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Abstract

Chromatin immunoprecipitation followed by
next-generation sequencing (ChIP-seq) is a key
technique for mapping the distribution and relative
abundance of histone posttranslational
modifications (PTMs) and chromatin-associated
factors across genomes. There is a perceived
challenge regarding the ability to quantitatively
plot ChIP-seq data, and as such, approaches
making use of exogenous additives, or “spike-ins”
have recently been developed. Relying on the fact
that the IP step of ChIP-seq is a competitive
binding reaction, we present a quantitative
framework for ChIP-seq analysis that circumvents
the need to modify standard sample preparation
pipelines with spike-in reagents. We also introduce
a visualization technique that, when paired with
our formal developments, produces a much more
rich characterization of sequencing data.

Keywords: quantitative ChIP-seq; spike-in;
ChIP-seq

Introduction
The “immunoprecipitation blues” have been hard to
shake for groups that are reliant on the chromatin
immunoprecipitation followed by next-generation se-
quencing (ChIP-seq) method for mapping the distribu-
tion of histone posttranslational modifications (PTMs)
and transcription factors across the genome[1]. These
blues result from concerns regarding antibody behav-
ior (specificity and IP efficiency) and from a perceived
challenge regarding the ability to quantitatively plot
ChIP-seq results. Regarding the latter, a host of meth-
ods have been introduced in efforts to add a mean-
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ingful “y-axis” to ChIP-seq datasets[2, 3, 4, 5, 6, 7],
calls to arms have been issued[6, 8, 9, 10], and addi-
tional ChIP methods presenting newer solutions are in-
troduced regularly[11]. Herein, we apply physics-based
mathematical modeling to derive a quantitative frame-
work for ChIP. In this attempt to shake the blues, we
demonstrate that ChIP-seq is (and always has been)
quantitative without the need to modify standard-
ized sample preparation pipelines[12] with “spike-in”
reagents.
Fundamentally, the IP step of ChIP is a competitive

binding reaction. As such, this step can be described
through biophysical models used to define binding con-
stants and explain competition reactions.[13] Upon de-
veloping such a model, a perfectly quantitative and
spike-in free approach emerges where the only new
requirements for the experimentalist are to carefully
track the common variables of biophysical measures
(i.e., concentrations, volumes, masses, and buffer com-
positions) used in each step of commonly adopted
ChIP-seq protocols[12]. The only real assumption is
that the nature of physical interactions between an
antibody and on- and off-target epitopes is the same
everywhere on Earth. Under this assumption, any
two ChIP results will fall on the antibody binding
isotherm provided that reaction conditions are main-
tained across the experiments so that essentially only
the distribution of epitope varies.
ChIP-seq appears non-quantitative because a fixed

mass of DNA is always taken to library preparation re-
gardless of how much DNA was captured by IP. This
practice ensures that the number of obtained reads
matches the number of reads that were requested.
Obtained reads, represented as the green line in Fig-
ure 1A, are invariant to experimental conditions. The
number of total reads held in the IP can be much larger
(or smaller) than requested. Our approach explicitly
makes use of the “down-sampling” (or “up-sampling”)
of material in order to relate sequenced reads to the
total possible reads. This is the bridge between the
fundamental laws of binding that play out in the IP
and the invariant sequenced read depth. Undoubtedly,
the amount of material obtained by IP follows the sig-
moidal curve shown in Figure 1A, a complete expres-
sion for which is obtained below. This is the antibody
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binding isotherm and, even though it cannot charac-
terize any single microscopic binding constant, it can
be used to characterize the general mass-balance that
occurs in bulk. A schematic of a ChIP-seq protocol is
shown in Figure 1B along with several factors that are
determined during the experiment.
The specifics of binding can be refined from this

global perspective by viewing the sequencing results as
a record of labels for all particles retained by the IP.
The identity of a particle is vaguely, but well enough,
characterized by three attributes: (1) genomic coordi-
nates, (2) fragment (or “read”) length and (3) esti-
mated capture efficiency. Once the binding isotherm
is projected down onto the sequencing results, the fa-
miliar and microscopic notions of binding constants
emerge and tightness of binding can be plotted as a
function of genomic location. As this high resolution
view of binding processes is not compatible with con-
ventional genome browser visualization, we also rep-
resent ChIP-seq data in alternative ways. In example
comparative analysis of ChIP-seq datasets presented
below, this new visual representation is shown to pro-
duce actionable indications of on- or off-target binding
that are lost in traditional genome-browser views.
Formally, the model defines how the number of reads

in an IP depend on the concentrations of antibody,
on- and off-target species concentrations and all bind-
ing constants between antibody and on- and off-target
species. Even though these parameters are unknown
in practice, this approach provides significant leverage
for understanding ChIP-seq outcomes. Model predic-
tions were validated against the empirical behavior of
antibody specificity and global normalization, as re-
ported by semi-synthetic spike-in nucleosomes (which
are a proxy for all exogenous spike-in normalizers).
Applicability of our approach, called sans-spike-in

method for quantitative ChIP-seq (siQ-ChIP), only re-
quires that any ChIP-seq experiments that are to be
compared should be performed in the same reaction
volume, same input volume, same amount of initial
chromatin, and the same amount of antibody— a com-
mon yet implicit demand of all (before-IP) normaliza-
tion schemes. The results described below are general-
izable to cases where different numbers of cells must be
used to harvest chromatin and also to cases where mul-
tiple IP reactions must be combined to reach workable
chromatin amounts for library preparation, maintain-
ing the ability to quantify results in these cases. For
completeness, explicit mention of combining multiple
IPs is made in closing.
Below we use the words “read” and “fragment” in-

terchangeably. siQ-ChIP is specifically designed for
paired-end sequencing, so mixing read and fragment
is a tolerable abuse of notation as long as the reader
keeps this in mind.

Results and Discussion
As a benchmark system for developing a quantitative
ChIP-seq formalism, we conducted ChIP-seq for lysine
27 tri-methylation on histone H3 (H3K27me3). Chro-
matin was harvested from HCT116 cells treated with
vehicle (DMSO) or EPZ6438, a potent inhibitor of the
catalytic subunit of the Polycomb Repressive Com-
plex 2, EZH2.[14] Complete experimental details are
found in Supporting Information. EZH2 is the primary
enzyme known to catalyze H3K27me3 in mammalian
cells. Thus, EPZ6438-treated cells present limited tar-
get epitope relative to vehicle-treated cells. For IP, we
selected a commonly used H3K27me3 rabbit mono-
clonal antibody (CST C36B11; lot 9733S(14)), shown
to be highly specific by proxy of histone peptide array,
publicly available at www.histoneantibodies.com.[8]
The SNAP-ChIP[4, 9] method was used for these ex-

periments as a comparative, spike-in method for quan-
tification. Small amounts of semi-synthetic labeled,
or bar-coded, mononucleosomes, unmodified or bear-
ing different orders (mono-, di-, or tri-methylation) of
H3 and H4 methylation states (H3K4, H3K9, H3K27,
H3K36 and H4K20) were spiked in with intact chro-
matin prior to micrococcal nuclease (Mnase) digestion.
These exogenous spike-ins are intended to provide a
global scaling factor so that ChIP-seq data can be
normalized and compared. Additionally, these spike-
ins provide an estimate of antibody binding specificity
that affords some metric of cross-reaction between an-
tibody and nucleosome species. These nucleosomes are
referred to as SNAP nucleosomes below.
This experiment led to two observations which mo-

tivated this work: (i) counterintuitive observations of
antibody specificity reported by spike-in nucleosomes
and (ii) ambiguously interpretable spike-in normal-
ized sequencing tracks. In brief, antibody specificity
was observed to improve when performing ChIP with
chromatin from EPZ6438-treated cells, contradictorily
suggesting that the antibody is more specific for tar-
get when it is in excess of the target. Additionally, the
normalized track could equally well be interpreted as
either evidence for the formation of new H3K27me3
peaks in EPZ6438-treated cells or as having no sig-
nal depending entirely on the biases of the user. In
fact, as we explain below, all of the current globally-
normalized schemes[3, 4, 6] lead to a similar compres-
sion of signal and potentiate the same ambiguous in-
terpretation.
The situation is summarized in Figure 2. Three

