study systems (e.g. 

Escherichia coli (Barrick et al. 2009; Tenaillon et al. 2012), yeast (Parts et al. 2011; Lang et al. 

2013), Drosophila melanogaster (Burke et al. 2010, Zhou et al. 2011, Turner et al. 2011), other 

Drosophila species (Seabra et al. 2018; Kelly and Hughes 2019), Caenorhabditis species 

(Teotónio et al. 2017), and mice (Chan et al. 2012; Castro et al. 2018)). For example, with E&R 

experiments, Tenaillon et al. (2012) uncovered 600 loci associated with high-temperature 

tolerance in E. coli, and Burke et al. (2010) identified several dozen genomic regions responding 

to selection for accelerated development in D. melanogaster. 

In higher eukaryotes, practical constraints typically impose severe limits on the size of the 

experimental population and the number of generations an E&R experiments can be conducted for. 

Selection pressure is therefore typically kept high so that an adequate trait response can still be 

achieved. One consequence of such small population size and strong selection is that effective 

population sizes tend to be low in these experiments, resulting in high levels of genetic drift. In 

addition, because recombination will be less effective at breaking up linkage in a short experiment, 
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there could be substantial hitchhiking of neutral alleles (Smith and Haigh 1974) as well as Hill-

Robertson interference (Hill and Robertson 1966) between selected alleles. All of these factors can 

limit power and introduce false positives in E&R experiments (Kessner and Novembre 2015). 

 The first studies to assess the power of E&R experiments for QTL detection in higher 

eukaryotes used forward-in-time population simulations to model evolutionary dynamics at 

individual QTLs (Kofler and Schlötterer 2014; Baldwin-Brown et al. 2014). These studies 

provided important insights into how detection power is affected by basic population genetics 

parameters such as recombination rate, linkage disequilibrium (LD), and the levels of neutral 

diversity in the regions surrounding the QTLs. In addition, they explored how different aspects of 

the experimental design such as selection strength, population size, duration of the experiment, 

and number of replicates can be tuned to maximize detection power. 

However, two assumptions of these early studies have turned out to limit the 

generalizability: First, allele frequency dynamics at individual QTLs were modeled as independent 

selective sweeps, parameterized by constant selection coefficients. Such models will often fail to 

capture key aspects of the evolutionary dynamics of QTLs underlying polygenic traits (Burke et 

al. 2010; Kessner and Novembre 2015; Franssen et al. 2017). Second, these studies either focused 

on regions with high recombination (Kofler and Schlötterer 2014) or modeled only a single QTL 

(Baldwin-Brown et al. 2014). This effectively neglects the possibility of Hill-Robertson 

interference between QTLs, which can affect the evolutionary dynamics in complex ways, thereby 

impinging on QTL detection power (Hill and Robertson 1966; Smith and Haigh 1974; Lang et al. 

2013; Kessner and Novembre 2015). Thus, to more accurately describe polygenic trait evolution 

in E&R experiments, we need to adopt more realistic quantitative genetic models in which the 

selected trait is defined explicitly and the loci underlying the trait are modeled in the explicit 

context of a recombining chromosome.  

The selection model introduced by Kessner and Novembre (2015) constitutes an important 

first step in this direction, but it assumed a limited set of genetic trait architectures in which only 

the number of QTLs was variable. In reality, the traits of interest in E&R experiments could span 

a considerable variety of genetic architectures, and we typically know very little about this 

architecture for any given polygenic trait (Hansen 2006; Mackay et al. 2009; Gibson 2012). For 

example, in addition to how many QTLs control a given trait, these QTLs could be distributed 

uniformly along the chromosome, or they could cluster in certain regions. Effect sizes could be 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 15, 2019. ; https://doi.org/10.1101/672683doi: bioRxiv preprint 

https://doi.org/10.1101/672683
http://creativecommons.org/licenses/by/4.0/


4 

similar among the individual QTLs, or they could vary according to some distribution. The 

frequencies of the selected alleles might be biased towards lower or towards higher frequencies, 

as compared to neutrally segregating alleles. The effects of these alleles on the trait might be 

recessive, dominant, or fall somewhere in between. Furthermore, there could be epistatic 

interactions of varying complexity among specific sets of QTLs. 

Some of these aspects of trait architecture have previously been demonstrated to affect the 

evolutionary dynamics of trait evolution in E&R experiments. Franssen et al. (2017), for example, 

showed that the effect size distribution and starting frequency of QTLs can profoundly influence 

their frequency trajectories in response to selection. Similarly, Stetter et al. (2018) showed that the 

effect sizes of QTLs are a key determinant of their frequencies at the end of a selection experiment. 

As a result, depending on their underlying genetic architecture, certain traits might generally be 

more suitable for QTL detection in E&R experiments, and for any given trait, there could be 

systematic biases in terms of which QTLs will be more easily detected and which will be missed. 

Due to interactions among different factors, this is unlikely to only depend on effect size, so a 

power analysis considering broader aspects of trait architecture in E&R experiments is required to 

properly interpret results. 

A second limitation in previous studies of detection power in E&R experiments is that they 

have focused primarily on insect populations like Drosophila (Kofler and Schlötterer 2014; 

Baldwin-Brown et al. 2014; Kessner and Novembre 2015), which are well-suited organisms for 

such experiments due to their short generation times, relative ease at which large populations can 

be reared, and rich genomic resources. However, for certain questions (e.g. the genomic basis of 

vertebrate traits), selection experiments on larger and longer-living organisms may be necessary, 

despite of the additional logistical challenges. E&R experiments on such organisms will typically 

be restricted to fewer generations, therefore requiring even larger selection intensities to achieve 

measurable changes in trait value. The greater selection intensity could lead to characteristic 

differences in evolutionary dynamics compared to experiments carried out over larger numbers of 

generations and a potential decline in detection power. Nevertheless, many selection experiments 

have been performed on such larger and longer-living species, even though in many cases their 

original intentions were not QTL detection (e.g. mice (Oortmerssen and Bakker 1981; Chan et al. 

