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Abstract

Nervous systems have evolved to combine environmental information with internal state to select and

generate adaptive behavioral sequences. To better understand these computations and their imple-

mentation in neural circuits, natural behavior must be carefully measured and quantified. Here, we

collect high spatial resolution video of single zebrafish larvae swimming in a naturalistic environment

and develop models of their action selection across exploration and hunting. Zebrafish larvae swim in

punctuated bouts separated by longer periods of rest called interbout intervals. We take advantage of this

structure by categorizing bouts into discrete types and representing their behavior as labeled sequences

of bout-types emitted over time. We then construct probabilistic models – specifically, marked renewal

processes – to evaluate how bout-types and interbout intervals are selected by the fish as a function of its

internal hunger state, behavioral history, and the locations and properties of nearby prey. Finally, we

evaluate the models by their predictive likelihood and their ability to generate realistic trajectories of

virtual fish swimming through simulated environments. Our simulations capture multiple timescales

of structure in larval zebrafish behavior and expose many ways in which hunger state influences their

action selection to promote food seeking during hunger and safety during satiety.
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Introduction

Methods to quantify freely moving animal behavior have seen explosive growth in recent years. This

growth has been fueled by rapid improvements in the quality and accessibility of scientific cameras,

pose estimation algorithms, and behavioral models. A modern behavioral analysis pipeline1 commonly

involves: (1) acquiring video of an animal behaving, (2) compressing this data into a low-dimensional

time series representing the animal’s posture (or postural dynamics) in each video frame, and (3) using

computational tools to annotate each frame with a discrete behavioral state label (e.g. “head-grooming”,

“rearing”). While each of these steps pose significant challenges, variations of this pipeline have been

used to discover large sets of stereotyped actions generated by worms2,3,4,5,6, flies7,8,9, fish10,11,12,13,14,

and mice15 behaving in controlled lab environments. Importantly, these procedures produce statistical

summaries of behavior that facilitate comparison of nervous system function across animals or animal

groups.

The larval zebrafish is an important animal species for investigating the development16,17,18, struc-

ture19,20, and function21,22,23 of vertebrate nervous systems. Further, they are convenient to use in

behavioral studies because of their simple body plan, temporally discrete behavior, and stereotyped

locomotor repertoire. Pose estimation24,25,26,27,28 is an active area of machine learning research and

many solutions have been developed to estimate pose from video, even for animals with complicated

and flexible bodies such as locusts, fruit flies, and humans. Larval zebrafish, however, have a simpler

body shape with fewer degrees of freedom, reducing the complexity of this problem. Once extracted,

animal pose data can be temporally segmented into a sequence of minimal and stereotyped behavioral

elements (referred to as “movemes”29, “actions”29, “motifs”15, or “syllables”15). This parsing problem

becomes challenging for animals that move continuously or display many behaviors, but several effective

approaches have been described1. However, since larval zebrafish swim in punctuated bouts, temporal

segmentation of their behavior into bout and interbout epochs is straightforward. Together, the anatomy

and movement patterns of larval zebrafish simplify behavioral analyses and allow each swim bout to be

represented as a point in a high dimensional posture or kinematic parameter space. Several studies have

taken advantage of these properties to analyse and categorize swim bouts, and the most comprehensive14

effort to date identified 13 basic types of swims used during hunting30,31, taxis behaviors32,33,34,35, escape

maneuvers36,37,38, social interactions39, and spontaneous40 swimming in the light and dark.

While locomotor patterns produced by larval zebrafish have been well studied, much less is understood

about the complex generative processes underlying the animal’s natural action selection. For example,

when a zebrafish larvae swimming through a natural environment selects and generates a swim bout

from its locomotor repertoire, what variables and computations shape this decision? How does this

decision depend on external inputs like the locations, sizes, shapes, and motion patterns of objects in the

local environment? How does this decision depend on internal inputs like short- or long-term behavioral
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history, or hunger state? To work toward addressing these questions, we use a moving camera system

to collect high spatial resolution video of larvae swimming in a large arena with abundant prey. This

approach allows the fish to explore and hunt throughout a vast environment as we monitor fine postural

features (e.g. tail shape, eye positions) together with microscopic details of its surroundings. Importantly,

since zebrafish larvae frequently move their eyes to hunt, stabilize gaze, navigate, and surveil for threats,

continuous eye position measurements can provide rich information about the animal’s behavioral state.

The use of a moving camera system also eliminates a trade-off between spatial resolution and arena

size, allowing us to observe up to hundreds of consecutive swim bouts without interference from arena

boundaries. By contrast, fixed camera systems can require small enclosures that physically limit the space

of possible behavioral sequences and bias action selection by promoting thigmotactic41 behaviors. Here,

we avoid these issues to generate behavioral data that should more closely approximate larval zebrafish

behavior in the wild. We next use this data to construct probabilistic behavioral models – building on

point process models with a long history in computational neuroscience42,43,44,45 – to evaluate how

internal and external inputs shape larval zebrafish behavior. By sampling from these models, we can

simulate behavioral trajectories that capture salient features of larval zebrafish behavioral dynamics

spanning multiple timescales, from reactions to prey (<100 milliseconds), across stretches of hunting

and exploration (seconds to minutes), and throughout changing hunger state (minutes to hours).

Results

Acquiring Behavioral Data with BEAST

To collect high resolution video (13µm per pixel; 60 fps) of larval zebrafish swimming in a large arena,

we built a moving camera rig called BEAST (for Behavioral Evaluation Across SpaceTime, 1A, Supp

Video 1). This setup is similar to previously described rigs46, but the camera moves on a motorized

gantry to remain positioned above the fish. We observed 7-8 days-post-fertilization nacre-/- zebrafish

larvae (n=130) one at a time. To evaluate the influence of hunger on their behavior, each fish was

either given abundant paramecia (fed group, n=73) or deprived of food for 2.5-5 hours (starved group,

n=57) prior to observation. Previous studies have shown that brief food deprivation is sufficient to

robustly increase larval zebrafish food intake47,48 and to increase their likelihood to approach, rather

than avoid, prey-like visual stimuli49,50. We therefore expect the fed and starved fish groups to display

different behavioral patterns and aim to construct behavioral models to quantify and characterize these

effects.

We place each fish in the arena and repeatedly recruit it to the center to initiate up to 18 observational

trials. We guide the fish to the center by projecting inwardly drifting concentric gratings onto a screen

embedded in the tank bottom, thereby leveraging the fish’s optomotor response35. Once at the center, a
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Figure 1: Acquiring larval zebrafish behavioral data with BEAST. A. Schematic of behavioral rig. An infrared
camera (i) moves on a motorized gantry to remain centered above a freely swimming fish. A projector (ii) and
IR-LEDs (iii) illuminate a diffusive screen embedded in tank bottom. An air table isolates the fish from vibration
(see Supplementary Video 1). B. Swim paths from 3 trials from 1 fish are shown. Fish tank dimensions = 300 x
300 x 4 mm. The size of the total camera field of view (FOV) is shown (orange square: side length = 22 mm)
C. Fish heading direction during 27-second excerpt from B is shown. D. Fish heading direction during 2-second
excerpt from C is shown. Timing of bout and interbout epochs is determined from changes in heading direction
over time (see Methods), and notation for behavioral sequences is indicated. E. Each image frame from 200 ms
swim bout from D is aligned to maintain head position and heading direction. F. Fish head position (white circle),
heading direction (purple arrow), eye vergence angles (angles between black arrows and horizontal), and tail
shape (20 local tail tangent angles indicated with black carets) are extracted in every image frame (shown here for
frame indicated in E). See S1 for posture estimation details. G. Histograms of bout and interbout durations from
whole dataset. H. Histogram of heading direction change per bout (∆heading) for all bouts. I. Histogram of mean
eye vergence per interbout for all interbouts. For each interbout, all eye vergence measurements are averaged.
Larvae typically explore with eyes diverged and hunt with eyes converged. Local minimum at 24°(dashed line). J.
The field of view in the video dataset is large enough to see the fish and its local environment (circle diameter
= 8.12 mm, size indicated as circle within orange square in B). The focal plane is near the water surface. K.
Locations, sizes, shapes, and relative velocities of all found surface objects preceding swim bout initiation are
extracted. Relative motion of 3 objects are shown. In the next image frame, the fish initiates a swim bout (shown
in 2B) to pursue the prey object in box 2. Found objects are mostly edible (paramecia, rotifers) but include also
algae, dust (like in box 1), and some artefacts. Box width = 820µm.

static natural scene replaces the gratings and the fish is recorded for up to 3 minutes or until it reaches

the arena edge or tracking fails. Swim paths from 3 representative trials are shown (1B) and the fish’s

heading direction throughout the indicated portion (1B, purple line) of one trial is plotted (1C). Swim

bouts can be seen as brief fluctuations in heading direction over time and the timing of bout and interbout
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epochs is determined from this signal (1D, Methods). We translate and rotate each image frame to

register the video to the reference frame of the fish, as shown for the indicated 200 millisecond swim

bout (1E). We encode fish posture (S1) in every image frame by estimating the vergence angle31 of each

eye and the shape of the tail46 (1F). Larvae can accelerate rapidly (e.g. during escape swims), which

can cause the online tracking system to fail. Also, offline pose estimation is occasionally compromised

due to motion blur (during very high speed swims) or body roll (causing one eye to occlude the other in

the image). We retain only video segments in which all postural features can be accurately extracted in

every image frame for further analysis (see Methods).

The processed dataset contains 40 hours of behavioral data parsed into bout and interbout epochs (4002

video segments) (1G). Across all swim bouts (n = 200,559), the change in heading angle per bout is

narrowly and symmetrically distributed (1H). The arena contains abundant prey (mostly paramecia and

some rotifers) and the fish tend to hunt prey located near the water surface. Zebrafish larvae converge

their eyes during hunts to pursue prey with binocular vision. While not hunting, larvae keep their eyes

more diverged, increasing their visual coverage of the environment which should improve their ability

to detect threats. These animals should therefore experience a natural trade-off between seeking food

and seeking safety, and these opposing states can be seen in the bimodal distribution of eye position

measurements during interbout intervals (1I). We maintain a large circular field of view centered around

the fish head (1J) with sufficient image sharpness to extract positions, sizes, shapes, and motion patterns

of objects near the water surface (1K, Methods) with which the fish may interact. We later use this

information to construct compressed representations of environmental state to predict the type of the

next swim bout.

Bout Categorization and Regulation of Action Selection by Hunger State

Hunger state has a large influence on larval zebrafish behavior and this can be seen by comparing eye

position histograms (similar to 1I) across fed and starved fish groups within the first 10 minutes of testing

(2A). The fraction of interbout intervals during which eyes are converged (threshold: mean vergence

angle = 24°) increased by 183% from 0.124 in fed fish to 0.351 in starved fish in this time period. Fed fish

also display wider eye divergence during non-hunting behavior compared to starved fish (2A, fed: peak

at 12.5°; starved: peak at 15.5°; solid vertical lines). These observations indicate that hunger promotes

increased food seeking behavior while satiety promotes wider eye divergence.

To quantify the structure of larval zebrafish behavioral sequences and compare this structure across fed

and starved groups, we first aim to categorize all observed swim bouts into discrete types. To that end,

each swim bout is represented as a 10-frame (167 ms) postural sequence beginning at bout initiation

(2B). This gives a 220-dimensional representation (2 eye and 20 tail measurements per frame) of the

postural dynamics associated with each swim bout. We next perform dimensionality reduction to embed
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Figure 2: Bout categorization and regulation of action selection by hunger state. A. Histogram of mean eye
vergence per interbout (as in 1I) for interbouts observed in first 10 minutes of testing, plotted separately for fed
and starved fish groups. Dashed vertical line indicates threshold between divergence and convergence. Solid
vertical lines indicate local histogram peaks. B. Each swim bout is encoded as a sequence of postures through
10 consecutive image frames (167 ms) beginning at bout initiation. C. The 220-D bout dataset is reduced to
2-D with tSNE and 5 bout-classes are extracted with density-based clustering (S2). Bout-class abundances are
shown in parentheses. The location in tSNE space of the swim bout from B is indicated with a triangle. D. The
log2 of relative bout-class abundances (starved / fed) is calculated in 10-minute time bins. E. Exploratory, J-turn,
and pursuit bout-classes are subdivided by |∆heading|. Exploratory and pursuit bouts are further subdivided by
|∆tail-shape|. Plus signs indicate kinematic parameter magnitude (see S6 for subdivision details). F. Durations
(mean ± SE) of interbout intervals preceding (top panel) and following (bottom panel) left and right versions of
each bout-type. G. The log2 of relative bout-type abundances (starved / fed) is calculated for all bouts observed
in first 40 minutes of testing. H. Durations (mean ± SE) of interbout intervals following each bout-type for all
bouts in first 40 minutes of testing are shown for fed (darker bars) and starved (lighter bars) fish groups. I. Mean
eye vergence during interbout interval preceding each bout-type across fed and starved fish (time in tank < 40
min). Note that hunger state affects eye vergence preceding exploratory bouts and J-turns, but not preceding
pursuits, aborts, and strikes. J. Example behavioral sequence in which the fish exits exploring mode to execute
a 13-bout hunt ending with strike, after which it returns to exploring. Fish heading direction and eye vergence
angles are shown with bout and interbout epochs indicated. Bout from B indicated with triangle. K. Trajectory of
hunt from J. Cartoon fish length = 4 mm. Circle locations and arrow directions indicate fish head location and
heading direction prior to initiation of each bout. Circle color indicates bout-type. Circle area is proportional to
|∆tail-shape| for each bout. L. Trajectories from 1000 randomly selected complete hunts ending in strike.

these 220-D observations in a 2-D space with t-distributed stochastic neighbor embedding (tSNE51,52)

(2C) and use density-based clustering8,53 to isolate 5 major classes of swim bouts (S2-S4). These classes
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consist of hunting bouts (here called J-turn, pursuit, abort, strike) and non-hunting bouts (here called

exploratory). Zebrafish larvae typically initiate hunts by converging their eyes and orienting toward

prey with a J-turn31, and reduce the distance to prey while maintaining eye convergence with pursuit54

bouts (also called approach14 swims). Larvae typically end hunts with eye divergence, either during

a strike (also called capture14 swim) or during hunt termination with an abort55. We find starved fish

upregulate use of all hunting bouts, with strikes upregulated most and aborts least (2D). Bout-class

selection probabilities of fed and starved fish gradually converge over ∼40 minutes (S5), presumably as

the hunger state of each group shifts from their opposing initial conditions (high hunger or high satiety)

toward an intermediate state near nutrient equilibrium.