approaches to quantify ChIP-seq data are shown.
Line graphs depict what is visualized in a genome
browser for each approach, and heat maps depict the
three components of particle identity that underlie
the browser line: (1) genomic coordinate, (2) frag-
ment length, (3) IP:input, histone modification density
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(HMD)[4, 9], or estimated capture efficiency ê(x, L).
The information embedded in these heat maps is ex-
tremely valuable for data interpretation but are never
constructed and are incompatible with conventional
genome browsers. While fragment start site and length
are the same for all normalization methods, the third
attribute, giving the color scale to the heat maps and
the height of the line graph, is unique to each approach.
Only siQ-ChIP returns an actual estimated capture ef-
ficiency yet this notion is at the heart of each estimate.
Notably, in the case of DMSO treatment, all three

methods show strong agreement in shape with only
the scale of the heat map and line graph being differ-
ent. Any peaks attributed to H3K27me3 in one method
would also be seen in the other methods, and any peak-
to-peak comparison within an experiment would be in-
variant to the approach used. The data differ only by
absolute “normalization,” which is simply multiplica-
tion by a constant.
Likewise for EPZ6438 treatment, the methods strongly

agree in pattern, but not in scale, and here the discrep-
ancy is exaggerated. Thus, for experiments performed
under the same reaction conditions (i.e., same reaction
volume, antibody concentration, chromatin mass), as
was the case for these two experiments, the issue of
quantifying Chip-seq data is simply a matter of deter-
mining scale.
Which of these scales is the “correct” one? Relating

the IP to a binding model first defines the context in
which we can interpret correctness of scale and forces
adherence to a protocol that isolates changes in scale
to relative changes in concentrations of chromatin epi-
topes. Simultaneously, it also produces a much deeper
understanding of the ChIP-seq output. For example,
we show below that the two peaks in EPZ6438 re-
sults, which are obtained by IP with an H3K27me3
antibody, are correlated with ChIP-seq of H3K9me3
(left peak) and H3K36me3 (right peak). The siQ-ChIP
(sans-spike-in method for quantitative ChIP-seq) heat
map scale holds enough information to imply the off-
target nature of these peaks, which is how we found
these peaks in the first place. Our model for ChIP-seq
also shows that the off-target nature of these peaks
leads to the signal compression displayed by HMD
(“histone modification density”) in Figure 2B. The ex-
tent of compression is so great that one would pre-
sumably conclude the HMD track is empty. Given the
monetary expense of ChIP-seq, ignoring data is tan-
tamount to throwing money away. Not to mention,
the HMD track is in direct conflict with the fact that
Figure 2A suggests a large amount of material was
captured in the IP. The ability to deconvolute the na-
ture of peaks and extract maximal information from
results should be a top priority of any analysis. Our

method allows extraction of greater information con-
tent by avoiding compression and allowing the scale of
IP efficiency at each genomic location to be an inde-
pendent observable.
The next section establishes the basic model for

binding and shows how it connects to mapped reads
(or paired-end fragments).

Binding relations for IP and input
Sequencing of the EPZ6438-treated IP produced a
total of R̂ = 37298373 mapped reads. These reads
were generated by sequencing 20 femtomoles of library,
where the total library mass was 856 femtomoles. Set-
ting FL = 20/856 = 0.02336 for the fraction of the
library that was sequenced, the total number of reads
that the full library would generate upon sequencing
is R̂/FL, or 1.5 billion for this experiment. This is the
first step in estimating the number of effective reads
that were captured in the raw IP, a number important
to the connection between sequenced reads and the
binding phenomena producing the epitope-enriched IP
material. The library was amplified with c = 11 cy-
cles of PCR, so this estimate of the total reads must
be reduced by the appropriate number of amplifica-
tions, lowering the estimate of total reads to its pre-
amplification value R̂/FL/2c.[1] Furthermore, the li-
brary was captured on KAPA Pure beads producing an
additional material loss, ρ. ρ is the ratio of captured li-
brary concentration to the expected library concentra-
tion.[2] This coefficient compensates for losses due to
bead capture, washing, and, to some extent, for global
deviations from the perfect 2c amplification. The es-
timated number of reads becomes R̂/FL/2c/ρ. The
observed read count (R̂) has been scaled up by each
known source of material loss.
Similarly, if the IP produced 24.2 ng of material and

10 ng were used to produce library then, where F =
0.413 is the fraction of IP material carried into the
library, then R̂/FL/2c/ρ/F reads would be generated

[1]If the efficiency ǫ is a known function of sequence x,
then amplification can be more accurately accounted
for with 1 + ǫ(x). Since ǫ is not usually known, we take
the typical assumption 1 + ǫ(x) ≈ 2.
[2]The average base pair has molar mass 660 g/mole.
300 base pair fragments are then expected at 198000
g/mole. If 10 ng of 300 base pair long DNA are am-
plified by 211 and suspended in 20 µL (our library vol-
ume), the expected concentration is 5.17 µM. ρ is the
ratio of actual library concentration to the estimated
5.17 µM. In practice, the empirical library averaged
fragment length must be used to determine ρ. Thus,
average fragment length is an input parameter for the
software associated with this work.
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by sequencing all of the DNA collected by IP.

R =
R̂

FL 2c ρF
(1)

Thus for one of the experimental replicates presented
herein, an estimated 226 million reads could be ex-
tracted from the IP material. Equation (1) can be re-
arranged to relate the observed reads, R̂ to the effective
reads held by the IP

R̂ = FL 2c ρF R (2)

The hat symbol indicates that an instrument was used
to convert a raw quantity R to a measured quantity
R̂.
As shown in Figure 1, equation (2) maps the the-

oretical reads in IP to the empirical constant R̂. Any
single ChIP-seq IP is one point on the isotherm of Fig-
ure 1 as antibody and chromatin are rarely titrated.
(See Reference [15] for the exception and notice that
it conforms to Figure 1.)
The key hypothesis motivating this work is that if

R can be derived from the phenomenological descrip-
tion of binding, common to all biophysical methods
for determining binding constants, then a quantitative
framework for ChIP-seq can be developed. Below, a
standard description of binding equilibria is used to de-
fine R as a function of antibody concentration, epitope
binding constant, off-target binding constants, and rel-
ative concentrations of all epitope species that interact
with the antibody (i.e., non-zero binding constants).
The following development culminates with the exten-
sion of the model to genomic data, where heterogeneity
plays a fundamental role. The equilibrium limits of the
ChIP binding reaction are characterized in Supporting
Information (Figure S2).
For N species that interact with the antibody, the

conservation of mass requires that the total antibody
concentration (ABt) equal the sum of free antibody
(ABf ) and antibody bound to all the interacting
species (Si)

ABt = ABf +ABf

N
∑

i=1

KB,iS
f
i (3)

The following constraint also applies

St
i = Sf

i +ABfKB,iS
f
i (4)

for all N species, where St
i and Sf

i are the total and
free concentrations of species i, respectively. The free
concentrations of each component of the system can

be found as the simultaneous solution to these equa-
tions if the total concentrations and binding constants
are known. In ChIP-seq experiments, nearly none of
this information is known, but this model provides re-
lationships that will be useful for ChIP-seq analysis
nonetheless.
For each of the 1 ≤ i ≤ N species, the free concen-

tration is

Sf
i =

St
i

1 +ABfKB,i

(5)

The concentration of species i that is bound by anti-
body is

Sb
i = St

i − Sf
i

= St
i

( ABfKB,i

1 +ABfKB,i

) (6)