2012; Barrett et al. 2019), guppies (Houde 1994), silversides (Conover and Munch 2002), voles 

(Sadowska et al. 2008), sticklebacks (Barrett et al. 2011), zebrafish (Uusi-Heikkilä et al. 2017)). 
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In addition, many common human practices, such as animal domestication and size-selective 

harvesting (through fishing and hunting), resemble E&R experiments in key aspects such as high 

selection pressure and specific traits targeted by selection (e.g. domestication of salmonids 

(Christie et al. 2016, Gutierrez et al. 2016) and chicken (Rubin et al. 2010, Johansson et al. 2010, 

Fallahsharoudi et al. 2017), and size-selective harvesting in Atlantic cod (Swain et al. 2007, 

Therkildsen et al. 2013) and bighorn sheep (Coltman et al. 2003, Pigeon et al. 2016)). With high-

throughput sequencing becoming cheaper and more widely accessible, genomic data may now be 

obtained from such experiments and practices. This raises the question of how well time-series 

data collected over a small number of generations can help us illuminate the molecular basis of 

selected traits in these larger and longer-living species.  

In this paper, we use forward genetic simulations to systematically assess how different 

aspects of trait architecture are expected to affect the evolutionary dynamics and power to detect 

QTLs in E&R experiments. Loosely inspired by a size-selection experiment performed on the 

Atlantic silverside (Menidia menidia) to examine impacts of fisheries-induced evolution (Conover 

and Munch 2002), our model setup is comparable to experimental designs applicable to E&R 

studies in larger and longer-living species in general (e.g. Sadowska et al. 2008; Uusi-Heikkilä et 

al. 2017). The specific aspects of trait architecture that we investigate are the number of QTLs 

contributing to a selected trait, the clustering of QTLs along the chromosome, the effect size 

distribution among the QTLs, the starting frequencies of the QTLs, dominance, and epistasis 

patterns. We show that most of these variables can greatly influence QTL detection power, often 

in complex ways where the effect of one aspect of the architecture depends on other aspects of the 

architecture. We also demonstrate that under certain trait architectures, we can use selection 

experiments spanning as few as four generations to detect a reasonable proportion of QTLs, 

suggesting that E&R experiments can be a promising approach for studying the genomic basis of 

adaptation in species with larger size and longer generation time. Motivated by these insights, we 

further discuss how optimal detection strategies, including detection methods and experimental 

design, may vary under different quantitative trait architectures.  
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METHODS 

 

Simulation of E&R experiments 

We used forward genetic simulations to model E&R experiments in which divergent 

truncating selection is imposed on a quantitative trait over four consecutive generations. The 

analysis pipeline consists of the following stages:  

 

1. Burn-in to create genetic variation in a starting population 

2. Construction of QTL architecture 

3. Selection on the trait 

4. QTL detection 

5. Power analysis 

 

Burn-in to generate genetic variation in the starting population  

To model a population under mutation-drift equilibrium prior to the selection experiment, 

we first simulated a 30 Mbp-long chromosome evolving neutrally in a diploid population of N = 

1,000 individuals for 10N generations. We set the mutation rate to µ = 2*10-8, corresponding to an 

expected equilibrium level of nucleotide diversity of π = 4Nµ = 8*10-5. While this value of π is 

comparatively small for many species, it was chosen for computational efficiency and we note that 

in our analyses of QTL detection power the value of π is only expected to affect the absolute 

number of false positives, but not the false positive rate (i.e. the probability that any given neutral 

SNP is falsely detected as a QTL, see also Figure S1).  

More critical to our power analysis is the rate of recombination, as it will determine the 

rate at which new allele combinations can arise during the selection experiments and also affect 

the amount of interference between QTLs and the level of hitchhiking of neutral SNPs with 

selected alleles. We chose a rate of r = 1 cM/Mbp for our simulations, which is similar in 

magnitude to the observed rates in many species of interest (e.g. 0.63 cM/Mbp in mouse (Shifman 

et al. 2006), 0.97 cM/Mbp in dog (Wong et al. 2010), 1.5 cM/Mbp in zebra finch (Backström et 

al. 2010), 3.11 cM/Mbp in three-spined stickleback (Roesti et al. 2013)). Under these parameters, 

linkage disequilibrium (LD), as measured by r2, decays by 50% over a distance of approximately 

50 kbp in our simulated population.  
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Assignment of QTLs and construction of the trait architecture 

In our standard trait model, we randomly selected n of the existing neutral SNPs after the 

burn-in to become the QTLs affecting the trait. We then randomly picked half of these SNPs to 

which we assigned a positive effect (+1) to the derived allele and a zero effect to the ancestral 

allele. For the other half of these selected SNPs, we assigned a negative effect (-1) to the derived 

allele and a zero effect to the ancestral allele. We assumed additive dominance relationship (h = 

1/2) at individual QTLs and also additive effects across QTLs. Under this model, the average trait 

value in the population is expected to be zero at the start of a selection experiment and the 

distribution of trait values among individuals should be approximately Gaussian (as long as n is 

sufficiently large), consistent with many polygenic quantitative traits in nature (Mackay 2009). 

We did not model the effect of environmental factors on trait value (i.e. the broad-sense heritability 

of the trait is set to a value of one in our simulations).   

 Six aspects of this standard model were varied to explore different trait architectures: (i) 

the number of QTLs, (ii) the clustering of QTLs along the chromosome, (iii) the effect size 

distribution of QTLs, (iv) the initial allele frequency distribution of the SNPs chosen to become 

QTLs, (v) the dominance relationship between the ancestral and derived alleles, and (vi) the 

presence of epistatic interactions among pairs of QTLs. The specific implementations of each of 

these architectures are described in the relevant sections below.  