To increase the granularity of the swim bout categories and improve the sensitivity of our analyses, we

further subdivide the 3 largest bout-classes to yield a total of 10 exploring bout-types and 8 hunting

bout-types (2E). Each of these 18 bout-types is composed of nearly equal numbers of leftward and

rightward bouts. We use 2 scalar kinematic measurements to subdivide swim bout-classes: |∆heading|
and |∆tail-shape| (S6). |∆heading| is the magnitude of heading angle change per bout, and |∆tail-

shape| is the sum of the magnitudes of frame-to-frame changes in tail shape across each 10-frame bout

representation, a postural measurement that correlates with distance traveled per bout and presumably

energy expenditure (see Methods). We evenly split J-turns into 2 types (j1, j2) by |∆heading|. Pursuits

are more abundant, so we split first by |∆heading| and then again by |∆tail-shape| to yield 4 types (p1-4).

Exploratory bouts are split into 3 groups by |∆heading| and again into 3 groups each by |∆tail-shape|
to yield 9 types (e1-9). A small subset of exploratory bouts (called e0) seem to correspond to orofacial

and/or pectoral fin movements occuring in the absence of tail motion. e0 bouts occur with eyes diverged,

include actions like suction, jaw movement, swallowing, and prey expulsion, and are the most likely

bout-type to follow strike. e0 events were isolated prior to splitting exploratory types e1-9. Since e0 bouts

are near threshold for bout detection, we expect this category to also include some erroneously detected

bouts due to measurement noise and temporal segmentation errors. Detailed kinematic summaries of all

bout-types are found in S6-S7. With labels assigned to all swim bouts, the distributions of interbout

intervals preceding and following each of these 36 bout-types can be compared (2F, S8). It is apparent

that larvae select longer interbout intervals during exploration (i.e. while not hunting), and select

shorter interbout intervals during hunts. Note also that distributions of interbout intervals preceding (or

following) left and right versions of each bout-type are nearly equivalent, demonstrating the extent to

which left-right symmetry organizes larval zebrafish behavior at the population level.

By comparing bout-type abundances (2G) and interbout interval durations (2H) across fed and starved

fish groups in the first 40 minutes of testing, we find that hunger influences larval zebrafish bout-type

selection in previously unreported ways. Fed fish upregulate selection of low-energy exploratory bouts

(e1-3) relative to starved fish, with selection of the lowest-displacement forward swim e1 increased by

107%. Starved fish are more likely to start hunts, especially through high-angle J-turns (j1 up 35%, j2 up
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70%), and increase use of pursuits (up 71%), aborts (up 34%), and strikes (up 96%). Hunger state also

affects interbout interval selection, especially following exploratory bouts, with fed fish selecting longer

interbout intervals. This effect is most pronounced following low-energy exploratory bouts, with the

mean duration of interbout intervals following bout-types e1-3 increased by 101 ms in fed fish relative

to starved fish. Also, during interbout intervals preceding exploring bouts, fed fish maintain wider eye

divergence than starved fish. (2I). Taken together, these results indicate that satiation promotes multiple

strategies that should increase protection against predation. Fed fish might decrease their visibility to

predators by upregulating low-energy exploratory bouts and spending more time at rest (i.e. longer

interbout intervals). Fed fish might also be better able to detect predators by maintaining wider eye

divergence while exploring (low-energy exploratory bouts have highest eye divergence, see S7). By

contrast, starved fish swim more frequently and cover more distance per bout while exploring. Starved

fish should also increase their food intake by starting more hunts and increasing the likelihood that hunts

end with strike.

In these experiments, zebrafish larvae alternate between modes of exploring and hunting, with each mode

defined by distinct behavioral dynamics. This mode-switching is highlighted in an example bout sequence

containing a successful hunt (2J, Supplementary Video 2). The trajectory of the fish throughout this

hunt is reconstructed (2K) and plotted together with 999 other hunts that also end in strike (2L). We

define a complete hunt as a bout sequence that begins with a J-turn, ends with an abort or strike, and

is padded with only pursuits (for hunts longer than 2 bouts). The full dataset contains 7230 complete

hunts (19.6% end in strike). To better quantify the behavioral sequences observed in this study, we next

construct probabilistic models to predict the timing and type of swim bouts.

Constructing Probabilistic Models to Predict Interbout Intervals

We model the data as a marked renewal process45,56, a stochastic process that generates a sequence of

discrete events in time, each characterized by an associated “mark” (3A). Marked renewal processes

are statistical models that specify the conditional distribution of the time and type of the next event

in a sequence given the history of preceding events. First, we consider bout timing. Our key question

for model construction is, “what features of the event history carry predictive information about the

timing of the next event?” To this end, we choose five interpretable features to represent behavioral

history across multiple timescales (3B). On the shortest timescale, we model the interbout interval (in)

as a function of preceding bout-type (bn−1) and preceding interbout interval (in−1). On an intermediate

timescale, we use hunt dwell-time (thunt) and explore dwell-time (texplore) features to encode how long

the fish has been dwelling in either a hunting or exploring mode just prior to in (see Methods). On the

longest timescale, we encode how long the fish has been in the tank prior to in (tank-time, ttank), which

can relate how fish behavior changes with hunger state. By comparing models composed from different
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Figure 3: Probabilistic models to predict interbout interval duration. A. Behavioral data is conceptualized
as a marked renewal process, here for a portion of the sequence shown in 2I. B. Five intrinsic features to model
in. Example input values are shown to predict duration of in indicated in A. Preceding bout-type is the bout-type
assigned to bn−1 and is a categorical feature encoded with a one-hot indicator. Remaining features are temporal
features encoded with radial basis functions (see Methods and S9). Preceding interbout interval is the duration of
in−1. Hunt dwell-time is the integer number of observed preceding consecutive hunting bouts. Explore dwell-time
is the integer number of observed preceding consecutive exploring bouts. Either thunt or texplore is equal to zero
for each in. Tank-time is the time elapsed since the first trial was initiated for that fish. C. Schematic of GLM to
generate a probability distribution over interbout interval values as a prediction for in, measured in units of elapsed
frames. For each feature, both a pooled and split form are constructed. For the pooled form, a single set of feature
weights is fit for all fish, pooling data across fed and starved groups. For the split form, separate sets of feature
weights are fit for each fish group. Either the pooled or split form is selected based on marginal log likelihood. See
Technical Appendix. D. For 2 example values of preceding bout-type (bn−1), distributions over in are generated
from pooled-bn−1 models. The negative binomial (NB) distribution fits observed interbout interval distributions
best. E. For the same example bn−1 values as D, separate distributions for fed and starved fish are generated from
the split-bn−1 NB model. For this feature, the split form is preferred, indicated with gold star. F. Predicted in values
(mean and 95% posterior credible intervals) for fed and starved fish from NB models which take as input preceding
interbout interval (column 1), hunt dwell-time (column 2), explore dwell-time (column 3), and tank-time (column
4). Pooled (top row) and split (bottom row) feature forms are shown, with preferred form indicated. All 8 models
here include 4 extra parameters (split-bias weights) to separately capture mean and variance of fed and starved
interbout intervals.

features, we can learn how past actions predict future behavior.

We found that starved fish select shorter interbout intervals than fed fish, but how else do patterns of bout
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timing differ across fish groups? To interpret how feeding state influences the functional relationship

between behavioral history and interbout interval selection, we consider 2 forms for each predictive

feature: pooled and split. In the pooled form, data from fed and starved fish are pooled together to fit one

set of weights relating that predictive feature to interbout in. In the split form, a separate set of feature

weights are fit for each fish group. We use a generalized linear model57 (GLM) with an exponential

inverse link function to generate a probability distribution over in (3C, Technical Appendix). Briefly,

the dot product of a basis function representation (S9) of the feature input with the corresponding

feature weights is computed. This value is passed through an inverse link function to give the mean of a

probability distribution over in. Since the interbout intervals are measured in units of frames elapsed, we

considered 3 types of probability distributions over nonnegative counts: geometric, Poisson, and negative

binomial (NB). We find the data to be too complex for modeling with geometric or Poisson distributions,

which are parameterized by just their mean. Instead, we can fit the data better with the more flexible

NB distribution, which is parameterized by its mean and variance. This requires an additional set of

feature weights to estimate the variance of the in distribution.

In 3D-F, we visualize results from fitting pooled and split forms of models composed from each intrinsic

feature listed in 3B. For each model, we select an appropriate prior variance on the weights through

an empirical Bayes58 hyperparameter selection method (Technical Appendix), and for features that

take a scalar value as input (those in 3F), we also choose the number of basis functions. We compute

the marginal log likelihood (MLL) of each model to select hyper-parameters and to choose a preferred

feature form (pooled or split, indicated with gold star). In modeling the interbout interval as a function

of preceding bout-type, a separate in distribution is produced for each of the 18 possible values for bn−1

(with 2 example values shown, 3D). The NB distribution fits observed data better than geometric or

Poisson, so we use the NB throughout the rest of the paper. With a split form, the preceding bout-type

feature captures subtle bout-type specific differences in interbout interval durations across fed and starved

fish groups (3E). For each remaining feature, we report the predictive mean of the NB distribution for fed

and starved groups across a range of possible input values (3F). We include an additional set of split-bias

weights in each model in 3F to capture the overall mean and variance of interbout intervals for each fish

group (2 extra free parameters per fish group). This design choice allows models composed from pooled

features (3F, top row) to capture shifts in mean and variance of interbout intervals across fish groups

without using the more complex split features (3F, bottom row).

After fitting the interbout models, we next visualize their predictive output to see how behavioral

history influences future interbout interval durations selected by the fish. On a short timescale, we

find consecutive interbout interval durations are autocorrelated (3F, column 1). On an intermediate

timescale, interbout intervals get shorter as hunt sequences get longer (3F, column 2). By contrast, as

exploring sequences get longer, interbout intervals also get longer (3F, column 3). After accounting

for the shift in mean, the relationship between these 3 features and interval in is similar across fish
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groups. By contrast, fed and starved fish display opposing patterns of interbout interval selection on the

longest timescale (3F, column 4). Starved fish initially hunt more, producing shorter interbout intervals.

Fed fish initially explore more, producing longer interbout intervals. As their hunger states equilibrate,

interbout intervals selected by fed and starved fish become more similar. These opposing behavioral

patterns require the split form of the ttank feature to be modeled appropriately.

Constructing Probabilistic Models to Predict Bout-Types

The second component of the marked renewal process is a model of how the next bout-type is selected

depending on behavioral history, including the interval immediately preceding it. We use the previously

introduced intrinsic features (from Figure 3) and include also 4 extrinsic features (4A) to model how

locations (vloc), sizes (vsize), and relative velocities (vx , vy) of objects in the fish’s local environment

relate to bout-type selection. We use locations of putative prey objects to construct an 868-dimensional

image (vloc) encoding their final positions prior to initiation of the next swim bout. We modify vloc
to produce the other extrinsic features by scaling the intensity of each represented object (S9), with

an example vsize input shown (4A). Similar to the interbout models, we take the dot product of a

basis function representation of a feature input with its corresponding weights to produce a vector of

bout-type “activations”, ψ (4B). This vector ψ is passed through a softmax function to generate a valid

probability distribution, π, over all 36 possible bout-types (Technical Appendix). As before, we perform

hyper-parameter selection for all features (S10) and select a preferred form (pooled or split). We also

include a set of split-bias weights to account for differences in baseline bout-type abundances across

fed and starved fish groups (36 extra free parameters per fish group). This again allows simpler pooled

models to account for differences in bout-type abundances across groups, and we choose pooled forms

for all bout-predicting features except ttank.