Equation (6) shows us that the amount of species i that
is captured by the antibody depends on the amount
of free antibody, which by equation (3), is a function
of all the binding constants and concentrations of all
of the off-target species. Thus, the amount of bound
target epitope depends on the relative amounts of all
epitopes that the antibody can bind. Note that equa-
tion (6) is the classical logistic function, sometimes
called the Langmuir isotherm, associated with bind-
ing: When ABf = Kd, exactly half of St

i is bound.
(Kd = 1/KB is the dissociation constant.) This func-
tion is shown in Figure 1. Thus, we interpret binding
constants as macroscopic avidity constants consistent
with the formalities of mono- or poly-valent interac-
tions. See for example the development of the enhance-
ment factor β by Mammen, Choi and Whitesides.[13]
The number of moles of species i that were captured

can be found by multiplying the concentration Sb
i by

the volume of the IP. Let the IP volume be V − vin
where vin is a small volume removed prior to introduc-
tion of antibody. The volume vin is the input volume.
The number of moles captured by IP can be turned
into a number of particles using Avogodro’s number
NA.
If we assume that every particle of Sb

i (V − vin)NA

can generate one read, then equation (1) can be used
to evaluate the number of reads that Sb

i will generate
according to our previous estimates of experimental
losses

R̂i = 2c ρFL F Sb
i

(

V − vin
)

NA (7)

The total reads from IP, R̂, is given by adding up the
reads R̂i from each species captured by the antibody.
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Likewise, the total reads in IP are

R =
(

V − vin
)

NA

∑

i

St
i

( ABfKB,i

1 +ABfKB,i

)

(8)

Through equation (6), the predicted number of reads
for each species is rigorously connected to the full spec-
trum of antibody binding constants, the antibody con-
centration and the relative concentrations of the var-
ious epitopes. Equation (2) can now be cast with ex-
plicit connection to the parameters governing the an-
tibody binding reaction

R̂ = 2c ρFL F
(

V −vin
)

NA

∑

i

St
i

( ABfKB,i

1 +ABfKB,i

)

(9)

A prediction for the reads generated by i in input can
be obtained similarly

R̂in
i = 2c ρin F

L
in Fin S

t
ivinNA (10)

Table 1 summarizes all the coefficients that must be
tracked throughout the ChIP-seq experiment. These
are the coefficients that set the natural, quantitative
scale in ChIP-seq experiments. A tabular summary of
all measurements required to build these coefficients is
given in the Supporting Information (Table S1).
Equations (7) and (10) afford a formal expression for

the efficiency of the IP for individual species

Sb
i

St
i

=
ρin
ρ

FL
in

FL

Fin

F

vin
V − vin

R̂i

R̂in
i

(11)

This expression for efficiency connects all the reads of
species i to the concentration of i that was bound by
the antibody, Sb

i , and the total unreacted concentra-
tion of i, St

i . Using equation (6) for Sb
i in equation (11)

reveals a connection to the binding constant KB,i

ABfKB,i

1 +ABfKB,i

=
ρin
ρ

FL
in

FL

Fin

F

vin
V − vin

R̂i

R̂in
i

(12)

With the following definition of capture efficiency

ei =
ρin
ρ

FL
in

FL

Fin

F

vin
V − vin

R̂i

R̂in
i

(13)

equation (12) can be rearranged to produce

ABfKB,i =
ei

1− ei
(14)

The solution to the system of equations given by (3)
and (4) produces only a single value for ABf , the con-
centration of unbound antibody. Thus, the ratio of

binding constants within an experiment can be esti-
mated by

ei
1−ei
ej

1−ej

=
KB,i

KB,j

(15)

because factors of ABf will cancel. Equation (15) is
especially interesting because for carefully crafted ex-
perimental conditions it should take the same value
at any antibody concentration. This expression is the
only such invariant in the literature and should be con-
sidered when characterizing antibody quality and com-
position. A closing remark toward this aim is made in
the Conclusion section.
Figure 3 summarizes the results of simulating two

competing species in two practical contexts: A wild-
type context (DMSO-treated) and a target epitope-
depleted context (EPZ6438-treated) where the concen-
tration of target (H3K27me3) is drastically reduced.
The simulation also included trace amounts of spike-
in nucleosomes that present on- or off-target epitopes.
The binding constants for on- and off-target species
were set to provide a 100-fold preference for target
epitope. All simulation details are found in the Figure
Legend.
The simulation predicts that capture efficiency of

the labeled on-target spike-in will improve drastically
when unlabeled chromatin is deprived of target epi-
tope (Figure 3A). Additionally, the off-target labeled
spike-in capture efficiency is not predicted to change
to the same extent.
Figure 3B shows that when target epitope is de-

pleted, the majority composition of bound particles
shifts toward off-target species as the antibody con-
centration is increased. For low antibody concentra-
tions, where the antibody concentration does not ex-
ceed target concentration, the bound particles are pri-
marily on-target. Consistent with intuition, the sim-
ulation predicts that off-target binding is increased
when antibody is in excess of target epitope. Figures
3A-B therefore predict that the capture efficiency for
labeled target spike-ins can be significantly higher than
for labeled off-target spike-ins. Yet, if the chromatin is
primarily composed of off-target epitopes (as in the
target-depleted case) then most of the captured chro-
matin will be off-target. This is not indicated by the
spike-ins. Consistent with their use in wet-bench ex-
perimentation, the labeled spike-ins constitute a small
fraction of the total particles in these simulations.
Therefore, if label capture efficiency is 10% then we
expect roughly 10% of the corresponding unlabeled
epitope is also captured. The mismatch in interpreta-
tion comes because 10% of spike-in is far fewer nucle-
osomes than 10% of unlabeled nucleosomes, i.e., most
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nucleosomes are unlabeled. In the context of epitope
depletion, a 10% capture of 5 µM off-target species
produces a larger particle count than a 95 % capture
of a 0.2 µM on-target species. Simulations predict that
even when the antibody is “specific,” one can expect
to capture off-target epitope in an IP depending on the
relative concentrations of all species in the IP. More-
over, the spike-in nucleosomes do not report on the
number of bound unlabeled nucleosomes which allows
for misinterpretation. Figure 3C shows that equation
(15) produces a context-independent estimate of the
ratio of binding constants. We will discuss how equa-
tion (15) could be used to empirically evaluate rela-
tive binding constants for antibody cross-reaction in
the Conclusions.
Equations (11) through (15) are the first key results

of this work. These expressions relate the total num-
ber of reads of a species to the respective binding con-
stants and provide significant leverage for comparing
ChIP-seq data as shown below. Some technical con-
siderations are required yet to cast these results onto
genomic coordinates, as these expressions so far ap-
ply only to the total number of reads generated by
species with finite binding constant to the antibody.
In a typical ChIP-seq experiment one would not likely
be able to estimate R̂i or R̂in

i , because it is impos-
sible to group reads by species. Instead, one would
have access to reads as a function of genomic location.
We next relate our binding model to outcomes for the
semi-synthetic labeled spike-in nucleosomes, which can
be sorted by species, as a first step toward generalizing
our model to genomic coordinates.