 

Selection experiment on the trait  

In the selection experiment, the population is subjected to divergent truncating selection, 

generating two separate lines from the burn-in population: a high-trait-value line and a low-trait-

value line. For the “high” line, we selected the 10% of individuals with the highest trait values in 

every generation to become the parents for the next generation (obtained by Wright-Fisher 

sampling). The “low” line was generated analogously by choosing the 10% of individuals with the 

lowest trait value as parents for the next generation. Population size was kept fixed at 1000 

individuals per generation in each line, and each line was run for four generations of truncating 

selection following the design of the silverside experiment that served as a motivating example for 

this study (Conover and Munch 2002). Because of this short duration, the impact of new mutations 
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occurring during the selection experiment should be negligible, and we therefore set the mutation 

rate to zero after the burn-in while recombination events continue to occur at a rate of 1 cM/Mb.  

 

QTL detection  

In each generation, we took a random sample of 50 individuals and measured the allele 

frequencies of all SNPs in the sample. Following Kessner and Novembre (2015), we took the 

absolute values of sampled allele frequency differences between the last generations in the “high” 

and “low” lines at each SNP (denoted by D) as a summary statistic for QTL detection.  

In addition to this simple and intuitive D-value, several more sophisticated, model-based 

detection methods have been developed in recent years that can take advantage of the full allele 

frequency trajectory estimated across subsequent time points (Malaspinas 2016). After a 

comprehensive literature review, we selected two representatives of such methods for comparison 

with the simple D-value: WFABC (Foll et al. 2015) and ApproxWF (Ferrer-Admetlla et al. 2016). 

Both of these methods are based on a classic selective sweep model parameterized by fixed 

selection coefficients. WFABC employs an approximate Bayesian computation framework, in 

which a large number of simulations are compared to identify the simulated datasets that are most 

similar to the actual data and compute posterior probabilities of selection coefficients (Foll et al. 

2015). ApproxWF uses a “mean transition time approximation” to discretize the continuous 

diffusion process and infers the selection coefficient via a Bayesian approach (Ferrer-Admetlla et 

al. 2016). 

After a series of tests, we adjusted some parameter values in WFABC from the default to 

optimize its detection power on our standard model, by increasing the number of simulated datasets 

to 1,000,000, lowering the acceptance rate to 0.00, and assigning a uniform prior to selection 

coefficients with an upper bound of 1 and lower bound of -1. With ApproxWF, we used its default 

Markov Chain Monte Carlo settings, with 10,000 iterations and 51 frequency states distributed on 

quadratic grid, and assigned a normal prior to selection coefficients, with mean of 0 and standard 

deviation of 0.1, truncated at 1 and -1. We also set a fixed dominance coefficient of 0.5 to reduce 

the computational complexity in ApproxWF.  

Both methods output a posterior distribution for the selection coefficient for each SNP, and 

from this distribution, we calculated a mean selection coefficient s for each SNP, as well as a 

posterior probability p for s>0, as recommended by authors of these methods (Foll et al. 2015, 
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Ferrer-Admetlla et al. 2016). We applied WFABC and ApproxWF to the high-trait-value line and 

the low-trait-value line separately, and then took the average of s and p across the two lines while 

accounting for the directionality of selection (i.e. 𝑠 = (shigh – slow) / 2, 𝑝= (phigh + (1 - plow)) / 2). 

Lastly, since +1 alleles and -1 alleles are not distinguished and both are considered as QTL in the 

power analysis, the signs of selection coefficients would not matter, so we took |𝑠| and |𝑝 - 0.5| as 

the final summary statistics for each SNP. After testing for the detection power of these statistics, 

we chose to use |𝑠| for WFABC and |𝑝 - 0.5| for ApproxWF to maximize their performance.  

 

Power analysis  

We calculated receiver operating characteristic (ROC) curves to evaluate QTL detection 

performance using 100 simulation replicates for each scenario. False positive rates were defined 

as the percentage of neutral SNPs identified as QTLs for a given signal threshold. To evaluate 

power (the true positive rate) for a given signal threshold, we deployed two different methods: The 

first method simply measures the proportion of QTLs correctly identified. In simulations where 

effect sizes were not equal among QTLs, we also used a simple variation of this method, where 

we weighted QTLs by their effect sizes. The second method follows Kessner and Novembre (2015) 

and measures the proportion of genetic variance in the first generation explained by the detected 

QTLs, thereby also taking variation in the allele frequencies into account. This method would give 

less weight to the detection of a low-frequency QTL compared with an intermediate-frequency 

QTL, because the latter would have contributed more to the initially present trait-variance in the 

population. Which method is more appropriate in practice depends on the specific objective of the 

experiment: if the goal is to identify QTLs that are important to the trait regardless of their 

prevalence in nature, the first method should be chosen, whereas the second method should be 

chosen if the goal is to identify those QTLs that are most important for explaining trait-variance 

in the initial population. We will only report the result from the first method unless the two methods 

generate qualitatively different results, in which case we will present both.  

 To produce an individual ROC curve, we first specified 100 evenly-spaced signal 

thresholds spanning the range of observed per-SNP values of the given summary statistics (D,  |𝑠|,  

|𝑝 - 0.5|) among all replicate runs. For each threshold value in each replicate run, we categorized 

SNPs with summary statistics exceeding that threshold value as being detected as a QTL in that 
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run. We then took the mean power and false positive rate across all replicate runs to add one point 

to the ROC curve. This process was reiterated for each threshold value.  

 

Data availability 

All simulations were conducted within the individual-based forward genetic simulation 

framework SLiM 2.4.1 (Haller and Messer 2016). Two SLiM scripts were created for our analyses, 

one for the burn-in process and the other for the selection experiment. Two shell script can be used 

to run each of these SLiM scripts in a command-line environment, so that repeated simulations 

can be automated on either a local machine or a remote server. Parameter values are also defined 

through these shell scripts and users can easily edit them to implement custom simulation scenarios. 