The tendency of larval zebrafish to switch between modes of exploring and hunting can be seen in

the block structure of bout transition probabilities captured by the preceding bout-type feature (4C-D).

While exploring, larvae are likely to link consecutive exploratory bouts of similar energy (note increased

transition probability along diagonal in 4C). This bout transition pattern may permit larvae to maintain

speed while exploring, especially in combination with autocorrelated interbout intervals. It is known

that larval zebrafish can adjust their swimming speed to match optic flow stimuli59, and it seems they

employ speed control mechanisms during natural exploratory behavior as well. Larvae enter hunting

mode with a transition to J-turn, after which they are likely to emit some pursuit bouts before an abort

or strike. Larval zebrafish behavior is symmetric at the population level, so we construct symmetric

features to simplify and improve models. We exploit symmetry in the preceding bout-type feature by

considering ipsilateral (4C) and contralateral (4D) bout transition probabilities. It has been shown that

zebrafish larvae tend to link bouts in the same direction while exploring a featureless environment, and
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Figure 4: Probabilistic models to predict bout-type. Caption on following page.

that neural circuits in the anterior rhombencephalic turning region (ARTR) mediate switching between

leftward and rightward states40. We too see that larvae tend to link exploring bouts through ipsilateral

bout transitions (4C) rather than contralateral transitions (4D). This pattern extends also to hunting,

with nearly every transition being more likely to occur ipsilaterally, except for transitions into abort (4D,
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Figure 4: Probabilistic models to predict bout-type. A. Four extrinsic features encode locations and properties of
found surface objects. See S9 for details. Here, the sizes of objects found in 1K are encoded to predict the identity
of the next swim bout (the p4-R bout shown in 2B). B. Schematic of GLM to compute bout-type “activations” (ψ)
which pass through a softmax function to generate a probability distribution (π) over bout-types as a prediction
for bout bn. See Technical Appendix. C. Ipsilateral bout transition probabilities (i.e. left to left, or right to right)
from pooled-bn−1 model. Each row shows the probability that bn will be each bout-type, given the preceding
bout-type. D. Contralateral bout transition probabilities (i.e. left to right, or right to left) from pooled-bn−1 model,
reported relative to ipsilateral transition probabilities. Rare transitions are not shown (total transition probability
of bn−1 → bn < 0.015). Blue squares indicate contralateral transitions that are less likely than corresponding
ipsilateral transitions. Nearly all transitions are more likely to be ipsilateral, except from j2 and p1-4 into abort
(arrow). E. Weights from pooled-vloc model are shown for each rightward hunting bout-type. Objects found in
red bins increase probability of that bout-type being selected next. F. pooled-in model summary. Activations of 5
bout-types are shown, given a range of preceding interbout interval values. Full bout-type probability distributions
are shown for 3 specific values of in (indicated with i, ii, and iii). For clarity, only probabilities of leftward bouts
are shown, averaged across fed and starved fish. G. pooled-thunt summary. Similar to F, but for hunt dwell-time.
H. pooled-texplore summary. Similar to F, but for explore dwell-time. I. split-ttank summary. Similar to F, but for
tank-time. This feature is split, so fed and starved probabilities are shown separately. Note that fed and starved
behavior is different at ttank = 10 minutes, but converges by ttank = 40 minutes.

arrow), during which fish are likely to switch left-right state. While bout transition probabilities are

different across fed and starved fish, the transition structure is similar enough that the conservative model

selection approach favors the simpler pooled-bn−1 form (with 648 feature weights) over the split-bn−1

form (with 1296 feature weights). For comparison, see the split-bn−1 model (S11).

Prey object locations also influence bout-type selection, especially during hunts, and pooled-vloc weights

associated with each hunting bout-type are shown (4E). Since vloc inputs are high-dimensional, we

compress them by summing vloc pixels within spatial bins (as shown). Objects located in red spatial

bins increase the probability that the corresponding bout-type will be selected next by the fish. Larvae

typically select a J-turn to orient toward a laterally located object (∼15-60° relative to heading), and the

magnitude of heading angle change depends on prey location30 (compare j1, j2). Energetic pursuits

(p3-4) are more likely when prey are further away, while larger |∆heading| pursuits (p2, p4) are more

likely when prey are located more laterally. Prey locations also influence how hunts will end, with strike

becoming most likely with an object located almost directly in front of the mouth. By contrast, aborts

are only weakly related to prey location and may be selected by the fish to terminate unsuccessful hunts.

The vloc weights associated with exploring bouts are more spatially uniform with near-zero or negative

weights (not shown), increasing the likelihood of exploring bout selection when prey are absent. Taken

together, prey locations relate to larval zebrafish bout-type selection in expected ways, and these basic

relationships are captured by the pooled-vloc feature.

The generative process underlying bout-type selection depends nonlinearly on the preceding interbout

interval, and we capture this dependency with the pooled-in model (4F). The activations (ψ) of 5 separate

bout-types across the range of in input values are shown (4F, left panel), with larger activations indicating
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higher bout-type probability. Full bout-type probability distributions (π) evaluated at 3 example values

of in are also shown (4F, panels i-iii), with probabilities across fed and starved fish averaged for display.

At very short preceding interbout interval values (in < 0.25 sec), activations of p3, strike, and abort

have different dynamics, indicating how timing is intricately involved in bout-type generation during

hunts. As in extends from 0 to 0.25 seconds, strikes become less likely, aborts become more likely, and

p3 probability peaks near 150 ms before decreasing again. As in reaches 0.5 seconds (4F, panel ii),

exploring bouts become more probable. As in reaches 1 second (4F, panel iii), low-energy e1-3 and

high-|∆heading| e3, e6, e9 bouts become most likely.

Longer timescale bout-type dependencies are captured with thunt and texplore features (4G-H). As hunts

extend, aborts become less likely and strikes become more likely (4G, left panel). Pursuits are always

likely when larvae are in hunting mode (i.e. thunt is non-zero), but the probability mass shifts toward

the short straight p1 bout as hunts get longer (4G, panel iii) and larvae have approached a target. In

these experiments, larvae spend most of their time exploring, and bout-type probabilities shift slightly as

larvae spend more time in exploring mode. As explore dwell-time increases, larvae become more likely

to select the slow straight e1 bout (4H) and also become more locked into the exploring behavioral

state. The probability of emitting a J-turn decreases ∼46% as texplore increases from 5 bouts (4H, panel

i) to 40 bouts (4H, panel iii). This effect may be partially explained by decreased food density as fish

navigate toward the arena edge. On the longest timescale, the ttank feature captures slow fluctuations

in bout-type probabilities over the course of observation. As with the models of bout timing, the ttank
feature must be split to capture opposing behavioral trends of fed and starved fish on this timescale.

Separate bout-type probability distributions for fed and starved fish are shown (4I, panels i-iii) and

bout-type selection becomes similar across fish groups as their hunger states converge at ttank = 40

minutes (4I, panel iii).

Comparing and Combining Behavioral Models

Having constructed several single-feature models of larval zebrafish behavior, we next aim to compare

their quality. To this end, we compute the marginal log likelihood (MLL) of each model and report

improvement over the simplest baseline model (pooled-bias). For interbout models (5A), the baseline NB

pooled-bias model has 2 parameters (1 for mean, 1 for variance). For model comparison, we show MLL

for pooled and split forms of every model introduced in Figure 3. We include also bn−2 as well as in−2,

in−3, in−4, and in−5 to see how predictive information decays over time. We find that preceding bout-type

is best able to predict in, but that preceding interbout interval is a close second, and that more distant

behavioral history also provides useful information to model the interbout interval. In general, MLL is

similar across pooled and split forms for each feature, except for ttank. We interpret this to suggest that

any mild gains in predictive performance through use of split features may be offset by their increased
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Figure 5: Comparing and combining interbout interval and bout-type models. Caption on following page.

complexity and decreased number of training examples per split weight. We therefore select the pooled

form for all features except those indicated with an asterisk.

While preceding bout-type is the best predictor of in, can we build stronger models by combining features?

More generally, to what extent do the representations of behavioral history encode non-redundant

information about interbout in? We approach these questions by combining all pairs of features (in their

selected forms) to produce 45 paired interbout GLMs (5B). For each paired model, we compute MLL (as
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Figure 5: Comparing and combining interbout and bout models. A. Pooled and split forms of all NB interbout
models introduced in Figure 3 are compared by computing the log of the marginal likelihood (MLL) of each
model. MLL of the simplest interbout model (pooled-bias: 1 parameter for mean, 1 for variance) is subtracted from
each model’s MLL as a baseline. For comparison, we include features similar to preceding bout-type and preceding
interbout interval, but from further into behavioral history. Pooled forms are selected unless indicated with asterisk.
B. All pairs of features (in selected form) from A are combined to make 45 paired interbout models. Paired models
are evaluated by computing their MLL (above pooled-bias, as in A) and dividing this value by MLL of the stronger
feature component (values from A). C. All features (in selected form) from A are combined to make a combo
GLM for interbout intervals. We start with the strongest paired model and add the feature at each selection step
which increases MLL most, until all features are added. D-F. The same as A-C, but for bout-type models. G. The
performance of the NB combo interbout model is compared to similarly constructed combo interbout models that
instead generate either geometric or Poisson distributions to predict in. The NB distribution fits the data best. H.
Performance of the combo bout model is compared to that of the simplest bout model (pooled-bias, capturing just
overall abundance of each bout-type). The F1-statistic is computed for each bout-type on test-set data (combo
model: bars; baseline: white lines). Fold increase is reported for each bout-type, which is just combo performance
divided by baseline performance. Note that some bout-types are much harder to predict than others. I. Combo
bout model confusion matrix for test-set data (left and right versions of bout-types are shown).

in 5A) and report improvement over the stronger of its 2 feature components. Paired models that show

large improvement should combine features that provide some unique information about interbout in to

improve model accuracy. We find that preceding bout-type and preceding interbout interval combine to

produce the strongest paired interbout model (white circle, 5B). This paired [bn−1, in−1] model improves

over bn−1 alone by 0.05 nats per interbout, or 29% relative to baseline. By contrast, the paired [bn−1,

texplore] model (white square, 5B) improves over bn−1 by just 0.002 nats per interbout, or 1.4%. Since

the models can improve by combining features, we combine all features from 5A to construct a combo

interbout model (5C). We add features one at a time via greedy stepwise selection, adding the feature

that increases MLL most at each step. Model quality improves and eventually saturates during combo

model construction (note plateau in MLL).

We next repeat this procedure for the bout-type models (5D-F). We include also results from GLMs

composed from extra extrinsic features listed in 4A (vsize, vx , and vy). We find that preceding bout-type is

by far the best predictor of bout-type bn, followed by hunt dwell-time and explore dwell-time, and then

preceding interbout interval. As constructed, the GLMs fail to fully capture the complex relationship

between the state of the fish’s local environment and its bout-type selection. This problem is challenging

for several reasons. Identified environmental objects include both prey (e.g. paramecia, rotifers) and non-

prey (e.g. dust, algae), which differentially influence larval zebrafish behavior. Second, environmental

objects are abundant in these experiments (mean # of identified objects per bout = 12). This complicates

visual scenes encountered by the fish and also our representations of environmental state. Third, the

locations, sizes, shapes, and motion patterns of nearby objects are likely to interact in complex ways to

influence larval zebrafish action selection. To improve our understanding of how sensory input relates

to bout-type selection, we construct feed-forward neural networks that take the extrinsic features as
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input (S12) and combine them nonlinearly to form a prediction. We find this neural network model

improves substantially over the vloc GLM (see S12), with predictions of all bout-types improving on

held-out data, especially hunting bouts. However, bout-type bn is still far better predicted by preceding

bout-type. This result indicates that more sophisticated modeling approaches may be necessary to more

effectively predict future larval zebrafish behavior from naturalistic environmental data, but also that

bout-type selection depends strongly on the animal’s very short-term behavioral history1.

The strongest paired bout model (white circle, 5E) again combines preceding bout-type with preceding

interbout interval, even though preceding interbout interval is just the 4th strongest individual feature.

This paired [bn−1, in] model improves over bn−1 alone by 0.09 nats per bout, or 14%. By contrast, the

paired [bn−1, texplore] model (white square, 5E) improves over bn−1 by just 0.005 nats per bout, or 0.8%.

This result again indicates that distinct features of the fish’s short-term behavioral history (i.e. preceding

bout-type and preceding interbout interval) encode non-redundant information about its future action

selection. As before, we construct a combo bout model by iteratively adding features (5F). The strongest

3-component bout model ([bn−1, in, vloc]) adds information about prey locations to the strongest paired

bout model, combining sources of internal and external information over a timescale of a second or less.