Extension to labeled semi-synthetic nucleosomes
Consider projecting equation (11) onto labeled exoge-
nous semi-synthetic nucleosomes. For any nucleoso-
mal species that has a barcoded counterpart, the to-
tal species can be broken into the sum of labeled and
unlabeled parts St

i = Sl
i + Su

i where l and u denote
labeled and unlabeled. The observable fraction of St

i is
oi(l) = Sl

i/S
t
i , which is the labeled (i.e., observable)

fraction of the species. Using barcoded spike-ins to re-
port on antibody-chromatin interactions assumes that
the interaction with epitopes from labeled and unla-
beled (endogenous chromatin) species are the same.
Under this assumption, if a total of N nucleosomes
of species i are bound by the antibody in the IP one
intuitively expects roughly oi(l) of those nucleosomes
to be labeled. The concentration of bound label can
also be found by multiplying equation (6) by oi(l),
Sb
i (l) = Sb

i oi(l), allowing reads of species i to be pro-
jected onto the labeled subset of the species

R̂i(l) = 2c ρ(l)FL F Sb
i

(

V − vin
)

NAoi(l) (16)

For the labeled input, we have simply

R̂in
i (l) = 2c ρin(l)F

L
in Fin S

t
i (l) vin NA (17)

because the concentration of labeled spike-in is inde-
pendent of the unlabeled concentrations. By protocol,
the same amount of labeled spike-in is always added to
chromatin, so the input cannot report on anything but
the labeled concentration which is always the same.
The amount of label in the IP, however, is connected
to the concentrations of unlabeled chromatin through
the competitive binding reaction that is summarized
by equations (3) and (4). These estimates of labeled
reads can be substituted into equation (11) to find the
IP efficiency of the labeled fraction of species i

êi(l) =
ρin(l)

ρ(l)

FL
in

FL

Fin

F

vin
V − vin

R̂i(l)

R̂in
i (l)

(18)

The hat on êi(l) distinguishes the measured efficiency
for the label l from the theoretical efficiency ei for
species i. We use ρ(l) to indicate the library losses
specifically for the spike-ins. In practice there is no
good way to estimate this number and one does not
need spike-ins to determine scale so below we willingly
take the assumption that ρ(l) = ρin(l).

Under antibody-saturating conditions, ABt < St
i ,

the reads captured for label l on target species i, R̂i(l),
can be decreased by increasing the unlabeled concen-
tration Su

i through the action of oi(l) in equation (16).
In this limit of concentrations the amount of captured
particles Sb

i (V − vin)NA will not change (since all of
the antibody is already bound), yet the amount of
bound label Sb

i (l) = Sb
i oi(l) (V −vin)NA is diminished

as Su
i is increased simply because it is more likely that

the antibody encounters unlabeled target. This is intu-
itive as it reflects the consumption of antibody by in-
creased unlabeled chromatin levels. It is precisely this
behavior that disallows the appearance of oi(l) in the
estimate of input reads R̂in

i (l) because the input reads
do not depend on Su

i .

The model, as we have defined êi(l), predicts that
the capture efficiency for the on-target H3K27me3
spike-in will approach unity when EPZ6438 inhibitor
is used to deplete H3K27me3 levels. The observabil-
ity of the target label increases with this treatment
because the unlabeled concentration of epitope Su

i de-
creases, thus St

i approaches S
l
i and Sb

i → Sl
i. This pre-

diction was experimentally validated with the SNAP-
ChIP spike-ins, where we measured a 25% capture effi-
ciency for on-target semi-synthetic nucleosomes spiked
in DMSO-treated chromatin versus a 95% capture ef-
ficiency when spiked in EPZ6438-treated chromatin.
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To further validate the model with spike-in nucleo-
somes, additional model-based predictions were tested
by experiment. The model affords a predictive frame-
work for several common empirical metrics and how
they respond to epitope depletion. Consider the ratio
of efficiency for an off-target species j and an on-target
species i

T̂j,i =
êj(l)

êi(l)
=

R̂j(l)

R̂in
j

(l)

R̂i(l)

R̂in
i

(l)

=
Sb
joj(l)

Sb
i oi(l)

St
i (l)

St
j(l)

=
Sb
j (l)

Sb
i (l)

(19)

Note that the experimental prefactors from equation
(18) cancel from numerator and denominator here be-
cause T̂ is a ratio of efficiencies. Recall that by protocol
St
i (l) = St

j(l).[4, 9]

The estimator T̂j,i is used to qualify an antibody
as “good,” meaning specific, or “bad,” meaning non-
specific, as follows: For any off-target (j) this estimator
is expected to be small for a high quality antibody and
comparatively large for a low quality antibody.[4, 9]
We used equation (18) in equation (19) to write the
specificity estimate (T̂j,i) in two alternate representa-
tions that reveal dependence on species concentrations
and observability, allowing predictions to be made re-
garding the behavior of T̂j,i in the context of epi-
tope depletion. When EPZ6438 is used to deplete
H3K27me3, the quantity Sb

i (l) is expected to approach
saturation. This is shown in Figure 3A (solid blue line).
In cells that do not have depleted epitope, Sb

i (l) is pre-
dicted to be under saturation (solid gold line). Thus,
if the value of Sb

j (l) is roughly independent of the tar-
get epitope concentration, as would be expected for
weakly interacting off-target species, T̂j,i is expected
to decrease upon epitope depletion by a factor pro-
portional to the increase in the quantity Sb

i (l). That
is, an amount proportional to the amount of target
label bound. Thus, the model predicts a compression
of the Sb

j (l) signal reported by T̂j,i for any off-target
j. Reducing Su

i or increasing Su
j are predicted to ar-

tificially improve observed specificity T̂j,i without re-
quiring an actual decrease in off-target binding (Sb

j ),
even though no physical attributes of the antibody
have changed. Interestingly, if cellular chromatin pre-
sented equal amounts of all PTMs, this signal com-
pression would not be observed, because the factors
oi(l) and oj(l) would cancel from T̂j,i. Of course, PTMs
are distributed very differently, and those distributions
change under experimental perturbation.

The other common metric of specificity (in the con-
text of labeled nucleosomes) is

T̂i =

R̂i(l)

R̂in
i

(l)

∑

j
R̂j(l)

R̂in
j

(l)

(20)

This metric estimates the fraction of on-target signal
(or reads) out of the total signal, which includes any
off-target reads. This metric is predicted to behave in
parallel with T̂j,i for the same reasons just discussed.
Figure 4 shows the results of equation (19) for the

same antibody in ChIP-seq from either DMSO- or
EPZ6438-treated cells. The treatment with EPZ6438 is
known to inhibit EZH2 and lead to a global reduction
of H3K27me3, constituting widespread epitope deple-
tion. As discussed above, the loss of target epitope
reduces Su

i , where i is the target species, leading to a
predicted improvement in observed specificity due to
signal compression. Indeed, Figure 4 shows improved
specificity for the antibody upon epitope depletion.
This shows that the measured specificity is a function
of the unlabeled chromatin and does not report on the
extent of inherent context independent cross-reactivity
of the antibody (i.e., binding constants). Also, as pre-
dicted, the IP efficiency of the H3K27me3 SNAP nu-
cleosome (equation (18)) is 25% in the presence of
DMSO-treated chromatin and 95% in the presence of
EPZ6438-treated chromatin, showing that there is ex-
cess antibody in the case of EPZ6438 treatment. In-
tuitively, performing ChIP-seq in the presence of ex-
cess antibody should increase the likelihood of observ-
ing cross reaction between the antibody and off-target
species. However, the profiled antibody specificity has
improved when antibody is put in excess. The context-
dependent variation in measured specificity, and the
counterintuitive nature of the estimate, are the source
of disparate observations previously reported between
peptide array and solution-based assays where the rel-
ative amounts of all species are not controlled between
assay platforms.[16, 9] This counterintuitive behavior
of T̂j,i was predicted by the model.
Figure 5 shows the ratio of capture efficiency for each

species with and without EPZ6438 treatment. This is
the capture efficiency of each species compared to it-
self before and after EZH2 inhibition. In each replicate
the capture of off-target species has increased in ab-
solute quantities, as expected, with H3K27me3 deple-
tion. However, this increase is masked in the specificity
metrics of T̂j,i and T̂i.
Additionally, note that Figure S4B of reference [9]

shows that specificity given by equation (20) can be
improved from roughly 65% to 80% by adding un-
labeled off-target epitope, consistent with the above
model-based predictions.
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The model has produced accurate predictions for la-
beled synthetic chromatin in two empirically tested
quantities. Next, the model is extended to genomic
coordinates.