All data analyses and visualizations are implemented using R, with packages “tidyverse” 

(Wickham and RStudio 2017), “data.table” (Dowle et al. 2019), and “cowplot” (Wilke and 

RStudio 2019). The SLiM and shell scripts for the simulation are available in supplementary 

materials and online at https://github.com/MesserLab/evolve-resequence-simulation. The data 

used in this paper can easily be reproduced using these scripts and the scripts can also be 

customized for other test cases. The R scripts for data analyses and visualization are also available 

in the same GitHub repository.   

 

RESULTS 

 

Selection response in the standard QTL model 

Figure 1A shows the change in average trait value (estimated across all individuals in the 

population) for the “high” and “low” lines in 100 simulated experiments under our standard model 

with n = 100 QTLs (Figure S2 shows results for a model with n = 10 QTLs). Average trait values 

can be seen to change consistently in the selected direction, while genetic variance generally 

declines with diminishing returns over the course of a single experiment (Figure 1B). Note, 

however, that the theoretical maximum/minimum trait value in our standard QTL model would be 

+/-100 had all of the +1 or all of the -1 alleles, respectively, fixed in a population. The maximum 

trait values achieved in our simulations were typically less than a third of these maximum values. 

This is primarily due to the fact that many low-frequency alleles at QTLs are lost due to drift or 

interference between neighboring QTLs even when they should have been favored by selection.  
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Overall, these results demonstrate an effective selection response in our model that is consistent 

among replicates, suggesting that we should be able to observe meaningful evolutionary dynamics 

in our experimental setup.   

Figure 1C shows sampled allele frequency trajectories at all SNPs in the “high” and “low” 

lines from a single experiment. As expected, minor alleles at the individual QTLs tend to change 

in frequency in the selected direction (i.e., in the “high” line the +1 alleles tend to increase while 

the -1 alleles tend to decrease in frequency, and vice versa in the “low” line). However, several 

complexities of the allele frequency dynamics are revealed in this figure: First, many alleles that 

should have been favored by selection did not actually rise consistently in frequency. This is 

particularly common for alleles that start at low frequency, which often get lost in both selection 

lines. But even after favored alleles reach intermediate frequency, they can still subsequently drop 

in frequency due to interference with other linked QTLs. Similarly, alleles that are disfavored by 

selection can hitchhike to higher frequencies when they are located on haplotypes with a net excess 

of favored alleles. These linkage effects produce dynamics that are quite different from a model of 

independent selective sweeps.  

Figure 1D shows the distribution of D-values across SNPs over 100 simulation runs of our 

standard model with n = 100 QTLs. The distribution is heavily peaked at D-values equal or close 

to zero for both neutral and QTL SNPs, which is expected because the derived alleles at most SNPs 

will be at low frequency at the start of the experiment, and thus prone to being lost to drift in both 

the “high” and “low” lines. This will generally limit detection power when measured as the overall 

fraction of QTLs identified, given that many of the initially present alleles at QTLs will be lost in 

an experiment. However, we also see that among those SNPs with high D-values, functional SNPs 

are strongly enriched over neutral ones, suggesting that D-value should have some power in 

detecting QTLs under this experimental setup. Figure 1E shows the distribution of D-values along 

the chromosome in one simulation run with 100 QTLs, demonstrating that neutral SNPs with high 

D-values are not necessarily always close to the QTLs, but can be found across the whole 

chromosome.  
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Figure 1. Simulation result under our standard model with 100 QTLs. (A) Change in the average phenotype values in 

all 100 simulation replicates. Each line represents a selection line in one simulation replicate. (B) Change in the 

distribution of trait values in the population over one single simulation run. (C) Change in sampled minor allele 

frequencies at neutral loci and QTLs in one single simulation run. The left half of the figure shows the “low” line and 

the right half shows the “high” line. (D) Distribution of D-values per locus across all 100 simulation replicates grouped 

by neutral loci (grey bars) vs QTLs (black bars). (E) D-values of neutral loci and QTLs along the simulated 

chromosome in one single simulation run. 
 

 

Performance of different detection methods under the standard QTL model 

We first compared the performance of D, WFABC, and ApproxWF to detect the QTLs in 

our standard model, assuming a trait comprised of 10 QTLs with equal effect size. Even though 

SNP density is comparatively low in our standard model (~14,000 SNPs along the 30 Mbp 

chromosome), the runtime of the two model-based methods still exceeded our practical limits, so 

we further reduced the nucleotide diversity by a factor of 10 in these simulations (for this 

comparison only). We then tested the model-based methods supplying them either with the entire 

allele frequency trajectory (i.e. allele frequency estimates at all five time-points of the experiment), 

or only the allele frequencies at the beginning and the end of the experiment.  
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Surprisingly, WFABC and ApproxWF typically had lower power to correctly detect QTLs 

(i.e. lower true detection rate for a given false negative detection rate) than the simple D-value, 

even when they were provided the full allele frequency trajectory at all five time points (Figure 2). 

This may in part be due to the fact that these methods were not explicitly developed for a divergent 

selection scenario resulting in two opposingly selected lines. However, when we restricted the 

experiment to only one direction of selection, D still performed similarly and often better than 

WFABC and ApproxWF (Figure S3). One possible explanation for the poorer performance of the 

model-based approaches is that the allele frequency dynamics at QTLs in our truncating selection 

scenario may not typically follow the classic sweep model these methods assume, as has already 

been observed in previous studies (Burke et al. 2010; Kessner and Novembre 2015; Franssen et 

al. 2017). Consequently, we decided to use only the D-value for all further analyses in this study.  