Model quality again saturates during construction of the combo bout model.

We next take a closer look at the quality of the combo interbout and bout models. To confirm the NB

distribution was a proper choice, we compare the NB combo interbout model (from 5C) to similar combo

interbout models constructed instead with either Poisson or geometric distributions (5G). While it requires

more free parameters, the NB model clearly outperforms the others on held-out data. For the bout

models, we have so far considered overall quality by assessing how well bout-types can be predicted in

general. Here we show predictive performance of the combo bout model for each individual bout-type

(5H), as measured by the F1 score60 of each one-vs-rest classifier. We compare this performance to that

of the baseline pooled-bias bout model (5H, white lines). This shows us which bout-types are easiest to

predict (e.g. pursuits, aborts, strikes, e0), and which are most challenging (e.g. e4-6, j2). In addition, we

reproduce this analysis for each of the single feature bout models described in Figure 4, and also for

the strongest paired and 3-component bout models (S13). We find the combo bout model distributes

probability mass over similar bout-types (5I), which should be expected if the generative processes

involved in the production of similar bout-types are also similar.

Simulating Behavioral Trajectories of Fed and Starved Fish

A strong test of a behavioral model is to evaluate its ability to generate realistic behavior in novel

contexts. To that end, we alternate sampling from the combo bout and interbout models (here called a

combo renewal process) to move a virtual fish through an artificial environment with abundant prey (6A,

Supplementary Videos 3-4). We simulated behavioral trajectories of 50 fed and 50 starved fish and
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Figure 6: Sampling from combo renewal process to simulate behavior in a virtual environment. A. We
simulate behavioral trajectories of 50 fed and 50 starved fish (40 minutes each) by alternately sampling from
the combo interbout and combo bout models (we call this a combo renewal process). See Supplementary Video
3-4, S14, and Methods for details). Here, ∼5 seconds of simulated behavior is shown in which the fish enters
a hunt and strikes at a virtual prey object. Virtual prey objects influence bout-type selection and move through
the environment as biased random-walking particles with fixed sizes and speeds. B. Bout-type triggered averages
(for j1-R and p1-R) of the fish’s field of view preceding bout initiation indicate that prey objects influence hunting
in expected ways. C. Histograms of interbout interval durations from simulated fed and starved fish (mean ±
SE). D. Ipsilateral bout-transition probabilities observed for simulated fed and starved fish are compared. Red
squares indicate increased probability for starved fish relative to fed fish. E. Hunt length distributions for hunts that
end in either strike or abort. The left panel shows distributions for real fish observed in these experiments. The
middle panel shows hunt length distributions (mean ± SE) from simulations in which bout-types and interbout
intervals depend on only preceding bout-type (called a 1st-order Markov renewal process). The right panel shows
these distributions for simulations with the combo renewal process (as in A). F. Distribution of exploring streak
length (in # of consecutive exploring bouts) for fish simulated from 1st-order Markov renewal process and combo
renewal process. G. Histograms from F are compared. Combo renewal process simulations produce more short (≤5
exploring bouts) and long (≥25 exploring bouts) streaks of exploring bouts. H. Bout-class abundances produced
by simulated fed and starved fish (from combo renewal process) are compared in 10-minute bins (similar to 2D).

found that simulations capture multiple timescales of structure in larval zebrafish behavior. Prey object

locations influence hunting bout selection in expected ways (6B), and fed fish select longer interbout

intervals (6C), as expected. The effects of hunger can be seen by comparing bout transition probabilities

of fed and starved fish in simulations (6D). For example, fed fish are more likely to transition to low-energy

exploring bouts, while starved fish are more likely to transition to high-energy exploring bouts. Starved

fish also adjust their behavior in several ways to increase food intake. They are more likely to transition

to J-turns (especially j2) and to extend hunt sequences by linking pursuits55. Starved fish are also less

likely to transition to abort and more likely to transition to strike than fed fish.

The combo renewal process simulations also capture longer timescale behavioral dependencies observed
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in our experiments. With real fish, we find that hunts ending in strike are much longer than those ending

in abort (6E, left panel). This trend is absent in simulations generated from a first-order Markov renewal

process (6E, middle panel) in which interbout intervals and bout-types depend on just preceding bout-type

(bn−1). By contrast, the combo renewal process simulations do better to recover this higher-order hunting

structure (6E, right panel). We also generate more realistic exploring behavior with the combo renewal

process. Upon entering exploring mode, larvae are initially likely to exit, but get more locked into

this mode with time (see 4H). Accordingly, we see an overabundance of short and also long exploring

sequences in combo renewal process simulations compared to simpler simulations (6F-G). Finally, the

simulations capture slowly changing differences in bout-type selection probabilities across fed and starved

fish as their hunger states equilibrate over 40 minutes (6H).

Discussion

Behavior is the principal output of the nervous system and, like the nervous system, it is complex

and high-dimensional29,61. To make studying the brain more manageable, animal behavior is often

constrained during neurobehavioral experiments. This reductionist approach has many benefits: it

simplifies behavioral description, reduces experimental variability, and improves interpretability of neural

data. However, an important frontier in neuroscience is to better understand how brains function in

natural conditions62. The NIH BRAIN Initiative63 has identified study of the “Brain In Action”64 as a

priority research area, stating that “[a] critical step ahead is to study more complex behavioral tasks and

to use more sophisticated methods of quantifying behavioral, environmental, and internal state influences

on individuals.”65 Continued development of such tools should allow for improved quantification of

ethologically relevant behaviors occurring in naturalistic environments. Importantly, these tools should

capture the dynamics of minimal behavioral elements, scale to big datasets, and be compatible with

modern techniques to record neural population activity. Here, we describe such an approach for the

study of larval zebrafish behavior.

In this study, we first acquired high resolution behavioral and environmental data of larval zebrafish

exploring and hunting in an unrestrictive naturalistic environment. We then used dimensionality

reduction and density-based clustering to categorize individual swim bouts into discrete types. Finally,

we constructed a probabilistic generative model (specifically, a marked renewal process) that predicts

future larval zebrafish behavior by combining information about hunger state, multiple timescales of

behavioral history, and the positions and properties of potential prey in its local environment. This

approach offers a means to summarize larval zebrafish behavioral patterns, to validate and compare

models composed from separate predictive features, and to simulate realistic behavioral trajectories

through virtual environments. By constructing a behavioral model of how state influences action, we

can make predictions about what types of signals must be present in the neural system driving this
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behavior.

Our study generates testable hypotheses about how neural mechanisms might give rise to observed

behavioral patterns on multiple timescales. On a short timescale, we see that larvae are likely to link

consecutive exploring bouts through ipsilateral transitions, but also tend to begin hunts ipsilaterally.

It has been shown that a reciprocally connected neural circuit in the anterior hindbrain (the ARTR)

alternates between “leftward” and “rightward” states to mediate temporal correlations in turn direction

during exploration40. However, how the ARTR or related circuits may bias reactions to prey stimuli is

unknown. We predict the ARTR or related networks may asymmetrically modulate premotor systems

(e.g. reticulospinal neurons66, hunting command neurons67, or premotor tectal assemblies68) such that,

with the ARTR in a leftward state, leftward J-turns are generated preferentially to rightward J-turns.

Alternatively, ARTR-state-dependant modulation could also occur further upstream in the sensorimotor

hierarchy, for example, through asymmetric modulation of left- and right-hemisphere retinorecipient

areas that process prey stimuli (e.g. optic tectum, AF7)68,69. In this case, identical prey stimuli presented

to the left or right eye may not be equally salient. Instead, output from the left and right retinas might

be processed asymmetrically to promote ipsilateral transitions from exploring to hunting.

Following hunt initiation, several behavioral patterns interact to influence hunt outcome. As hunts extend,

larvae select shorter interbout intervals, pursuits become finer, and abort probability decreases while

strike probability increases. By contrast, as the time since the previous bout increases, abort probability

increases, pursuit probability rises and falls, and strike probability decreases. We posit these time-sensitive

hunting patterns depend on reciprocal connectivity between the nucleus isthmi (NI) and the tectum

and pretectum55. It has been shown that the NI becomes active following hunt initiation and that NI

ablation leads to specific deficits in hunt sequence maintenance, thereby increasing abort probability.

Henriques et al. 55 propose a model for NI-mediated feedback facilitation of (pre)tectal prey responses to

facilitate extension of hunt sequences. This model can help explain why abort probability decreases and

strike probability increases as hunts extend, though how bout-type selection during hunts depends so

intricately on preceding interbout interval duration is not well understood. It is possible that tectal prey

representations attenuate as the interbout interval extends beyond a few hundred milliseconds, potentially

through phasic NI feedback that ramps and then decreases as each interbout extends. Alternatively,

perhaps premotor populations49,67,68 involved in pursuit and strike generation become increasingly

inhibited as interbouts get longer, increasing hunt termination probability. Since larvae tend to abort

hunts through a contralateral bout transition, we suspect abort generation may frequently coincide

with a change in ARTR state. Such a mechanism might facilitate switches in spatial attention from one

hemifield to the other, thereby inhibiting return70 to a previously pursued object.

In our study, we observe many behavioral differences across fed and starved fish that equilibrate over tens

of minutes. With respect to hunting, we see that starved fish are more likely to initiate and extend hunts.

While engaged in a hunt sequence, starved fish also upregulate transitions to strike and downregulate
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transitions to abort relative to fed fish. It has been shown that food deprivation modulates larval zebrafish

tectal processing of prey-like and predator-like visual stimuli such that food-deprived larvae are more

likely to perceive and approach small moving visual objects50. Specifically, hunger induces recruitment of

additional prey-responsive tectal neurons and neuroendocrine and serotonergic signaling mediates this

effect50. We posit this mechanism may also increase tectal input to NI, thereby increasing NI-mediated

feedback to facilitate hunt sequence extension and increased strike probability in starved fish. While not

yet tested, direct hunger-state modulation of tectal-projecting NI neurons is also plausible. Other studies

show that lateral hypothalamic neuron activity correlates positively with feeding rate71 and that lateral

hypothalamic neurons respond to both sensory and consummatory food cues72. This brain region is

likely critically involved in sustaining increased hunting over tens of minutes through modulating visual

responses to prey and/or facilitating hunting (pre)motor circuits.

While the above mechanisms can explain why fed fish initiate fewer hunts in these experiments, we

hypothesize satiety signals affect several other circuits to induce additional changes in exploring behavior.

Fed fish select longer interbout intervals, lower-energy exploring bouts, and maintain wider eye divergence

preceding all exploring bout-types. To coordinate these behavioral patterns, satiety cues may separately

modulate midbrain nuclei involved in regulating bout timing73, nMLF neurons involved in regulating

swim bout duration and tail-beat frequency59, and oculomotor centers involved in controlling eye

position74,75,76. It is clear that feeding state coordinates a complex array of behavioral modifications,

likely through modulation of many circuits distributed across the larval zebrafish brain.

There are many avenues to extend this work. In future studies of naturalistic larval zebrafish behavior,

moving camera systems could employ faster camera frame rates, shorter exposure durations, and

better tracking algorithms to improve raw behavioral data. These modifications will allow for higher

resolution pose estimation (e.g. by including pectoral fin dynamics, pitch and roll estimates, and tail

half-beat analysis14), facilitate more comprehensive bout-type classification, and yield significantly

longer continuous behavioral sequences. Richer datasets will enable future models to extract nuanced

environmental dependencies, like prolonged attention to single prey amongst many distractors during

long hunt sequences (Bolton et al., manuscript in preparation). Such models might also combine

behavioral history information with raw environmental video77 to sharpen behavioral predictions.

Future models may simultaneously infer discrete behavioral states and their dynamics8,15,78,79, though

the non-Markovian dependencies on past behavior present new challenges80. Likewise, there are

many other internal state variables that could govern action selection, and future models could seek

to infer these latent states80 rather than using proxy covariates like tank-time. Behavioral states and

dynamics differ slightly from one individual larva to the next, and long-term behavioral recordings

combined with hierarchical models81,82 will allow us to study how these behavioral differences emerge

and change throughout early development. In addition, the contribution of particular neural populations

in generating naturalistic behavioral patterns may be probed by combining these behavioral models
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with experiments to activate, inhibit, or ablate specific neural cell-types in observed fish. Finally, our

approach to modeling naturalistic larval zebrafish behavior may be combined with new technologies to

record large neural populations in freely swimming fish83,84,85,86,87. This will present opportunities to

construct joint models of neural activity and natural behavior, providing important tools to study the

brain in action88,89.
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Methods and Materials

Animal Care

All fish were 7-8 days post-fertilization (dpf) Nacre-/- zebrafish raised at ∼27C. Fish were given abundant

live paramecia as food beginning at 5dpf. On test day, fish from the fed group remained in their Petri

dish with abundant paramecia while fish from the starved group were placed in clean water for ∼2-5

hours prior to testing. Testing was performed between 10 AM and 6 PM with 4-6 fish usually tested per

day.