Extension to genomic coordinates
The set of cellular nucleosomes that constitute the par-
ticles of species i are scattered throughout the genome.
Thus the reads of i are also scattered. Most impor-
tantly, reads at a particular genomic coordinate may
not arise solely due to binding with a single epitope
species. Due to the heterogeneity within a cell popula-
tion, a mixture of PTMs could arise at a single genomic
location, and all nucleosomes at a particular location
may not be modified. This section investigates the ex-
tension of equation (18) to genomic coordinates in light
of heterogeneity.
Let a genomic region be denoted by x, where x speci-

fies the position of a window of fixed base width. Now x
can be thought of in the same way as the label l for ex-
ogenous nucleosomes. There is an observable fraction
oi(x) for any species found at x where any of species
i that is not at x is understood as unlabeled. The IP
efficiency at x is only more complex than it was for syn-
thetic labels because we must sum over all the species
present at x to account for all the reads piled up at x.
Firstly, the IP reads due to species i is

R̂i(x) = 2c ρFL F Sb
i

(

V − vin
)

NAoi(x) (21)

For input we follow all the above arguments to obtain

R̂in
i (x) = 2c ρin F

L
in Fin S

t
i (x) vin NA (22)

Again, input is not dependent on oi(x). Second, the
total reads at x from IP is given as the sum R̂(x) =
∑

i R̂i(x). For input, R̂in(x) =
∑

i R̂
in
i (x). ChIP-

seq experiments only track reads as a function of x
and cannot exactly track which species generated the
reads.
The reason reads are obtained at x in IP could be

through interaction with on- or off-target, or a mixture
of both, when population heterogeneity is considered.
Thus, the only accessible estimate of IP efficiency is

ê(x, L) =
ρin
ρ

FL
in

FL

Fin

F

vin
V − vin

∑

i R̂i(x, L)
∑

i R̂
in
i (x, L)

=
ρin
ρ

FL
in

FL

Fin

F

vin
V − vin

R̂(x, L)

R̂in(x, L)

(23)

Two important details must be acknowledged here:
First, we are making explicit use of paired-end se-
quencing which provides the length (L) of each frag-
ment that is mapped to x. Second, in application of

this expression, x is the interval within which a frag-
ment starts. We find that ê(x, L) is only sensitive to
the length of the interval x when the interval is taken
too small. Basically the data become noisy, limiting
the smallest interval width to around 100 base-pair
for the data analyzed below. The three identifying at-
tributes mentioned in the Introduction are x, L, and
ê(x, L). Note that the total reads is now given by
R̂ =

∑

x

∑

L

∑

i R̂i, which relates everything back to
equation (2).

ê(x, L) can be transformed for plotting in a genome
browser as the cumulative efficiency on an interval y

ê(y) =
1

∆y

∑

x,L

1[
y∩[x,x+L] 6=∅

]ê(x, L) (24)

where the indicator function 1[
·
] is unity if the interval

y intersects the current fragment and is zero otherwise.
The length of the interval y in base-pairs is given by
∆y so that ê(y) can be seen as the cumulative effi-
ciency per base-pair. The cumulative efficiency (ê(y))
was shown in Figure 2. For visualization we also make
an analogous projection of ê(x, L) onto y, which was
shown in figure 2.

Before moving away from equation (24), which is
the basis of siQ-ChIP, we briefly make note of how
our approach interacts with standard peak calling al-
gorithms. There are some deep implications for peak
calling, outlined in below, but it is worth noting that
siQ-ChIP can be combined with standard peak callers.
The widely used MACS peak caller[17], which calls
peaks in part by the ratio of IP to input reads can
be used here. If MACS is used to call peaks with a
threshold IP/input > θ then the minimal peak height

in siQ-ChIP is given by ρin

ρ

FL
in

FL

Fin

F
vin

V−vin
θ. Any hid-

den Markov model peak caller would also be suitable.
It is suggested to call peaks on the underlying data
and then use those locations to examine/process ê(x).
However, as discussed below, it is completely reason-
able to plot the ratio of cumulative efficiency (equation
(24)) from two experiments that are being compared.
This provides immediate access to regions of differen-
tial enrichment without using any peak callers.

Application to ChIP-seq analysis

Figure 2 summarizes evaluation of ê(x, L) and ê(x) for
a region of chromosome 2 and demonstrates how num-
ber of mapped reads and HMD normalizations com-
pare. Looking back on Figure 2 the signal compression
of HMD can be explained. The HMD normalization
scheme is given in spirit by T̂j,i above, where species j
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is replaced with genomic reads at x,

HMD(x) =

R̂(x)

R̂in(x)

R̂i(l)

R̂in
i

(l)

(25)

where i =H3K27me3 and l is the associated DNA bar-
code. The analysis of HMD is identical to that of T̂j,i,
with one additional complexity stemming from cellu-
lar heterogeneity. In the case of HMD, signal compres-
sion can arise for both off-target binding, as it does
in T̂j,i, and also for on-target binding in regions of
high heterogeneity. Because any exogenous chromatin
can be built as a specific combination of synthetic nu-
cleosomes, these results for HMD imply that all chro-
matin spike-ins will demonstrate comparable compres-
sion. The above implies that HMD does not explic-
itly express anything concrete about the “modification
density” because the nature of compression is unde-
termined in practice. While it is generally appreciated
that number-of-mapped-reads normalization is insuf-
ficient for capturing proper ChIP-seq scale, it is now
clear that exogenous spike-ins also produce erroneous
scaling. The denominator in equation (25) was 1.14
for DMSO-treatment and 8.98 for EPZ6438-treatment,
which derives exactly from the jump in capture effi-
ciency we discussed above. The good news for signal
compression, however, is that it reduces the likelihood
of mistakenly identifying off-target peaks as target as
long as the user who paid for the data is willing to
conclude there is no signal in the data. Thus, a data
loss is incurred. It is our view that it would be bet-
ter to see off-target peaks and know that they are off-
target, as this constitutes useful information about the
chromatin landscape. Before moving on, we note that
the disparity between capture efficiency of the SNAP
nucleosomes and cellular chromatin suggests that no
region of the genome presents H3K27me3 consistently
across all cells in the population. The SNAP spike-ins
are homogeneous so they provide a great source of in-
formation on heterogeneity even though they have so
far never been used in this way.
In Figure 2C, siQ-ChIP reveals a reduction of the

right-most peak and an increase in the left-most peak
for the region of chromosome 2 in the visualized win-
dow. The heat maps show clear density underlying
both peaks, as well as the region between the peaks,
in both experimental contexts. siQ-ChIP analysis can
be used to diagnose the nature of these features.
For example, Figure 6A-B show HMD and siQ-ChIP
(ê(x)) on another region of chromosome 2, where each
method reports a loss of signal for H3K27me3 af-
ter EPZ6438 treatment. HMD compresses the signal
(post-EPZ6438) to such an extent that the level of

background is different between treatment paradigms.
Given that all data were collected the same way, using
the same sequencer, it should be considered impossi-
ble to obtain drastically different background levels.
The alternative is that the apparent background in
DMSO-treated signal is an actual signal originated by
antibody binding events, and that compression arises
from off-target binding or a high degree of on-target
heterogeneity post-EPZ6438. This is the ambiguous in-
terpretation noted in the introductory remarks.
In Figure 6B, siQ-ChIP shows that peaks in DMSO-