 

 
Figure 2. Detection power varies across detection methods used. Having the entire allele frequency trajectory slightly 

improves the power of WFABC but not ApproxWF, although D has the highest detection power regardless. This 

comparison used the standard model with 10 QTL and 10-times reduced nucleotide diversity due to the long run-time 

of the two model-based detection methods.  

 

 

Effects of trait architecture on detection power 

Number of QTLs affecting a trait 

To test how the number of QTLs contributing to a trait affects detection power, we 

systematically varied the number of SNPs assigned to be QTLs in our simulations. Figure 3 shows 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 15, 2019. ; https://doi.org/10.1101/672683doi: bioRxiv preprint 

https://doi.org/10.1101/672683
http://creativecommons.org/licenses/by/4.0/


14 

a comparison of the ROC curves among models with 2, 10, 20, 50, 100, and 200 QTLs, while all 

other aspects of the model were kept the same as in the standard model. Consistent with previous 

results (Kessner and Novembre 2015), we find that larger numbers of QTLs generally resulted in 

lower detection power, presumably due to increased interference between QTLs. As the number 

of QTLs increases, individual QTLs will tend to be located closer to each other, decreasing 

recombination rate between them. Recombination will then be less effective at creating “optimal” 

haplotypes that carry a large number of favored but only few unfavored alleles. A complementary 

effect is that more QTLs also mean less effective selection on every single one of them, because 

the relative contribution of each individual mutation to the overall variance in trait value gets 

smaller (Barton and Turelli 1989). 

Note that the overall detection power is rather low in our standard model with 100 QTLs. 

In that case, we detected only ~13% of the QTLs at a false positive rate of 0.05 (i.e. 5% of the 

neutral loci are falsely identified as QTLs). This is because most QTLs start out at low frequency 

and have a high probability of getting lost over the course of the experiment. However, since 

intermediate-frequency QTLs are more likely to be detected, when weighting QTLs by their 

contribution to genetic variance in the first generation (which should be much higher for 

intermediate-frequency than low-frequency QTLs), power improves significantly (Figure S4). For 

example, at the same false positive rate of 0.05, the detected QTLs were responsible for more than 

40% of the genetic variance present in the first generation (Figure S4). 

 

 
Figure 3. Detection power is lower when more QTLs underlie the trait under selection.  
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QTL clustering  

In our standard model the QTLs are positioned uniformly along the chromosome, as we 

chose them randomly from preexisting SNPs. However, for some traits, QTLs could cluster along 

the chromosome. This is frequently observed among domestication-related traits in crops, for 

example (Cai and Morishima 2002; Burger et al. 2008). To test how such clustering affects 

detection power, we compared our standard QTL model with a model in which all QTLs were 

drawn from only those SNPs that were located within a much shorter genomic sub-region 3 Mbp 

in length, located at the center of the chromosome.  

For a model with only 10 QTLs, we found that such clustering lowers detection power 

compared to a more uniform distribution (Figure 4A & S5A). This is likely due to increased 

linkage between QTLs, resulting in an effectively lower rate at which recombination can create 

haplotypes with a large number of favored alleles. Clustering therefore has a similar effect as 

increasing the overall number of QTLs while keeping the length of the chromosome constant. 

However, this behavior becomes more complicated as the number of QTLs increases 

further. In a model with 100 QTLs, we found that the effect of clustering on detection power 

depends on what false positive rate is deemed tolerable. For false positive rates below 0.1, 

clustering actually increases detection power (Figure 4B & S5B). A possible explanation for this 

is that when there are many QTLs clustered within a short region on the genome, it is more likely 

that already in the beginning of the experiment a short haplotype exists on which many alleles with 

effects of the same direction are co-located. Unlikely to be broken by recombination, such a 

haplotype will be able to quickly sweep to fixation, giving a very clear signal of being under 

selection (Figure 4C, 4D & 4E). Therefore, at a low false positive rate, the scenario where 100 

QTLs are clustered on the chromosome tends to have higher power than our standard model.  

Furthermore, we note that clustering has a similar effect as decreasing the recombination 

rate in our simulation. Thus, our results contradict that of Kessner and Novembre (2015), who 

concluded that increasing recombination always increases detection power. However, our results 

are consistent with a rich body of literature which shows that increased recombination does not 

always lead to higher rate of adaptation because it can also destroy “good” haplotypes that are 

initially present (Slatkin 1975; Charlesworth and Charlesworth 1979; Kirkpatrick 2006).  
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Figure 4. The clustering of QTLs has different effects on detection power depending on the number of QTLs 

underlying the trait under selection. (A) With 10 QTLs, clustering reduces detection power. (B) With 100 QTLs, 

clustering increases detection power except for at very high false positive rates (>0.1). (C) An example of allele 

frequency trajectories when 100 QTLs are clustered in a small region on the chromosome. Note that many SNPs on 

the same haplotype quickly sweep to fixation in tandem in the “low” line, and see Figure 1C for comparison with the 

standard model. (D) Such haplotype sweeping results in more QTLs with extreme D values (see Figure 1D for 

comparison with the standard model). (E) The distribution of D-values along the chromosome after a haplotype 

sweeping (see Figure 1E for comparison with the standard model). 
 

Effect size distribution 

Our standard model assumes equal effect sizes of derived alleles of either +1 or -1 at all 

individual QTLs. We chose this simplistic model because little is known about the actual effect 

size distributions of complex traits in most biological systems and thus there is not a single ideal 

distribution. Also, results on other aspects of the trait architecture will be more difficult to interpret 

if we add an additional layer of stochasticity to the simulations by randomly assigning uneven 

effect sizes. In reality, however, effect sizes will typically vary among QTLs, and one commonly 

used model for this is an exponential distribution for effect sizes (Orr 1998; Otto and Jones 2000).  
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Figure 5 shows how QTL detection power is affected when effect sizes in our standard 

model are no longer assigned equal values, but instead are drawn from an exponential distribution 

with means +1 or -1, respectively. Whether this increases or decreases detection power depends 

on how we define our measure of power. If power is defined simply as the proportion of QTLs 

detected regardless of their effect sizes, power is lower in the model with exponentially-distributed 

effect sizes compared with our standard model assuming constant effects (Figure 5A & 5D). One 

possible explanation for this is that in the exponentially-distributed model, there will be many 

QTLs with small effect that are practically neutral and are likely to get lost due to drift or 

interference. This means that there would be a smaller proportion of  “effective” QTLs that can 

still be detected overall.  