BEAST Design

The gantry was acquired from CNC Router Parts (CRP4848 4ft x 4ft CNC Router Kit; www.
cncrouterparts.com) and was modified to run upside-down on top of a support structure con-

29

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 15, 2019. ; https://doi.org/10.1101/672246doi: bioRxiv preprint 

www.cncrouterparts.com
www.cncrouterparts.com
https://doi.org/10.1101/672246
http://creativecommons.org/licenses/by-nc/4.0/


structed from aluminum T-slotted framing available through 80/20 Inc (www.8020.net). Three electric

brushless servo motors (CPM-MCPV-3432P-ELN ClearPath Integrated Servo Motors) and 3 Amp DC

Power Supply (E3PS12-75) were acquired from Teknic (www.teknic.com). The camera (EoSens 3CL)

was acquired from Mikrotron (www.mikrotron.de) with a frame-grabber from National Instruments

(NI PCIe-1433; www.ni.com). The camera lens was acquired from Nikon (AF-S VR Micro-Nikkor 105mm

f/2.8G IF-ED; www.nikonusa.com). A long-pass infrared filter was placed over the lens (62 mm Hoya

R72; www.hoyafilter.com) to block light from the projector and collect transmitted light from an array

of 16 IR-LED security dome lights (850 nm Wide Angle Dome Illuminators) positioned on the air table

below the fish tank. The projector was acquired from Optoma (Optoma GT1080; www.optoma.com)

and mounted on the side of the air table to project onto a diffusive screen (Rosco Cinegel 3026 Tough

White Diffusion (216); www.stagelightingstore.com) embedded in the bottom of the plexiglass

tank.

Data Acquisition

The walls of the observation arena were assembled with light gray LEGO blocks to confine the fish to

a water volume of 300 x 300 x 4 mm. Approximately 15 ml of water containing a high density of live

paramecia were added near the center of the arena prior to testing each fish. This paramecia stock also

contained some rotifers and algae particles. For testing, single fish were transferred to the arena where

inwardly drifting concentric gratings were projected to bring the fish to the arena center. Zebrafish

larvae tend to turn and swim in the direction of perceived whole-field motion, a reflexive behavior called

the optomotor response, and we leverage this response to relocate the fish. Once the overhead camera

detected the arrival of the fish, the first observational trial was initiated and the drifting gratings were

replaced by a static color image of small pebbles, a natural image with reasonably high spatial contrast.

Next, the camera moved automatically on the gantry to maintain position above the fish and capture

video with a frame-rate of 60Hz and 2 millisecond exposure duration per frame. The fish was tracked

for 3 minutes or until it reached the edge of the arena or tracking failed. The fish could evade the

tracking camera with a high-speed escape maneuver, but these events were fairly rare. At the end of

each trial, the camera returned to the arena center, video data was transferred from memory to hard

disk, and concentric gratings were once again used to bring the fish back to the arena center to initiate

another trial (up to 18 trials per fish). If the fish did not return to the center within 10-15 minutes, the

experiment was terminated. The tracking algorithm was written to keep the darkest pixel in the image

(usually contained within one of the eyes of the fish) within a small bounding box located at the image

center. If the darkest pixel was located outside this bounding box, a command was sent to the motors

to reposition the camera to the location of that darkest pixel. In this way, the camera moved smoothly

from point to point to follow the fish, using the "Pulse Burst Positioning Mode" setting for the ClearPath

motors. We run the ClearPath motors with Teknic’s jerk-limiting RAS technology engaged to generate
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smooth motion trajectories and minimize vibration during point to point movement. Experiments were

run using PsychToolBox in Matlab.

Image Registration and Fish Pose Estimation

In every image frame, connected component pixel regions corresponding to the left eye, right eye, and

swim bladder were identified. The fish head center was defined as the average position of the centers of

these 3 regions of interest. Heading direction is defined as the direction of the vector from the swim

bladder center to the midpoint between the two eye centers. This information is used to translate and

rotate each image for subsequent pose estimation and environment analysis. Only image frames in which

all postural features could be extracted were included for further analysis. One common issue with pose

estimation was caused by body roll of the fish, usually during an attempt to strike at a prey object, in

which the fish would roll (rotate around its rostro-caudal axis) enough for one eye to occlude the other

from the view of the overhead camera. Rather than estimate eye vergence angles in these situations,

these image frames were excluded. Another common issue was caused by high-speed maneuvers by

the fish during which a 2 millisecond exposure was insufficient to capture a suitably sharp image, thus

causing either image registration or pose estimation algorithms to be compromised. We included only

image frames in which all postural features could be accurately extracted for further analysis. Video

segments containing problematic frames were split into separate video segments.

Temporal Segmentation of Bout and Interbout Epochs

Bout and interbout epochs were identified by taking the absolute value of the frame to frame difference

in heading angle and thresholding this time-series at 0.7 degrees. This binary signal was then dilated

(radius = 2 elements) and eroded (radius = 1 element) with built-in Matlab functions (imdilate,

imerode) to merge bout fragments and expand bout epochs to include one extra frame at the beginning

and end of each bout. These operations set the minimal duration of both bout and interbout epochs to 3

frames (50 ms).

Bout Summary Statistics

∆heading per bout: The change in heading angle per bout was calculated by averaging the heading

direction of the fish over all frames in the preceding interbout epoch and subtracting this value from

the average heading direction through all frames in the following interbout epoch. Positive values are

assigned to leftward bouts.

|∆heading| per bout: The absolute value of ∆heading per bout.

31

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 15, 2019. ; https://doi.org/10.1101/672246doi: bioRxiv preprint 

https://doi.org/10.1101/672246
http://creativecommons.org/licenses/by-nc/4.0/


distance traveled per bout: The change in head position per bout was calculated by averaging the position

of the fish head in the arena over all frames in the preceding interbout epoch (starting position) and

also for the frames in the following interbout epoch (ending position). The distance between these two

points is the distance traveled per bout.

|∆tail-shape| per bout: This non-negative 1-dimensional quantity summarizes how much the tail changes

shape during the 10 frames used to represent each swim bout (as in 2B). To compute this quantity, let

the 10-frame tail angle measurements be placed in an array T with shape 20 x 10. First, the magnitude

of frame to frame changes in each tail segment angle are computed to give a new array with shape 20 x

9. |∆tail-shape| is the sum of the absolute values of these 180 array elements. This value is divided by

180 to give units: radians per segment per frame. In Matlab syntax, this is computed as:

abs_delta_tail_shape = sum(sum(abs(diff(T, n=1, dim=2)))) / 180

Several additional summary statistics are used to describe the fish eyes during each bout. These metrics

are computed from the 10-frame representations of each bout and are described in S7.

tSNE Input

As described in 2B, each swim bout is represented as a 220-dimensional vector encoding the posture of

the fish through 10 image frames beginning at bout initiation with 20 tail vectors and 2 eye vergence

angles per frame (see also S1). All rightward bouts (∆heading< 0) were mirror reflected prior to running

tSNE by swapping the left and right eye measurements and multiplying all tail angle measurements by

−1. Because tail measurements are tenfold more abundant than eye measurements and we sought to

emphasize eye data in our clustering, we decreased the relative magnitude of the tail measurements

by encoding tail measurements in radians and encoding eye measurements in degrees. In practice, we

found that we could identify roughly the same bout-classes across a fairly wide range of scaling factors

used to emphasize eye measurements relative to tail measurements. While it is common to preprocess

data with PCA prior to running tSNE, we achieved qualitatively similar embedding results with and

without this step, so we simply ran tSNE on the 220-D inputs.

Each of the 200,559 swim bouts are represented as 220-D vectors as described above and are embedded

in a 2-D space with tSNE. We implement tSNE with Barnes-Hut approximations with CUDA to decrease

tSNE runtime (https://github.com/georgedimitriadis/t_sne_bhcuda). Euclidean distance

was used as a distance metric. Following embedding, 5 bout classes were identified with the routines

described in S2. The 3 largest clusters were then further subdivided by kinematic variables, |∆heading|
and |∆tail-shape|, as described in S6 and above.
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Identifying and Encoding Environmental Information

As described in 1K, objects near the water surface preceding each swim bout are identified with image

processing routines. Following image translation and rotation, a stack of the 6 images preceding bout

initiation are cropped as in 1K. High spatial contrast objects are identified in Matlab by filtering each

image in this stack with a Laplacian of Gaussian 2-D filter (size= 13 x 13 pixels, sigma= 1.6). Contiguous

3-D object volumes in this image stack are smoothed with 3-D dilation and erosion. The average position

of each object in the image frame preceding bout initiation was used to encode object location with the

extrinsic feature vloc. The number of pixels assigned to each object in this final frame was used to encode

object size with the extrinsic feature vsize. The velocity of each object was computed by calculating the

distance between the center of mass of each object in the 6th image frame preceding bout initiation

(t-minus 100 ms) and the 1st frame preceding bout initiation (t-minus 17 ms) and dividing by the time

elapsed. If an object was not properly segmented through all 6 frames, the velocity was calculated from

fewer frames (with a minimum of 3 frames). The velocity vectors for each object were used to encode

x-velocity and y-velocity in the extrinsic features vx and vy. While the image resolution is sufficient to

extract additional features such as the orientation, eccentricity, and detailed shape of each of object, we

have not yet included this information in our predictive models.

Intrinsic Features to Predict Interbout Intervals and Bout-types

preceding interbout interval: the duration of the preceding interbout interval in seconds. For models

to predict interbout interval duration (in), this is the duration of interbout in−1. For models to predict

bout-type (bn), this is the duration of interbout in.

preceding bout-type: the category (i.e. bout-type) of the preceding swim bout. There are 18 bout-types,

each of which is composed of left and right versions, giving 36 categories in total.

hunt dwell-time: the integer number of observed preceding consecutive hunting bouts (i.e. J-turn, pursuit,

abort, strike). As hunt sequences extend, this value increases.

explore dwell-time: the integer number of observed preceding consecutive exploring bouts. For all

predicted interbout intervals and bout-types, either hunt dwell-time or explore dwell-time will be zero,

with the other being a positive integer. Only the contiguous bout sequence containing the predicted

interbout interval (in) or bout-type (bn) is used to define these feature values.

tank-time: the amount of time (in minutes) elapsed since the first trial was initiated for that fish.
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Extrinsic Features to Predict Bout-types

vloc: locations of potential prey in the local environment.

vsize: sizes of potential prey in the local environment..

vx: relative x-velocities of potential prey in the local environment.

vy: relative y-velocities of potential prey in the local environment.

See S9-S10 for more information on intrinsic and extrinsic feature encoding.

Simulations

For our combo renewal process simulations (Figure 6, Supplementary Videos 3-4), we simulated an

environment with prey objects that move as biased random walking particles. Each particle has a

constant size and speed. These particles influence bout-type selection as their locations, sizes, and

relative velocities are encoded with the extrinsic features vloc, vsize, vx, and vy. We simulated 50 fed

and 50 starved fish for 40 minutes each (in 20 two-minute trials). Similar to our real experiments, prey

are distributed with a centro-peripheral gradient, with the highest density of prey located near where

trials begin. To simulate a behavioral sequence, an interbout interval duration is selected by randomly

sampling from an interbout interval distribution generated from the combo interbout interval model

(described in 5C). Next, a bout-type is selected by randomly sampling from a bout-type probability

distribution generated from the combo bout model (described in 5F). Upon selection of a bout-type,

we move the fish through its virtual world along the bout-type specific trajectories described in S14.