treatment are brought down to levels that might be
consistent with background in both experimental con-
ditions, which is what would be expected of real back-
ground (it should be similar in both data sets). How-
ever, siQ-ChIP provides a simple test of differential
enrichment, shown in Figure 6C. This form of analy-
sis is not possible with any other quantitation scheme.
The ratio of cumulative efficiencies clearly shows both
an EPZ6438-dependent loss in efficiency (regions lower
than the red line) and an EPZ6438-dependent gain in
efficiency (regions higher than the red line). Figure 6
also shows ê(x, L) to highlight the fact that in sequenc-
ing data for DMSO-treated samples, we observe non-
zero capture of the genomic regions associated with en-
hanced efficiency post-EPZ6438 treatment. One such
region is highlighted with a dashed box. Like HMD,
but without signal compression, the genome-browser
view of siQ-ChIP suggests that the enhanced capture
post EPZ6438 treatment is due to either off-target
binding or heterogeneous spread of H3K27me3. The
siQ-ChIP object ê(x, L), which cannot be viewed in a
browser, reveals something more about these regions of
interest. We observe a reduction in warmer colors for
dinucleosomes and an expansion of more dim shades
of color exclusively for mononucleosomes. This implies
a loss of tight binding and a gain in weak binding,
that is not strongly enhanced by dinucleosomal avid-
ity, because the efficiency is directly related to effective
binding constants (equation (12)). siQ-ChIP analysis is
less vague in implication here, and suggests that these
regions of differentially enhanced signal post EPZ6438
bear off-target PTMs, and that these off-targets may
be found in DMSO signal as well.
The model above affords the following explanation

for the behavior of capture efficiency: The concentra-
tion of free antibody is increased by epitope depletion,
relative to the DMSO control, leaving the free anti-
body to bind off-target PTMs with higher frequency
(but not better binding constants). This leads to the
observed trends in differential enrichment where off-
target regions are mildly enhanced after target de-
pletion. If this implication can be proven, there are
significant consequences. For example, if these regions
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turn out to derive from off-target binding then these
off-target signals are often passing as background or
are totally ignored upon global normalization, more-
over the SNAP spike-ins have qualified this antibody
as specific. With this in mind, we next sought to iden-
tify whether any antibody driven interactions might
underlie our observations.

Significant off-target enrichment in EPZ6438 treated
chromatin.
Meta analysis of existing ChIP-seq data in HCT116
colon cancer cells was used to investigate the potential
for off-target signal in the above sequencing results.
Correlation among sequencing peaks in different anti-
body tracks was evaluated. Overlap in coverage from
multiple antibodies targeting different PTMs is taken
as statistical evidence that the coverage could be due
to either mark. Depending on the extent of overlap, as
is shown below for H3K9me3, this is taken as strong
evidence in support of off-target binding.
Figure 7 shows the two different regions of chromo-

some 2 that we have looked at in Figures 2 and 6. The
siQ-ChIP differential enrichment is plotted along with
tracks for H3K9me3 and H3K36me3. The H3K36me3
track is taken from ENCODE[12] (ENCSR091QXP,
GEO:GSE95914), while the H3K9me3 track was gen-
erated in our lab, albeit for purposes unrelated to our
present endeavor. It was basic human-level pattern
recognition that initially clued us in on the overlap
with H3K9me3. The presentation in Figure 7 clearly
demonstrates a striking degree of overlap in regions
enhanced by EPZ6438 treatment and H3K9me3, while
showing that H3K36me3 is difficult to anticipate from
the projected browser view. We know from ê(x, L) in
Figure 2 that both DMSO and EPZ6438 treatments re-
port weak capture that is consistent with H3K36me3,
but it escapes easy detection when looking only at ra-
tios of ê(x). Any off-target naturally overlapping with
target will be difficult to detect with this simplistic ap-
proach. From Figure 5, one would expect H3K4me3,
H3K36me3, and H4K20me3 to be among the most
likely off-target epitopes, but would not have been con-
sidered a significant concern based on T̂j,i.
To quantify the observed overlap globally, we recorded

the total genomic coverage of peaks in either H3K9me3
or H3K36me3 ChIP-seq experiments and asked how
frequently DMSO or EPZ6438 ChIP-seq peaks covered
the same regions. To avoid dependence on siQ-ChIP
while establishing the extent of overlap, we simply
called peaks in each dataset using MACS2[17]. Given
our analysis above, we expected a number of off-target
binding events to be classified as background, so we
suggest this peak-coverage analysis is a lower bound
for what is actually present in the data. Tables 2 and
3 summarize our results.

Table 3 reports that, for MACS-called peaks, H3K9me3
overlaps with H3K36me3 coverage 0.65 times less
than would be expected by chance. DMSO-treated
chromatin that was immunoprecipitated with the
H3K27me3 antibody overlaps with H3K9me3 1.33
times more often than expected when peaks are called
by MACS. IP with the H3K27me3 antibody pro-
duced significant overlap with H3K36me3 coverage for
DMSO-treated cells.
The amount of overlap with off-target H3K9me3

or H3K36me3 shows a substantial increase in the
EPZ6438-treated chromatin relative to DMSO. This
reinforces the model prediction that, even though the
antibody is specific, it will IP only off-target species
if the target epitope is removed. Alarmingly, 43%
of the MACS-called IP coverage in EPZ6438 ChIP-
seq are correlated to either H3K9me3 or H3K36me3,
and two of the strongest off-targets (by Figure 5,
H3K4me3 and H4K20me3) are yet to be compared to
the H3K27me3 track. These observations strongly im-
ply that the peaks revealed by ChIP-seq of EPZ6438
treated cells cannot be interpreted as peaks of mi-
grated or maintained H3K27me3.
The overlap data also shows a significant correlation

between DMSO and EPZ6438 data based on MACS
peak calling. Interestingly, 47.5% of this overlap also
overlaps with H3K9me3 coverage and an additional
5% overlaps with H3K36me3 coverage — Over half of
the DMSO and EPZ6438 coverage overlap is correlated
with off-target PTM coverage. These overlapping re-
gions are therefore ambiguously determined as either
H3K27me3, H3K9me3, or H3K36me3 bearing regions.
Overall, the peaks in EPZ6438 data are now much
more easily interpreted as off-target than on-target.

Flexible protocols
For hard to ChIP PTMs it may be impossible to ob-
tain a workable amount of DNA from one IP reaction.
It is possible to combine M IP reactions, where each
IP is required to have identical reaction conditions, as
follows

R̂i = 2c ρFL F

M
∑

IP

[

Sb
i

(

V − vin
)

NA

]

IP

= 2c ρFL F M
[

Sb
i

(

V − vin
)

NA

]

(26)

Using this adjustment in the effective efficiency only
modifies equation (23) by the factor 1

M
. This result is

intuitive, as it clearly maps the results on to a per-IP
basis. Explicitly, the effective efficiency becomes

ê(x, L) =
1

M

ρin
ρ

FL
in

FL

Fin

F

vin
V − vin

R̂(x, L)

R̂in(x, L)
(27)
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Obviously, normalization to cell number is encoded
here as well.

Conclusion
We have developed a completely spike-in free quanti-
tative analysis for ChIP-seq. The approach acknowl-
edges that the IP is a binding reaction and employs
the common framework for binding reactions to yield
quantitative relationships for sequencing results. We
have shown that projecting to the standard browser-
style view collapses the three dimensional map of cap-
ture efficiency ê(x, L) into a less informative represen-
tation, and that ê(x, L) is a useful object for suggest-
ing whether a browser peak is due to target or off-
target binding. siQ-ChIP applies to standard paired-
end MNase or crosslinking ChIP protocols and only re-
quires that each step of the process be carefully logged
so that the scale can be correctly determined. MNase
data is likely to produce more powerful insights as it al-
lows one to distinguish mono- and di-nucleosome bind-
ing events.

We have used the framework of siQ-ChIP to investi-
gate SNAP-HMD and ChIP-based assessment of anti-
body specificity. Predictions were tested for both cap-
ture efficiency and specificity (T̂j,i), showing that our
model is fully capable of describing chromatin spike-
ins. The behavior of these spike-ins is not fully appreci-
ated in the literature, and our analysis places new limi-
tations on the utility of “specificity” measures. In par-
ticular, we revealed significant off-target binding for
an antibody that displays a high degree of specificity
within the SNAP-HMD metrics. We also suggest that
differences in heterogeneity between the spike-in and
cellular chromatin of interest cause an unappreciated
compression of signal.