However, when we weight individual QTLs by their effect sizes, these small-effect QTLs 

will contribute minimally to power, whereas the few large-effect QTLs become much more 

important (Chevalet 1994). Similar to the effect of lowering the number of QTLs as discussed 

above, these few large-effect QTLs will interfere less with each other because they are less densely 

distributed on the chromosome and are more likely to be detected. As a result, when QTLs are 

weighted by their effect sizes, the model with exponentially distributed effect sizes yields higher 

power than the constant effect size model (Figure 5B & 5E). 

When we measure the proportion of genetic variance explained by detected QTLs in the 

first generation, exponentially distributed effect sizes have two opposing effects. On the one hand, 

as discussed above, large-effect QTLs are more likely to be detected, and they contribute more to 

the genetic variance given the same starting frequency. On the other hand, large-effect QTLs are 

less likely to get lost due to drift or interference even when they start at low frequency, so 

intermediate-frequency QTLs are less overrepresented among detected QTLs (Figure S6), which 

would then decrease the proportion of initial genetic variance explained by the detected QTLs 

compared to our standard model. When there are fewer QTLs, the first effect is weaker than the 

second (Figure S6A & S6B), so detection power becomes similar between the standard and 

exponential models (Figure 5C). When there are more QTLs, there is also more interference among 

large-effect QTLs and thus the second effect becomes weaker (Figure S6C & S6D), resulting in 

higher power for the exponential model (Figure 5F). 
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Figure 5. An exponential distribution of effect size affects detection power differently depending on how power is 

evaluated and how many QTLs underlie the selected trait. All comparisons are conducted with the standard model of 

equal effect sizes. Top: 10 QTLs. Bottom: 100 QTLs. (A) (D) Exponential distribution of effect size decreases power 

when measured by the proportion of QTLs detected. (B) (E) By contrast, exponential distribution of effect size 

increases power when measured by the proportion of QTLs detected, weighted by their effect sizes. (C) (F) When 

power is measured by the proportion of genetic variance explained, an exponential distribution of effect size yields 

similar power when there are 10 QTLs but increases power when there are 100 QTLs. 

 

Allele frequency distribution 

We still know very little about what an appropriate distribution for the starting allele 

frequencies at the QTLs of any given trait in our experiment would be. This distribution could 

differ markedly among traits and will also depend on the evolutionary history of the population. 

For example, a trait that has been under strong stabilizing selection for a long period of time would 

likely have a very different distribution of allele frequencies at its QTLs compared with a trait that 

has recently experienced a change in trait optimum, or a trait whose optima would have varied in 

different parts of the population. In our standard QTL model, we have simply assumed that allele 

frequencies at QTLs resemble those of neutral SNPs.   
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Now, instead of randomly selecting SNPs, we only selected SNPs with minor allele 

frequencies above or below a certain cutoff to become QTLs in the simulation. When we restricted 

our selection to SNPs with minor alleles at a frequency lower than 5%, detection power decreased 

consistently regardless of the method to evaluate power (Figure 6). This is presumably because 

these alleles are more likely to get lost due to drift or interference regardless of the direction of 

selection.   

Conversely, when we restricted our selection to only those SNPs with minor alleles at a 

frequency higher than 5%, these alleles are less likely to get lost. When they are favored by 

selection, they are also more likely to be recombined together with other favored alleles. This is 

consistent with the observation that a higher proportion of total QTLs can be detected in such a 

scenario (Figure 6A). However, the result is different when we evaluate power by the proportion 

of the starting genetic variance (Figure 6B). The reason is that in the standard model, QTLs that 

start at intermediate frequencies are more likely to be detected and their detection can explain a 

higher proportion of starting genetic variance (Figure S7A). When all QTLs start at more 

intermediate frequencies, they all explain a similar proportion of the starting genetic variance, and 

the likelihood of them being detected becomes more independent of their starting frequencies 

(Figure S7B), so even though more QTLs can be detected, the proportion of initial genetic variance 

explained ends up lower.  

 

 
Figure 6. Starting frequency of minor alleles affects power differently depending on how power is evaluated. (A) 

Power evaluated as proportion of QTLs detected. (B) Power evaluated as proportion of genetic variance explained by 

detected QTLs. Models with 10 QTLs are used in this figure.  
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Dominance 

Previous QTL models have typically assumed additive effects between the two alleles at 

individual QTLs, which is what we also adopted in our standard model. However, dominance 

effects at QTLs, as well epistatic effects among QTLs, could play an important role in many traits 

(Shao et al. 2008; Mackay 2014; Chen et al. 2015).  

We first tested how dominance relationships affect QTLs detection power in our model. 

Given how our QTLs are initially assigned, derived alleles tend to be the minor alleles in our model. 

When these derived alleles are completely dominant, heterozygotes will exhibit the same 

phenotype as derived homozygotes, and selection thus cannot distinguish between them. As a 

result, positively-selected derived alleles tend to first increase in frequency, but then accumulate 

at intermediate frequencies. This produces a less conspicuous signal of selection than for alleles 

that reach higher frequencies over the course of the experiment (Figure 7C & 7D). At low false 

positive rates, detection power is therefore lower in this scenario than in the standard scenario 

where alleles are assumed to be additive (Figure 7A & 7B). At a higher false positive rate, however, 

a crossover pattern in the power curves is observed (Figure 7A & 7B), since lower frequency 

alleles are less likely to be lost due to interference than in the standard model.  