Since the combo bout model depends on the environment in addition to behavioral history and hunger

state, the virtual prey objects influence the fish’s behavioral trajectory. We call this combined bout and

interbout model a combo renewal process. For comparison, we simulate 50 fed and 50 starved fish with a

simpler model in which interbout intervals and bout-types depend only on preceding bout-type (bn−1). In

these simulations, interbout interval durations are sampled from a probability distribution generated

by the selected form of the preceding bout-type feature (split-bn−1), and bout-types are sampled from a

bout-type probability distribution generated from the selected form of the preceding bout-type feature

(pooled-bn−1). This model is referred to as a first-order Markov renewal process, and has no environmental

dependencies. For both the combo renewal process simulations and the first-order Markov renewal process

simulations, model weights are set at the maximum a posteriori (MAP) estimate of the GLM weights

from the trained models.
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Supplementary Figures

Figure S1: Encoding larval zebrafish posture in each image frame. A. In every image frame of our processed
dataset, we estimate several postural features. Each image is first translated and rotated to align the fish head
center (open black circle) and heading direction (solid black arrow) to a common reference. Left and right eye
vergence angles are found by fitting an ellipse to each eye and comparing the direction of the minor axis of each
ellipse to the fish heading (as shown). In this example, left eye vergence angle = 10° and right eye vergence angle
= 30°. Eye vergence angles range from around -5° (highly diverged) to 45° (highly converged). Mean eye vergence
angle is the average of the left and right eye vergence angles (20° in this example). Gaze direction is found by
bisecting the angle formed between the minor axes of the eye ellipses, and quantifies the extent to which the fish
is preferentially looking toward its left or right side. In this example, gaze direction = +10°. Gaze direction is
positive for leftward gaze (as shown) and negative for rightward gaze. Tail shape is encoded in each image frame
by placing 20 points along the tail and finding the local tail tangent direction at each point relative to heading,
here shown for a single tail point. Tail tangent angles are positive when pointing toward the animal’s left side
(shown at +75°) and are negative when pointing toward the animal’s right side.
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Figure S2: Identifying 5 bout-classes with density-based clustering of bouts in tSNE space. A. Each swim
bout is represented as a 220-dimensional observation as described in 2B. All rightward bouts (∆heading < 0)
are mirror reflected to resemble leftward bouts. For reflection, left and right eye measurements are swapped and
all tail vector measurements are multiplied by −1. All bouts are then embedded in 2-D space with tSNE (see
Methods). B. The 2-D points in A are binned in a 200 x 200 pixel image and this image is blurred with a Gaussian
kernel. C. The blurred image from B is thresholded to retain higher intensity pixels. Each pixel is then scaled by
the log of the shortest distance from that pixel to the perimeter. A watershed algorithm is then implemented (black
lines indicate segmentation boundaries) and bouts are assigned to 1 of 5 classes.
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Figure S3: Exploiting bout symmetry to simplify dimensionality reduction. The bout dataset is highly
symmetric, with approximately equal abundances of the left and right versions of each bout-type. Here we compare
2 types of dimensionality reduction (PCA and tSNE) on the original bout dataset (A-B) and the symmetrized
bout dataset (C-D). A. Here we separately perform PCA on the original bout eye data (20-D representations, left
column) and original bout tail data (200-D representations, right column). The first 3 principal components of the
eye data and also the tail data are visualized, with each swim bout colored by its bout-type (as in 2E). Bout-types
are less intermixed in eye data PCA space than in tail data PCA space. The locations of left and right j2 bouts are
indicated. B. The original 220-D bout dataset is embedded in tSNE space. All tSNE parameters (including initial
random seed) are identical to those used in the main text (2C). Note the separate clouds for left and right J-turns,
which would complicate subsequent density-based clustering. C-D. Similar to A-B but for the symmetrized bout
dataset. Note that all J-turns are now merged in a single cloud in D.
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Figure S4: Visualizing bout dataset with kinematic parameters. The tSNE map from 2C is reproduced in A-D.
Each point is a swim bout. The color of each point is used to indicate its percentile for a given kinematic parameter.
Histograms for these kinematic parameters for all swim bouts are shown in the bottom row. A. Mean eye vergence
per swim bout, calculated from the 20-D eye representations of each swim bout. B. Mean change in eye vergence
per swim bout, calculated from the 20-D eye representations. The mean eye vergence in frame 1 is subtracted from
the mean eye vergence in frame 10. Note that larvae converge their eyes during J-turns (yellow cloud) and diverge
their eyes during aborts and strikes (blue cloud). The 20-D eye observations largely influence the global structure
of the tSNE map. C. Magnitude of change in heading angle per swim bout. This is calculated by comparing the
average heading direction in the interbout interval preceding and following each swim bout. D. Magnitude of
change in tail-shape (|∆tail-shape|) per bout is calculated from the 200-D tail observations for each swim bout
(see Methods).
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Figure S5: Hunger state modulates eye position and bout-type selection. A. Histogram of time elapsed since
initiation of first observational trial (tank-time, ttank) for all observed bouts across fed and starved fish groups.
60% of all swim bouts occurred in the first 40 minutes (ttank < 40 min) of testing and these bouts are used to
compare fed and starved fish groups in 2D and 2G-H. The whole dataset is used for all modeling efforts and so
include data with ttank > 40 minutes. B. Reproduction of 2A from main text. C. Histograms of mean eye vergence
per interbout are calculated as in B, but for each 10-minute time bin to include all bouts with ttank < 40 minutes.
Each of these histograms is bimodal, and we report the height of the peak associated with eye convergence. The
heights of these peaks converge as tank-time increases, demonstrating how fed and starved fish groups adjust their
behavior over time. D. We randomly select 50,000 swim bouts (with ttank < 40 min) from each fish group, plot
these points in tSNE space, and make separate density maps for fed (left panel) and starved (right panel) groups
as in S2B. E. The image in the left panel of D is subtracted from the image in the right panel of D. Red regions
indicate bouts that are upregulated by starved fish.
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Figure S6: Subdividing bout-classes by kinematic parameters to get bout-types. A. For each bout-class, we
plot |∆tail-shape| versus |∆heading| for all swim bouts in that class (see Methods). All bout-class distributions are
highly symmetric. As described in the main text, the exploratory, J-turn, and pursuit bout-classes are subdivided.
The J-turn class is split in half by |∆heading| to give j1 (|∆heading| < 26.6°) and j2 (|∆heading| > 26.6°). The
pursuit class is larger and subdivided into 4 bout-types by first splitting all pursuits in half by |∆heading|, and then
splitting each remaining group in half by |∆tail-shape|. Bout-types p1 and p3: |∆heading| < 3.1°. Bout-types p2
and p4: |∆heading| > 3.1°. Bout-types p1 and p2: low-|∆tail-shape|. Bout types p3 and p4: high-|∆tail-shape|.
The exploratory class is the largest and the e0 bouts (mostly orofacial and pectoral fin movements, plus some
noise) are isolated first by thresholding at a local minimum in the bimodal distribution for |∆tail-shape| for
this bout-class. Bout-types e1, e4, and e7: |∆heading| < 2.4°. Bout-types e2, e5, and e8: |∆heading| > 2.4° &
< 10.3°. Bout-types e3, e6, and e9: |∆heading| > 10.3°. Bout-types e1-3: low-|∆tail-shape|. Bout-types e4-6:
medium-|∆tail-shape|. Bout-types e7-9: high-|∆tail-shape|. B. Density contour plots derived from scatter plots in A
with isolines delineating 5% quantiles. C. Each bout in tSNE map is colored by its percentile for bout duration (left
panel). The histogram for bout duration is shown with corresponding color-code. D. Bout duration histograms are
presented for each bout-type. All subplots share a vertical axis. Horizontal lines (on e0 histogram) indicate data is
truncated for display. E-F. Similar to C-D but for distance traveled per bout (see Methods).
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Figure S7: Eye movement patterns across bout-types. Caption on following page.
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Figure S7: Eye movement patterns across bout-types. Each row in A-F is similar to S6C-D. Each swim bout is
colored by its percentile for a given parameter summarizing the 20-D eye input data (panel 1 of each row). A
histogram summarizes the distribution of this parameter over all bouts (panel 2 of each row) and provides the
color reference for the corresponding tSNE map. Histograms are also shown for each bout-type (panels 3-6 of
each row). A. Mean vergence angle of the ipsilateral eye across 10 image frames beginning at bout initiation. For
a leftward swim bout, the ipsilateral eye is the left eye. B. Mean vergence angle of the contralateral eye across 10
image frames. C. Change in ipsilateral eye vergence angle. This is computed as the vergence angle in frame 10
minus the vergence angle in frame 1. D. Change in contralateral eye vergence angle. E. Mean gaze direction across
10 image frames. In each frame, gaze direction = (ipsilateral eye vergence angle − contralateral eye vergence
angle) / 2 (see S1). Note that most J-turns have a positive gaze direction, as larvae look in the direction to which
they will turn. F. Change in gaze direction. This is computed as gaze direction in frame 10 minus gaze direction in
frame 1. Note that most J-turns occur with positive gaze change as the contralateral eye converges more than the
ipsilateral eye, especially for j2. High-|∆heading| exploring bouts (e3, e6, e9) and aborts also tend to occur with
large positive gaze change. G. Bout-type averages of ipsilateral and contralateral eye vergence angles across 10
image frames, beginning at bout initiation. Note the different eye movement patterns during abort and strike.
During strike, larvae maintain eye convergence for longer, allowing them to maintain binocular view of a prey
target as they attempt to capture it. Eye movement patterns during strike are also more symmetric than during
abort.
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Figure S8: Duration of interbout intervals preceding and following each bout-type. A. Histogram of interbout
interval duration for whole dataset. B. Each bout in tSNE space is color coded by the duration of its preceding (left
panel) and following (right panel) interbout interval. Histogram in A provides the colormap. C-D. Histograms for
duration of interbout intervals preceding and following each bout-type. All panels share a vertical axis.
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Figure S9: Encoding intrinsic and extrinsic predictive features with basis functions. Intrinsic features encode
information about internal state or behavioral history and come in two categories: label features and temporal
features. Intrinsic features are used to predict interbout intervals (in) and bout-types (bn). A. Label features
include preceding bout-types (bn−1 or bn−2) and are encoded with a one-hot indicator. B. Temporal features are
1-dimensional and are expanded to multiple dimensions with radial basis functions, allowing GLMs to learn
non-linear mappings from a 1-D input to a probability distribution over in or bn. Temporal features include
preceding interbout intervals (in, in−1, in−2...), hunt dwell-time (thunt), explore dwell-time (texplore), and tank-time
(ttank). C. The distribution of each 1-D temporal feature defines the shape of radial basis functions used to encode
that feature (see Technical Appendix). For example, a given value for preceding interbout interval can be encoded
as a 6-dimensional input by evaluating each of 6 basis functions at that input value. We select the number of
basis functions used to encode each temporal feature with an empirical Bayes hyper-parameter grid search (S10).
D-G. Extrinsic features encode information about objects in the local environment just prior to bout initiation and
are used to predict that upcoming bout-type (bn). Here we show an example for encoding the locations, sizes,
and relative velocities of each surface object found in 1K to represent environmental state preceding initiation of
the swim bout shown in 2B (a p4-R bout). D. The center of mass of each object in the image frame preceding
bout initiation (t-minus 17 ms) is used to encode the 868-dimensional vloc feature by representing each object
with a circularly symmetric 2-D gaussian (σ = 105µm). The value of each of these 868 pixels is the value of the
gaussian evaluated at the distance from the pixel to the object center, summed over evaluations for all objects. If
no objects are present, all vloc pixel values are zero. The vloc feature is adjusted to generate the other extrinsic
feature inputs. E. To encode object sizes with vsize, the magnitude of the gaussian representing each object is scaled
proportionally to its pixel area. Note how the large dust particle (box 1 in 1K) is represented with high-intensity
pixels while smaller objects have lower-intensity representations. F. The x-axis velocity component for each object
is encoded with vx by multiplying each gaussian by a factor proportional to that object’s relative x-axis velocity.
Objects moving in the rostral direction (to the right) are assigned positive values while objects moving in the caudal
direction (to the left) are assigned negative values. Note that the motionless dust particle is assigned near-zero
value pixels while several motile prey objects are assigned non-zero value pixels. G. The y-axis component of
relative velocity of each object is encoded with vy. This component is encoded symmetrically such that objects
moving laterally (away from the x-axis) have positive values and objects moving medially have negative values. H.
Extrinsic features are high-dimensional and we compress them to lower-dimensional representations by summing
over pixel values within spatial bins. We select the number of radial and angular bins for each feature with an
empirical Bayes hyper-parameter grid search (S10). The bin structure selected for each feature is shown.
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Figure S10: Empirical Bayes hyper-parameter selection. Caption on following page.
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Figure S10: Empirical Bayes hyper-parameter selection. Here we describe our approach to perform empirical
Bayes hyper-parameter selection for features used to predict bout-type bn. We take a similar approach to tune
our interbout interval models (selection process not shown) A. The marginal log likelihood (MLL) of 3 forms of
the bias model to predict bout-type are compared. The form that performs best (green line) is symmetric (one
weight is shared for left and right versions of each bout-type) and split (separate weights for fed and starved fish
groups). For each form, we sweep over values for prior variance (σ2) on the weights (selection indicated with
black circles). The symmetric pooled-bias model (blue line) is used as a comparative baseline (dashed line) for
all bout models, and its MLL (in nats per bout) is subtracted from MLL (in nats per bout) of other bout models
to report their quality (in B-H, and also in main text). All bout models that take a predictive feature as input
(except preceding bout-type) also include a set of asymmetric split-bias weights (red line) to account for bout-type
abundance. B. Prior weight variance is selected for each of 3 forms of the preceding bout-type model to predict
bn. The selected form is symmetric and pooled (pooled-bn−1: blue line), though it is only slightly favored over
the symmetric and split model (split-bn−1: green line), which has twice as many weights. The asymmetric form
(split-bn−1: red line) is shown for comparison only, and is not considered independently in the main text. C-F.
For each intrinsic temporal feature, we need to select both the number of basis functions used to encode the
feature input (y-axis) and the prior variance (σ2) on the weights (x-axis). We perform a grid search and select the
combination of parameters which gives the highest MLL (indicated with red box). For each feature, we perform a
grid search for the pooled and the split form. We select the pooled form for all features to predict bn, except for
ttank. G-H. For extrinsic features, we select 3 hyper-parameters (searches for vsize and vx not shown). We select
the number of radial (y-axis) and angular bins (x-axis) used to encode environmental objects (see S9H), and also
the prior variance (σ2) on the weights. Since this search space is larger, we perform a greedy search. To do this,
we compute MLL for a single combination of parameters. We then compute MLL for the 6 "neighboring" models
(in 3-D parameter space), and pick the strongest parameter combination. We repeat this process until MLL is
maximized (indicated with red box).
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Figure S11: Comparing fed and starved bout transition probabilities with split-bn−1 model. A. Output
probabilities of the split-bn−1 bout model. For each transition, transition probability for starved fish is divided
by transition probability for fed fish, and the log2 of this quantity is reported. For clarity, rare transitions (<1%
emission probability) are not shown. Blue squares show transitions with increased probability for fed fish, and
red squares show transitions with increased probability for starved fish. While the pooled-bn−1 bout model was
slightly preferred to this split-bn−1 form, this split form is useful to compare the behavior of fed and starved fish.
The pooled and split form of this preceding bout-type model have nearly equal values for MLL. We expect potential
gains in predictive performance with the split form are offset by increased complexity (it has twice as many free
parameters). B. The posterior probability density for 3 selected bout transitions (black boxes in A) for fed and
starved fish. These distributions were computed by sampling 10,000 sets of split-bn−1 weights and calculating
output transition probabilities under each model instance. Note that starved fish are more likely to transition
ipsilaterally from e5 to h2, are less likely to transition contralaterally from p3 to abort, and are more likely to
transition ipsilaterally from p1 to strike. While many bout transitions have significantly different probabilities
in fed and starved fish, many also have similar probability or are rarely observed. This highlights some of the
challenges of model selection because while the pooled-bn−1 bout model has fewer weights and slightly higher
MLL, the split-bn−1 bout model captures many differences across fed and starved groups. Fortunately, our combo
renewal process simulations (Figure 6) recover most of the differences in bout transition probability across fed and
starved fish due to inclusion of other features with split architecture.
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Figure S12: Feed-forward neural networks improve bout-type prediction from extrinsic features. Caption on
following page.
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Figure S12: Feed-forward neural networks improve bout-type prediction from extrinsic features. A. Here we
improve bout-type prediction from environmental information encoded in our extrinsic features (vloc, vsize, vx,
vy) by using feed-forward neural networks (NN) that take these features as input. We consider NNs with 1 or 2
hidden layers, with 4, 6, 8, 10, 16, 20, 30, 40, or 50 units per hidden layer. Layers are densely connected. We fit
all NN architectures for each individual extrinsic feature input (blocks 1-4), but also consider combinations of
extrinsic feature inputs (blocks 5-6). For comparison, we include GLMs described in 5D of the main text (indicated
with "linear" in blocks 1-4). The best model in each block is indicated (black arrow). Models are compared
by the average log likelihood assigned to target bout-types in a held-out test-set. The strongest linear model
(purple bar) and NN model (red bar) are indicated. The strongest NN model has 2 hidden layers, 20 units per
layer, and takes vsize, vx, and vy as input. All models are symmetric such that mirror-symmetric inputs produce
mirror-symmetric bout-type probabilities as output. All models pool data across fed and starved fish. B-D. Here we
probe the strongest NN (red bar in A) with a synthetic prey object to see how bout-type probabilities depend on
locations and properties of prey in the local environment. For simplicity, we show examples with a single synthetic
prey at a single location (indicated with red circle), but this approach generalizes to arbitrary arrangements of
potential prey. In B, we vary the size of the prey object (size in pixels; pixel side length = 13µm) while holding its
x-velocity and y-velocity constant. Similar to 4F in main text, the "activations" of several bout-types are shown
(panel 2), here for left and right versions of e6, j2, p3, abort, and strike. The full predicted bout-type probability
distribution is evaluated at 3 indicated values for prey size (panels i-iii). With a prey object at this location, p1-R is
always most likely, but p1-R probability increases as the object gets larger. In C, prey object x-velocity is varied
from approaching the fish (panel i), to having zero x-velocity (panel ii), to moving away from the fish (panel
iii). A speed of +1 pixel / frame = +780µm / sec (away from the fish). With the object approaching the fish,
high-energy exploring bouts are most likely. This is likely due to some residual coasting of the fish following
its preceding swim bout, causing the relative x-velocity of an immobile object to be negative. With the object
having zero or positive x-velocity, p1-R is most likely. In D, prey object y-velocity is varied from moving medially
(panel i), to having zero y-velocity (panel ii), to moving laterally (panel iii). The y-component of velocity has a
significantly nonlinear relationship to bout-type probability. At this location, the probability of strike is maximum
as the object moves medially at ∼780µm / sec (panel 2). With the object moving laterally, all rightward hunting
bouts become much more likely, especially p1-R. E. Test-set F1-score (similar to 5H) is shown for the best GLM
model tested (purple bar in A). F. Test-set F1-score is shown for the best NN model tested (red bar in A). Prediction
of all bout-types improves with the NN, especially for hunting bouts. G. Confusion matrix for best NN model
(similar to 5I). Notably, strikes are confused with p1 bouts, likely due to the similar environmental conditions that
elicit these bout-types but also the rarity of strikes.
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Figure S13: Comparing GLMs to predict bout-type on held-out data. A. Similar to 5H, but for each selected
single feature model described in 5D of main text to predict bout-type (except vsize, vx, vy). Preceding bout-type
(bn−1) is the best feature to predict every bout-type. B. Here we compare the preceding bout-type model (reproduced
from A) to the best paired bout-type model ([bn−1, in]), the best 3-feature bout-type model ([bn−1, in, vloc]), and
the combo bout-type model used in our combo renewal process simulations (Figure 6 in main text).
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Figure S14: Bout-type trajectories used in combo renewal process simulations. A. Median duration (in number
of frames) of each bout-type is shown in parentheses. The average trajectory for all median duration bouts of
each bout-type are shown. Leftward and rightward versions of each bout-type are averaged to produce mirror
symmetric trajectories. For each example trajectory, the fish is initially positioned as shown for the e0 bouts, which
have minimal displacement and heading angle change. We extend each trajectory to include the fish’s position
through 3 additional image frames taken from the beginning of the following interbout interval (in+1). This allows
the fish to more realistically coast and decelerate following swim bouts in simulations. Circles indicate the fish
head position during each frame, and the arrows extending from the terminal circle indicate the new heading
direction at the end of each bout-type. These trajectories are used to move the fish through its virtual environment
in the combo renewal process simulations described in Figure 6.
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Supplementary Video Legends