Our work may also hold implications for state-of-
the-art peak callers that infer/learn background levels
by analyzing signal. We have shown that what seems
like background in DMSO signal displays a response
to epitope depletion and correlates significantly with
H3K9me3 domains. Thus, this “background” is actu-
ally likely to be residual off-target capture, even in
DMSO-derived data.

The above work also suggests that any ChIP-seq
data should be cross-validated against a mixture of
tracks from the same cell line to help ensure a lack of
ambiguity in any peaks that are designated to a partic-
ular PTM. As the possibility of PTM co-occurence is
valid, we argue that co-designation of peaks is more ap-
propriate than mis-designation. In the case presented
above, the overlap with H3K9me3 is striking, and
we suggest that co-occurance everywhere must have
smaller odds than cross-reactions.

We have also noted some limitations in the siQ-ChIP
differenential enrichment analysis, where any off-target
that is in two samples may be difficult to see. Future
work will investigate using hidden Markov models to
find these sorts of features within the differential en-
richment quotient. The above work also opens a num-
ber of doors toward optimizing the information per
dollar per lab hour spent on ChIP-seq.
Finally, we close with a proposition for profiling anti-

bodies. Equation (15) can be used to empirically deter-
mine relative binding constants for different epitopes
if an experiment can be designed such that the observ-
able fraction of each epitope is equal. Equality in ob-
servability can be achieved by replacing cellular chro-
matin with unmodified synthetic nucleosomes. The
PTM bearing spike-in nucleosomes would then have
equal observabilities. A standard ChIP-seq with the
antibody of choice can then be analyzed using equa-
tion (15) where ei is given by equation (18). This ap-
proach would provide a profile of the antibody binding
constants rather than the contextual profiles shown in
figure 4.
The software to compute the siQ-ChIP prefactors

and objects ê(x) and ê(x, L) is available at GitHub[18].
Documentation is also found there.
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Figures

Figure 1 Key concept. A) The sequenced reads (or
fragments) is a subset of the total possible. Down-sampling to
meet the requested depth causes loss of quantitation.
Restoration of quantitation only requires some bookkeeping
during ChIP-seq practice. B) Schematic of bookkeeping.

Figure 2 A question of scale. IP:input normalized only to
number of mapped reads, Histone modification density
(HMD), and siQ-ChIP. Single lines show genome-browser style
data while heat maps show histograms of fragment as a
function of start position (x-axis), and length L, where color
gives scaled estimates of IP efficiency.

Figure 3 Model simulation. Simulated data for two species
model. (A) IP efficiency for labeled spike-ins. (B) Actual
fractional composition of bound unlabeled species. (C)
Estimated ratio of on-target to off-target KB , variation is in
parts per trillion. Actual ratio was 100, KB,1 = 11,
KB,2 = 0.11. In the reaction volume labeled spike-ins were
0.06 µM, unlabeled off-target epitope was 5 µM, target
epitope was 4 µM in mock DMSO and 0.2 µM in mock
EPZ6438 treatment. No attempt was made to exactly fit
experimental outcomes below.

Figure 4 Observed selectivity (T̂j,i). SNAP nucleosome
selectivity profile in ChIP-seq from vehicle (DMSO) or
EPZ6438 treated cells, two biological replicates. This is the
so-called “% Target” specificity measure. Constant value of
0.05 shown in black as a visual reference. Data is average of
SNAP pairs in one biological replicate. Full table in
Supplemental Information. The target epitope, species i, is
K27me3. Antibody: CST C36B11 lot 9733S(14)

Figure 5 EPZ6438-dependent increase in semi-synthetic
off-target capture. Ratio of efficiency, EPZ6438 to DMSO
(vehicle), two biological replicates, for each spike-in species.

Figure 6 siQ-ChIP off-target detection. (A) HMD, (B)
cumulative efficiency, (C) differential enrichment based on
ratio of ê(x), and (D) ê(x, L). The red line is drawn at unity.
Window width is 10k bp.

Figure 7 Browser views of siQ-ChIP enrichment and
off-target tracks. Examples of K9me3 (red) and H3K36me3
(purple) tracks on chr2 in IGV genome browser. Cumulative
efficiency ê(x) is computed on windows 2000 bases wide.
Blue-Gold track is the ratio of EPZ6438 cumulative efficiency
to DMSO cumulative efficiency. Blue color indicates higher
efficiency in EPZ6438 treatment, Gold indicates higher
efficiency in DMSO. The blue-gold track is siQ-ChIP
differential enrichment. The red track is H3K9me3 ad the
purple track is ENCODE H3K36me3. A) The region of chr2
shown in figure 2. B) The region of chr2 shown in figure 6.

Tables

Additional Files

Additional file 1 — Experimental methods:

PDF file containing details of experimental protocols. Code and scripts are

published at GitHub[18]. GEO accession number is forthcoming.
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Table 1 Table of symbols required for quantification. See
Supporting Information for an expanded table of all required
measurements.

Symbol Description

F Fraction of IP (moles) taken to library

FL Fraction of IP-library (moles) taken to sequencing

ρ Estimated library collection efficiency for IP

Fin Fraction of input (moles) taken to library

FL
in Fraction of input-library (moles) taken to sequencing

ρin Estimated library collection efficiency for input

vin input volume

V − vin IP reaction volume

Table 2 Peak numbers and Hyper-geometric P-values (left) for
genome wide signal overlaps. 0 indicates significant under
sampling, 1 indicates significant over sampling.

K9me3 K36me3 DMSOMACS EPZ6438MACS

K9me3 – 0 1 1

K36me3 0 – 1 1

DMSOMACS 1 1 – 1

EPZ6438MACS 1 1 1 –

Table 3 Enrichment bias as fold change for genome wide signal
overlaps

K9me3 K36me3 DMSOMACS EPZ6438MACS

K9me3 – 0.65 1.33 4.19

K36me3 0.65 – 1.92 2.77

DMSOMACS 1.33 1.92 – 6.13

EPZ6438MACS 4.19 2.77 6.13 –
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FIG. 1: Key concept. A) The sequenced reads (or fragments) is a subset of the total possible. Down-sampling to meet
the requested depth causes loss of quantitation. Restoration of quantitation only requires some bookkeeping during ChIP-seq
practice. B) Schematic of bookkeeping.
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2

FIG. 2: A question of scale. IP:input normalized only to number of mapped reads, Histone modification density (HMD),
and siQ-ChIP. Single lines show genome-browser style data while heat maps show histograms of fragment as a function of start
position (x-axis), and length L, where color gives scaled estimates of IP efficiency.
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FIG. 3: Model simulation. Simulated data for two species model. (A) IP efficiency for labeled spike-ins. (B) Actual fractional
composition of bound unlabeled species. (C) Estimated ratio of on-target to off-target KB , variation is in parts per trillion.
Actual ratio was 100, KB,1 = 11, KB,2 = 0.11. In the reaction volume labeled spike-ins were 0.06 µM, unlabeled off-target
epitope was 5 µM, target epitope was 4 µM in mock DMSO and 0.2 µM in mock EPZ6438 treatment. No attempt was made
to exactly fit experimental outcomes below.
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FIG. 4: Observed selectivity (T̂j,i). SNAP nucleosome selectivity profile in ChIP-seq from vehicle (DMSO) or EPZ6438
treated cells, two biological replicates. This is the so-called “% Target” specificity measure. Constant value of 0.05 shown in
black as a visual reference. Data is average of SNAP pairs in one biological replicate. Full table in Supplemental Information.
The target epitope, species i, is K27me3. Antibody: CST C36B11 lot 9733S(14)
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FIG. 5: EPZ6438-dependent increase in semi-synthetic off-target capture. Ratio of efficiency, EPZ6438 to DMSO
(vehicle), two biological replicates, for each spike-in species.