 When derived alleles are completely recessive, only those with high starting frequency can 

form homozygotes and thus be visible to selection (Figure S8). All other derived alleles behave 

essentially like neutral alleles initially (Figure 7C & 7E). As a result, an overall lower number of 

QTLs can be detected (Figure 7A). However, these high-frequency QTLs are also the ones that 

contribute most to genetic variance in the first generation. Therefore, the proportion of genetic 

variance detected is even higher than in the standard model (Figure 7B). These results demonstrate 

again how a relatively simple aspect of the trait architecture - here the dominance relationship at 

individual QTLs - can affect detection power in complex ways, where the direction of the effect 

depends on the false positive rate and the definition being used to measure power.     
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Figure 7. Dominance affects power differently depending on how power is evaluated and what level of false positive 

rate is tolerated. Top: ROC curves (A) Power evaluated as proportion of QTLs detected. (B) Power evaluated as 

proportion of genetic variance explained by detected QTLs. Bottom: Distribution of D-value over 100 simulation 

replicates (C) Additive. (D) Dominant. (E) Recessive.  Models with 10 QTLs are used in this figure. Additive: 

heterozygotes express intermediate phenotype. Dominant: heterozygotes express the same phenotype as derived 

homozygotes. Recessive: heterozygotes express the same phenotype as ancestral homozygotes.  
 

Epistasis 

 We next tested how epistatic interaction among QTLs can affect detection power. For 

simplicity, we only considered pairwise epistasis here. We further restricted our analyses to 

additive-by-additive epistasis (i.e. the effects of the two alleles at an individual QTL are always 

additive if genotypes at other QTLs are fixed). This helps us avoid the potentially confounding 

effect of dominance. Under these assumptions, we tested the effect of epistasis with our 10 QTLs 

model, where we randomly selected five epistatic QTL-pairs in each simulation. We explored 

separately the effect of four major types of epistasis, including synergistic, antagonistic, sign, and 

reciprocal sign epistasis. Within each type, we further created a “weak” and a “strong” scenario, 
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based on the level of deviation from the non-epistatic model (Table S1). To evaluate power for a 

given epistasis scenario, we simply measured the overall proportion of the 10 QTLs we detected, 

since the effect of each individual QTL is difficult to quantify.  

Our simulations show that pairwise epistasis generally decreases the power in QTL 

detection, as would be expected (Figure 8A). However, a lot of variability exists among different 

epistasis scenarios. Within each type of epistasis, the more it deviates from the non-epistatic case, 

the less detection power is generally attained. Among different types of epistasis, synergistic 

epistasis tends to have higher power, while sign and reciprocal sign epistasis tend to have lower 

power. Since a major effect of epistasis is introducing epistatic genetic variance and lowering the 

trait’s narrow-sense heritability (h2), we examined how heritability varied across our epistasis 

scenarios, and found that heritability is a good predictor of power (Figure 8B). Scenarios that create 

lower heritability (or higher epistatic genetic variance) tend to have lower QTL detection power. 

However, sign epistasis is an exception to this rule. It has relatively high heritability throughout 

the experiment, but its detection power remained low in our simulations.  

 

 
Figure 8. (A) Pairwise epistasis always decreases QTL detection power, but this effect is a lot stronger in certain 

epistatic scenarios than others. (B) Estimates of narrow-sense heritability for a given epistasis scenario at a given time-

point are calculated from the breeder’s equation (Lush 1943), averaged across all 100 simulation replicates.  
 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 15, 2019. ; https://doi.org/10.1101/672683doi: bioRxiv preprint 

https://doi.org/10.1101/672683
http://creativecommons.org/licenses/by/4.0/


23 

DISCUSSION 

In this paper, we studied an explicit QTL model using a forward simulation framework to 

assess the power of short-term E&R experiments in detecting QTLs. We found that the expected 

power of such experiments depends strongly on the genetic architecture underlying the trait of 

interest. This relationship is complex and often unintuitive, and we demonstrated that few results 

hold universally, except perhaps for the fact that as the number of QTLs affecting a trait increases, 

the power to detect them always decreases (Figure 3). Other results are often conditional on the 

false positive rate, the precise way in which power is measured, and various aspects of trait 

architecture. For example, we found that the clustering of QTLs along a chromosome decreases 

detection power when there are fewer QTLs, but increases power at low false positive rates when 

there are more QTLs (Figure 4). An exponential distribution in effect size lowers the proportion 

of QTLs detected compared to when effect sizes are equal at all QTLs, but increases power when 

QTLs are weighted by their effect sizes (i.e. we have a better chance at detecting a substantial 

portion of the genetic basis of a trait, Figure 5). When minor alleles at QTLs are skewed towards 

lower frequencies, detection power is generally decreased, but when they start at higher 

frequencies, detection power is increased only when it is measured by the proportion of QTLs 

detected (Figure 6). When derived alleles are dominant, detection power is increased at higher 

false positive rates but decreased at lower (Figure 7). When they are recessive, detection power is 

decreased only when it is evaluated by the proportion of QTLs detected (Figure 7). Epistasis tends 

to always decrease power, although a lot of variation exists among different types of epistasis 

(Figure 8). In spite of all these complexities, we found that when the trait of interest is controlled 

primarily by a few unlinked QTLs that show little dominance or epistatic effects and start at 

relatively high frequency, E&R experiments spanning as few as 4 generations with a population 

as small as 1000 individuals can still be a viable tool for QTL detection (Figure 3 & S4).  