Figure SV1: Data acquisition with the BEAST (animated). This is an animation of the BEAST rig used to acquire
data for this study. The larval zebrafish swims in an expansive arena (300 x 300 x 4 mm water volume) and is
tracked with a camera moving automatically overhead. The tank rests on an air table to isolate the fish from the
vibration of the moving gantry. The camera has an infrared filter and collects light from the array of IR-LEDs
positioned on the air table. The diffusive screen embedded in the tank bottom scatters the infrared light and helps
to create even lighting for behavioral imaging. A projector is used to project inwardly drifting gratings (not shown)
onto the screen in the tank bottom to bring the fish to the center of the arena, where the camera waits to detect the
arrival of the fish. Once at the center, the projector delivers a static color image of pebbles (pictured in the video).

Figure SV2: Aligned behavioral video containing a hunt sequence. This video shows the behavioral sequence
described in 2J-K. All behavioral video in this study is acquired at 60 frames per second, but this video is shown
at half-speed (30 frames per second). The video contains 439 image frames (7.32 seconds in real time). The
fish emits 2 exploring bouts, and then transitions into a 13-bout hunt sequence ending with a successful strike
to capture a prey. The fish initiates the hunt by orienting toward a prey object with a high-|∆heading| leftward
J-turn (j2-L). However, upon orienting toward this prey object, another prey arrives in the same location, and the
fish appears to switch to a separate isolated prey target using a high-|∆heading|, high-|∆tail-shape| pursuit bout
(p4-L). The fish then pursues this moving prey object, closing the distance to the target and aligning its heading
direction with the heading direction of the target. During prey capture, the prey can be seen entering the mouth
of the fish and then moving around inside the mouth before it is swallowed. Swallowing of the prey coincides
with emission of an e0 bout. These subtle movements highlight a challenge in parsing larval zebrafish behavior
into bouts and interbouts since swallowing behavior and other orofacial and pectoral fin movements are near our
threshold for bout detection. In the right panel of the video, the 20 tail vectors used to define tail-shape are shown
in each image frame, and the vergence angle of each eye is indicated by coloring the outline of each eye with the
"cool" colormap from Matlab, ranging from blue (diverged) to magenta (converged). Prey objects are extracted
from the movie for display with image processing routines similar to those used to encode environmental state
preceding each swim bout.

Figure SV3: Animation of a simulated behavioral trajectory The behavioral trajectory shown in 6A is reproduced
here in an animation. This excerpt was originally 411 frames (6.85 seconds of simulated time), but is slowed down
3x for display in this video. This behavior is generated by sampling from our combo renewal process model (see
Methods). In this sequence, the virtual fish exits exploring mode to hunt a moving prey object, ending this virtual
hunt with a strike toward the prey. This example captures many salient features of naturalistic larval zebrafish
behavior observed in our study. That being said, we searched our simulated data to locate a behavioral sequence
for display, and this example is not necessarily representative of an average simulated hunt. Also, when the fish
strikes at the virtual prey object in this movie, we remove that prey from the video for display purposes. However,
in our simulations, the environment runs in open-loop and prey are not affected by the behavior of the virtual fish.
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Figure SV4: Visualizing action selection in combo renewal process simulations Here we show a full 2-minute
behavioral trial simulated from our combo renewal process model. This video is slowed down 4x relative to
simulated time. The behavioral sequence shown in 6A is taken from this simulated trial (beginning with bout b161
at 6:14 in the video). Fish head position (colored circle) and heading direction (rightward) are held constant, and
the virtual environment translates and rotates as the fish moves during swim bouts. Virtual prey are shown as
black circles and the corresponding representation of prey locations with the vloc feature is shown (upper right
panel). For simulation (see 6A, Methods, Technical Appendix for more detail), an interbout interval duration
is randomly sampled from a probability distribution generated from the combo interbout model (bottom right
in video). Sampled interbout interval durations are indicated with a red bar, and the distribution from which
it was sampled is shown in black. A gray bar moves rightward to indicate the passage of time during interbout
intervals. As time passes, we update the bout-type probability distribution generated from our combo bout model
(bottom left of video), evaluated for the currently displayed value of the ongoing interbout interval (this is the
preceding interbout interval on which the next bout-type partially depends). In this way, the change in bout-type
probabilities with increasing interbout interval can be observed. Once the sampled time for the interbout interval
has elapsed, a bout-type is randomly sampled from the bout-type probability distribution (indicated with a star).
The virtual fish then moves through its environment along the designated trajectory for that bout-type (see S14).
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Technical Appendix

This appendix describes the details of our mathematical notation, feature encoding, construction of

the marked renewal process model, procedures for fitting the model, methods for obtaining posterior

credible intervals of key parameters, and methods for hyperparameter selection.

Notation

The data consists of many bout sequences, as described above. Let bs,n ∈ {1, . . . , 36} denote the bout

type of the n-th bout in the s-th sequence, and let is,n ∈ R+ denote the preceding interbout interval.

Let Ns denote the number of bouts in the s-th sequence and S denote the total number of sequences.

The set Ds = {(bs,n, is,n)}
Ns
n=1 is the sequence of bouts and interbout intervals in the s-th sequence,

and D = {Ds}Ss=1 is the set of all sequences’ data.

The features are functions of the preceding bouts and interbout intervals and of the current environmental

input. LetHs,n = {(bs, j , is, j)}n−1
j=1 denote the history of bouts and interbout intervals preceding the n-th

bout in sequence s.1 These histories will form the input to the interbout interval and bout type GLMs.

Let Vs,n denote the set of environmental inputs to the n-th bout in the s-th sequence, and let Vs = {Vs,n}
Ns
n=1

denote the sequence of environmental inputs for each bout in the sequence.

Feature functions φ f :Hs,n ×Vs,n→ RDf map behavioral history and environmental inputs to a vector

representation of length Df that can be input to a GLM. Here, f denotes the type of feature, like previous

bout type or preceding interval, and each feature type may have its own dimensionality. The feature

functions we consider only use one of the inputs at a time, though more complex feature functions could

be used in future work. Next we specify how these feature functions are computed.

Feature Encoding

For clarity, we omit the subscript-s from the following definitions as the feature functions are not sequence-

dependent. The first feature is a constant bias, φbias(Hn,Vn) = 1. This allows for baseline probabilities

of different bout types and a baseline mean and dispersion of the intervals.

Discrete features like the preceding bout type are represented with a one-hot encoding. If the preceding

bout type is bn−1 = k, we have

φbn−1
(Hn,Vn) =

�

0, . . . , 0, 1
︸︷︷︸

k-th position

, 0, . . . , 0
�

. (1)

1For bout models, the history also includes is,n, the interval preceding the n-th bout.
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Scalar features like in, thunt, texplore, and ttank are encoded with a set of basis functions. Let X :Hn×Vn→
X denote a generic function that maps behavioral history and environmental input to a scalar value in

the set X . For example, the preceding interval is a function of the behavioral history that outputs a non-

negative scalar value. We use a data-driven approach to determine a set of basis functions for representing

these scalar values in a way that allows the GLMs to learn nonlinear dependencies. First, we compute the

empirical cumulative distribution function (CDF) FX :X → [0,1] where FX (x) = Pr
�

X (Hn,Vn) < x
�

.

We approximate this function by computing the histogram of X values on a fine grid (typically with 100

equispaced bins). To construct a basis that has higher precision around the most common values, we

map X (Hn,Vn) through the CDF to obtain a point [0,1], and then we evaluate a set of J orthogonal

basis functions at that point to obtain a feature vector. Formally, we have,

φX (Hn,Vn) =
�

r1

�

FX (X (Hn,Vn))
�

, . . . , rJ

�

FX (X (Hn,Vn))
��

. (2)

The basis functions {r j(u)}Jj=1 are obtained by orthogonalizing a set of radial basis functions {r̃ j(u)}Jj=1,

where,

r̃ j(u) = exp

¨

−
1
2

(u−µ j)2

σ2
j

«

, (3)

for u ∈ [0, 1]. We evenly space means at values µ j =
j−1
J−1 for j = 1, . . . , J and set the standard deviation

to σ j =
1

J−1 . Finally, we perform a QR factorization to obtain the orthonormal basis on the interval [0, 1].

As discussed below, each feature type has a different value of J , as chosen via an empirical Bayes procedure.

Figure S9 shows the bases computed on a dense grid of points in X for a variety of features.

Finally, we have a set of environmental features including the location, size, x-velocity, and y-velocity of

the paramecia in the fish’s field of view. Each of these features is a scalar value for each paramecium in the

field of view. We summarize the activity of all paramecia by summing the feature values for all paramecia

within a spatial bin. For small enough bins, this representation entails little loss of information, but future

work could consider more sophisticated feature functions. The spatial bins are constructed by dividing

the angular and radial dimensions of the fish’s field of view into bins. A bin that spans ∆θ radians in the

angular dimension and covers the interval [r, r+∆r) in the radial dimension has area r∆θ∆r+ 1
2∆θ∆r2.

This area grows with the distance from the fish, r. To account for this difference in area, we normalize

the summed feature values by the area to get a “feature density” within each bin. As with the temporal

bases, we choose the number of angular and radial bins via the empirical Bayes procedure described

below.
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Constructing the Marked Renewal Process

The marked renewal process specifies a conditional probability density over a sequence of bouts and

interbouts given model weightsW . By the chain rule, this density factorizes into a product of conditional

probabilities of each interval and bout type given all preceding bouts and intervals, and, by assumption,

the n-th bout depends only on the current environment. Formally,

p(Ds | W ,Vs) =
Ns
∏

n=1

p(is,n | W ,Hs,n,Vs,n)
︸ ︷︷ ︸

interval model

p(bs,n | W ,Hs,n,Vs,n)
︸ ︷︷ ︸

bout type model

. (4)

We assume that all sequences share the same set of weights and are conditionally independent given the

weights so that p(D | W ,V ) =
∏S

s=1 p(Ds | W ,Vs).2

We use generalized linear models (GLMs) for both the intervals and the bout types. In a GLM, we

first compute a weighted combination of the features via the “activation functions.” The output of the

activation functions are then passed through a fixed nonlinear function to obtain the parameters of

the conditional distribution on intervals or bout types, as appropriate. Typically, there is a separate

activation function, and hence a separate set of weights, for each parameter in the final conditional

distribution.

Interbout Interval GLMs First consider a Poisson interval model parameterized by its mean µ ∈ R+.

The mean is obtained from the bout history and environmental input as follows. Let F denote the set of

features input to the GLM. The activation function for the mean is given by,

ψµ(W ,Hs,n,Vs,n) =
∑

f ∈F
wT
µ, fφ f (Hs,n,Vs,n), (5)

where wµ, f ∈ RDf is a weight vector in the set of weights W , and it is specific to this parameter (µ) and

feature ( f ). It is the same dimensionality as the output of the feature function φ f . Thus, the output

of the activation function is a real-valued scalar. Finally, the output of the activation function is passed

through an inverse link function (here, an exponential function) to obtain the mean,

µ(W ,Hs,n,Vs,n) = exp
�

ψµ(W ,Hs,n,Vs,n)
	

. (6)

Multi-parameter conditional distributions, like the negative binomial distribution parameterized by a

2The first bout/interbout interval (bs,1, is,1) require some care as, at that point, there is no history to condition on. Likewise,
the last interval is truncated if tracking is lost. We do not explicitly model these effects; instead, we assume the sequences are
stationary and let the initial distribution be the empirical distribution of bouts and intervals, and we drop the last interval from
our model. Since the vast majority of bouts are not at the start or end of the sequence, these assumptions have little effect on
our inferred model parameters.
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mean and dispersion, require two separate activation functions and sets of weights. Table 1 lists the

various forms of generalized linear models we used to model interbout intervals.

Table 1: Conditional distributions for interbout intervals i, measured in number of elapsed frames between bouts.

Model Parameters θ Inverse Link Conditional Density p(i | θ )

Geometric GLM Mean ρ ∈ [0,1] ρ = (1+ e−ψρ)−1 ρ(1−ρ)i−1

Poisson GLM Mean µ ∈ R+ µ= eψµ 1
i! e
−µµi

Neg. Binomial GLM
Mean µ ∈ R+

Dispersion ν ∈ R+
µ= eψµ

ν= eψν
�i+ν−1

i

�

�

µ
µ+ν

�i �
1+ µ

ν

�−ν

Bout Type GLMs We modeled the conditional distribution of the next bout type in a similar fashion.

The bout type follows a categorical distribution parameterized by π ∈ ∆K , a non-negative vector of

length K that sums to one; i.e. a probability distribution over the K = 36 bout types. We modeled this

probability vector with a GLM with a softmax inverse link function,

π(W ,Hs,n,Vs,n) =

�

eψ1(W ,Hs,n,Vs,n)

∑K
k=1 eψk(W ,Hs,n,Vs,n)

, . . . ,
eψK (W ,Hs,n,Vs,n)

∑K
k=1 eψk(W ,Hs,n,Vs,n)

�

, (7)

where ψk(W ,Hs,n,Vs,n) for k = 1, . . . , K is an activation function that specifies the relative likelihood of

the next bout type being of type k.

Weight Sharing We assessed between-group differences and lateral biases by tying the weights for

some features and comparing model performance. For example, to assess the lateral symmetry we

compared the standard bout-type GLM described above to a “symmetric” GLM in which the weights for

left and right bout types are constrained to be the same. More specifically, if k and k′ correspond to the

left and right versions of a bout type, like a particular J-turn, we constrain wk, f ≡ wk′, f for symmetric

features f .

Enforcing left/right symmetry is slightly more challenging for the weights of the preceding bout type

feature. In that case, we can think of the collection of weights as a K × K “transition” matrix. If the bout

types are sorted so that the first half correspond to left and the second half correspond to right, we tie

the weights of the upper-left and lower-right quadrants (i.e. the ipsilateral transition weights), as well

as those in the upper-right and lower-left quadrants (i.e. the contralateral transition weights). Likewise,

we enforce symmetry in the environmental input weights by tying the weights of the each hemisphere of

the field of view and its ipsi- or contralateral bout types.
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Prior Distributions We introduce a Gaussian prior on the model weights in order to regularize

against overfitting, particularly with high-dimensional features. For each parameter θ and feature f we

have,

wθ , f ∼N (0,σ2
θ , f I). (8)

We learn the variance σ2
θ , f via the empirical Bayes procedure described below. We considered Laplace

priors, which are akin to `1 regularization, as well, but initial explorations showed minimal differences

from the Gaussian distribution.

Fitting the Model

We fit the model with maximum a posteriori (MAP) estimation. We computed the log joint probability

density,

log p(D,W | V ) =
S
∑

s=1

[log p(Ds | W ,Vs)] + log p(W ), (9)

where the first term is the log likelihood from (4) and the second is the prior from (8). We used

Autograd (https://github.com/HIPS/autograd/) to compute its gradients with respect to the

model weights W . We optimized the log joint probability with Newton’s method, using the conjugate

gradient method to solve the linear system in the Hessian matrix ∇2 log p(D,W | V ), as implemented in

SciPy.

Once the MAP estimate of the weights W ? was obtained, we computed a Laplace approximation to the

posterior distribution,

log p(W | D,V ) = log p(W ,D | V )− log p(D | V ) (10)

≈ log p(W ?,D | V )− 1
2(W −W

?)TΣ−1(W −W ?)− log p(D | V ) (11)

= logN (W | W ?,Σ) + D
2 log2π+ 1

2 log |Σ|+ log p(W ?,D | V )− log p(D | V ), (12)

where the inverse covariance matrix is the negative Hessian at the mode,

Σ−1 = −
�

∇2 log p(D,W | V )
�

W=W ? . (13)

(Note that we have committed a slight abuse of notation by treating W as a vector rather than a set. To

be precise, take W to be the concatenation of the vectorized weights.)
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Posterior Credible Intervals We obtain approximate posterior credible intervals from the posterior

covariance matrix Σ. Consider a particular parameter θ and feature f . Let w?
θ , f denote its posterior

mean and Σθ , f denote its posterior covariance. (The covariance of this single parameter and feature’s

weights is just one diagonal block of the complete covariance matrix Σ.) The 95% posterior credible

interval for the d-the entry in the weight vector is approximately [wθ , f ]d ∈ [w?θ , f ]d ± 2
Æ

[Σθ , f ]d,d . For

scalar features represented by basis function expansions, we obtain the credible intervals like those

shown in Figure 3F by first constructing a matrix of basis function evaluations Φ f ∈ R100×Df where

the t-th row is φ f evaluated at the t-th percentile of the feature values. Then we compute the posterior

credible interval in feature space as Φ f w?
θ , f ± 2

Ç

diag(Φ f Σθ , f Φ
T
f ).

Empirical Bayes Hyperparameter Selection

Since the posterior density (12) integrates to one over W , the Laplace approximation also yields an

approximation to the marginal log likelihood,

log p(D | V )≈ log p(W ?,D | V ) + D
2 log 2π+ 1

2 log |Σ|. (14)

The marginal likelihood is the probability of the data, integrating out the weights under their prior

distribution. As seen in (14), it increases with the log joint probability density at the mode W ?, but it

decreases as the curvature at the mode grows and the posterior covariance Σ shrinks to zero. That is, the

marginal likelihood balances posterior probability density around the mode with posterior uncertainty.

A model with high marginal likelihood should assign high probability to the data over a large set of

weights. This balance makes the marginal likelihood a natural measure of model fitness.

We select the hyperparameters—specifically, the prior variances σ2
θ , f and the number of basis functions or

spatial bins J—by comparing the marginal likelihood estimates over a grid of values for each single-feature

model. For each feature, we scan over a grid of hyperparameter values, and for each hyperparameter

setting we fit a GLM with only that feature and the bias. We approximate the marginal likelihood

using (14) and select the hyperparameter setting that achieves the maximum value over the grid. We

then use these hyperparameter settings on composite models that combine multiple features. While the

optimal single-feature hyperparameters are not necessarily optimal for the full model, we expect the

selection to be biased toward over-parameterized models with more basis functions and larger prior

variances. Erring in this direction is more conservative, in that it allows the full models greater flexibility,

even if it is not necessary.
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Neural Network Models of Environment Dependence

We also explored artifical neural network models to learn more complicated environment dependencies

in the bout type GLMs. For these models, we treated φv? , where ? denotes one of loc, size, x, or y, as the

input to a multilayer feedforward network whose last layer is a softmax, as above, to output a probability

distribution over the K = 36 bout types. Again, we use weight sharing to enforce lateral symmetry in

the input-output function, but here the weights must be shared within each layer. Since the training

function is no longer convex, we instead train the model with the Adam90 optimizer using mini-batches

of randomly selected sequences. We use cross-validated log likelihood to determine the number of layers

and hidden units. The Laplace approximation is not appropriate for this multimodal log probability, so

we instead compare models on the basis of the log likelihood they assign to test data.
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