From the perspective of researchers who plan to perform E&R studies, a key question 

might be which experimental designs could optimize detection power (Kofler and Schlötterer 2014; 

Baldwin-Brown et al. 2014; Kessner and Novembre 2015). Our results suggest that there is not a 

single optimal strategy that is always expected to work best for all trait architectures. Instead, what 

the best strategy is can depend critically on the genetic architecture of the trait. For example, in 

our standard model with 10 QTLs, detection power can be significantly improved if the selection 

experiment were to be run for an additional 5 generations, since many QTLs are still segregating 
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at intermediate frequency after just 4 generations of selection. However, the gain in power will be 

minimal if derived alleles are either dominant or recessive, since during the additional generations, 

selection would become less effective in the dominant case, while most of the genetic variance 

will already have been depleted in the recessive case (Figure 9). When researchers have some 

information on the expected trait architecture, different experimental designs can be simulated to 

find the optimal setup for the given architecture. Without such a priori information, they may first 

need to simulate a range of architectures to obtain a general sense of the range of power that could 

be achieved and what types of architectures are likely to be detectable under different experimental 

designs.  

 

 
Figure 9. The choice of optimal experimental design depends on the underlying trait architecture. Extending the 

selection experiment from 4 to 9 generations substantially increases detection power when the derived allele is 

codominant, but such effect is minimal when the derived allele is either recessive or dominant. Models with 10 QTLs 

are used. Additive: heterozygotes express intermediate phenotype. Dominant: heterozygotes express the same 

phenotype as derived homozygotes. Recessive: heterozygotes express the same phenotype as ancestral homozygotes.  
 

Our results highlight the complex nature of the mechanisms involved, and thus the crucial 

role simulations can play in assessing the expected detection power and optimizing the 

experimental design. To this end, we provide a flexible simulation framework that is highly 

customizable with regard to trait architecture, experimental design, and parameters of the genomic 

background (described in the Supplementary Materials). While several specialized tools have 

already been designed for such applications (Neuenschwander et al. 2008; Zanini and Neher 2012; 
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Kofler and Schlötterer 2014; Kessner and Novembre 2015; Vlachos and Kofler 2018), our 

approach provides key advantages by implementing its simulations in the flexible SLiM 

framework (Haller and Messer 2016, 2019). SLiM constitutes one of the most widely used and 

well-tested frameworks for forward genetic simulation to date. This popularity is grounded in 

several attributes. First, simulations are fully scriptable, allowing the user to model a wide range 

of evolutionary scenarios that can include high levels of genetic and ecological realism. Second, 

the comprehensive graphical user interface enables interactive model development and allows for 

easy visual debugging and hands-on model exploration. Third, the underlying simulation engine 

has been highly optimized over the years, and these speed benefits are now inherited for free by 

any new simulation model built in the SLiM framework. For example, with the recently added 

capability for tree sequence recording (Haller et al. 2019), forward simulations on a genome-wide 

scale can now be conducted in runtimes that are on par with efficient coalescent-based simulations, 

enabling applications such as approximate Bayesian computation (ABC) for parameter inference 

(Csilléry et al. 2010). All SLiM configuration scripts developed in this study, together with a 

comprehensive documentation explaining how these scripts may be adjusted for custom scenarios, 

are provided in the Supplementary Materials.  

 One perhaps surprising result of our analyses was that a simple summary statistic, D, had 

comparable and often better performance than more sophisticated, model-based methods explicitly 

devised for detecting positive selection from time-series data. This is presumably because these 

methods were built on the assumption that selection produces independent selective sweeps at 

individual QTLs. However, when selection operates on a polygenic trait, allele frequency 

trajectories at its QTLs will often be quite distinct from those expected in a model of individual 

sweeps with fixed selection coefficients (Burke et al. 2010; Kessner and Novembre 2015; Franssen 

et al. 2017). In addition, QTLs are usually not freely recombining, further complicating allele 

frequency trajectories due to interference effects. Simple summary statistics that do not rely on 

detailed, yet potentially inaccurate, assumptions about the precise form of the temporal allele 

frequency trajectories may actually work better in these scenarios than the more sophisticated 

model-based methods. However, we recognize that when only a single selection line is created and 

the trait under selection has a simple genetic architecture, model-based methods may still be able 

to outperform D, especially when their parameters are optimally tuned and they can take advantage 
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of their ability to analyze the full allele frequency trajectories, instead of just the absolute change 

in allele frequencies over the course of the experiment as measured by the D statistic (Figure S3).  

 Compared with earlier power analyses of E&R experiments, detection power was generally 

lower in our selection model. This can be attributed to the following factors. First, selection is 

quite extreme in our model, while the length of the experiment is very short. Such an experimental 

design would likely be considered as ineffective when working with an insect species such as flies, 

but may be the only realistic choice for larger organisms with longer generation times. Second, we 

assumed a higher level of linkage disequilibrium and thus stronger interference effects than 

previous studies that focused on insect systems. We also note that for simplicity we set heritability 

to a value of one in our model, which should generally lead to an overestimation of power (Kessner 

and Novembre 2015). This can easily be modified in our SLiM simulations if a more realistic 

estimation of power for a specific organism and trait of interest is desired.  

 

 

CONCLUSION 

Overall, we find that short E&R experiments with strong truncating selection can provide 

some utility in identifying the genetic basis of the selected trait, especially if the goal is to detect 

those QTLs that contribute most to the observed trait variance in the population (i.e. large effect 

QTLs present at high population frequency). However, we have also shown that detection power 

can vary substantially with the genetic architecture of the trait. This presents a problem of circular 

reasoning, because the architecture of the trait will likely be unknown prior to the experiment yet 

the power to identify its genetic basis should be biased against certain classes of QTLs (e.g. those 

that are dominant/recessive, have epistatic interactions, or are present at low initial frequencies). 

Thus, some caution is warranted when trying to make general conclusions about the architecture 

of the selected trait, based solely on the subset of QTLs that were identified in an E&R experiment. 

Future studies will hopefully improve our understanding of what types of trait architectures are 

more prevalent in nature and thereby help us build better priors for the interpretation of E&R 

experiments.    
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