FIG. 6: siQ-ChIP off-target detection. (A) HMD, (B) cumulative efficiency, (C) differential enrichment based on ratio of
ê(x), and (D) ê(x, L). The red line is drawn at unity. Window width is 10k bp.
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FIG. 7: Browser views of siQ-ChIP enrichment and off-target tracks. Examples of K9me3 (red) and H3K36me3
(purple) tracks on chr2 in IGV genome browser. Cumulative efficiency ê(x) is computed on windows 2000 bases wide. Blue-
Gold track is the ratio of EPZ6438 cumulative efficiency to DMSO cumulative efficiency. Blue color indicates higher efficiency
in EPZ6438 treatment, Gold indicates higher efficiency in DMSO. The blue-gold track is siQ-ChIP differential enrichment. The
red track is H3K9me3 ad the purple track is ENCODE H3K36me3. A) The region of chr2 shown in figure 2. B) The region of
chr2 shown in figure 6.
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Native Chromatin Immunoprecipitation (ChIP) 

HCT116 colorectal carcinoma cells were treated for 72 hours with either vehicle (0.02% DMSO and 

0.03% PBS) or EZH2 inhibitor (EPZ6438, 1 uM). Cells were trypsinized, collected, flash frozen, and 
stored at -80°C.  

Nuclei purification: To purify nuclei, thawed cells were washed 3x with PBS, 2x with Buffer N (15 mM 

Trizma Base pH 7.5, 15 mM NaCl, 60 mM KCl, 5 mM MgCl2, 1 mM CaCl2, 8.5% sucrose, 1 mM DTT, 

200 uM PMSF, 50 ug/mL BSA, and protease inhibitor), and lysed with 2x Lysis Buffer (0.6% NP-40 in 

Buffer N). Nuclei were layered over a 30% sucrose cushion, pelleted at 1300 rcf, and resuspended in 
Buffer N.  

Nucleosome preparation: Crude chromatin concentration was determined by sonicating 2 uL of nuclei 

in 18 uL NaCl (2 M) and measuring DNA concentration with a Nanodrop; nuclei equivalent to 50 ug of 
DNA were aliquoted and spiked with 5 uL of a SNAP-ChIP k-MetStat panel (Epicypher). 1 U MNase (25 

U/uL) was added per 4.275 ug chromatin and incubated at 37°C for 12 minutes with shaking. MNase 

digestion was stopped with 1/10 volume MNase Stop Buffer (10x, 0.1 M EGTA) followed by 1/8 volume 

NaCl (5 M) to lyse nuclei and release digested chromatin. After centrifugation, soluble chromatin was 
added to 33 mg of rehydrated ceramic hydroxyapatite (CHT) resin and rotated for 10 min at 4°C. The 

CHT Resin:Chromatin mix was added to a centrifugal filter unit and washed 4x with HAP Wash Buffer 1 

(5 mM NaPO4 pH 7.2, 600 mM NaCl, 1 mM EDTA, and 200 uM PMSF), 4x with Hap Wash Buffer 2 (5 

mM NaPO4 pH 7.2, 100 mM NaCl, 1 mM EDTA, and 200 uM PMSF), and eluted with three successive 
additions of HAP Elution Buffer (500 mM NaPO4 pH7.2, 100 mM NaCl, 1 mM EDTA, and 200 uM 

PMSF). DNA concentration was again measured by sonication and adjusted to 20 ug/mL with ChIP 

Buffer 1 (25 mM Tris pH 7.5, 5 mM MgCl2, 100 mM KCl, 10% glycerol, 0.1% NP-40, 200 uM PMSF and 
50 ug/mL BSA).  

Antibody:bead preparation: Antibody:bead conjugates were prepped by adding 5 or 10 uL of Cell 

Signaling Technology H3K27me3 antibody (CST #9733, clone C36B11, lot 14, 102 ug/mL) or 3 uL of 
abcam H3K27me3 antibody (ab6002, 1 mg/mL) to 12.5 uL of Protein A Magnetic Dynabeads 

(Invitrogen) that had been washed with ChIP Buffer 1. 5 uL of CST #9733 was chosen as the optimal 

antibody after comparison with ab6002 (Fig. S1A). Antibody:bead conjugates were incubated on a 
rotator for 3 hours at 4°C, washed 2x, and resuspended with ChIP Buffer 1.  

Chromatin Immunoprecipitation: Between 0.5 and 3 ug of chromatin was used for optimization (Fig. 

S1B). Based on this, 0.75 ug of the purified digested chromatin (as measured by DNA concentration) 

was added to the antibody:bead conjugates while a volume equivalent to 10% was saved for input from 
the purified chromatin. The bead:antibody:chromatin mixture volume was brought to 100 uL with ChIP 

Buffer 1 and incubated on a rotator for 17 min at 4°C. Using a magnetic rack, the mixture was washed 

for 10 min on a rotator at 4°C 2x with ChIP Buffer 2 (25 mM Tris pH 7.5, 5 mM MgCl2, 300 mM KCl, 

10% glycerol, 0.1% NP-40, 200 uM PMSF and 50 ug/mL BSA), 1x with ChIP Buffer 3 (10 mM Tris pH 
7.5, 250 mM LiCl, 1 mM eDTA, 0.5% NaDeoxycholate, 0.5% NP-40, 200 uM PMSF and 50 ug/mL 

BSA), 1x with ChIP Buffer 1, 1x with TE Buffer (pH 8.0), and resuspended in 50 ul of ChIP Elution 

Buffer. This was incubated at 55°C for 5 min, and sample was eluted from beads on a magnetic rack. 

Finally, 2 uL NaCl (5M), 1 uL EDTA (0.5M), and 0.5 uL Proteinase K (100x) were added to ChIP and 
Input samples, which were incubated overnight at 55°C.  

Purification of Immunoprecipitated DNA: DNA was recovered using KAPA Pure beads at a 1.5X 

ratio on a magnetic rack. After two washes with 75% EtOH, DNA was eluted in 50 uL dH20 and DNA 
concentration was measured with a Qubit. Input and ChIP Libraries were prepared from 10 ng DNA 

using a KAPA Hyper Prep Kit. Libraries were purified once more with KAPA Pure beads at a 1.0X ratio 
to remove adaptor contamination. 
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See Table S1 for measurements recorded during ChIP experiments that are used to calculate the 
estimated capture efficiency with the siQ-ChIP algorithm. 

 

Table S1. Required measurements for running siQ-ChIP algorithm 
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q-RTPCR 

To optimize the ChIP experiment, positive genomic regions reportedly marked by H3K27me3 (HCT116 

ENCODE data; GEO: GSE86755) and negative regions lacking H3K27me3 were tested by q-RTPCR 
using SYBR mastermix and forward and reverse primers for each region (Table S2). 

Table S2. Primers for H3K27me3 positive and negative regions 

Genomic 
coordinate 

Forward Primer (5’→3’) Reverse Primer (5’→3’) Type of Region 

chr17:6,205,082-
6,205,172 
 

AATGACTGATCACCGCCTGG 
 

AGCATGGTTGTCCCATGAGT 
 

Positive 

chr17:79,406,504-
79,406,614 
 

TGTTTCTCCCGCCAGGAAAT 
 

AATGGAGGGCACCGTTTGTT 
 

Positive 

chr22:36,719,668-
36,719,750 
 

TCCTTCTGCCATCGTGACTC 
 

CCAGGCAATTGCTTATGCCC 
 

Positive 

chr7:5,531,109-
5,531,242 
(ACTB) 

TTGCCGACTTCAGAGCAACT 
 

CCCCAACACCACACTCTACC 
 

Negative 

chr8:98,045,390-
98,045,496 
(RPL30) 

GCCCCCAACCTAGAAGAGAC 
 

TACCGACCGAGGTTTAGGCA 
 

Negative 

chr12:6,534,394-
6,534,510 
(GAPDH) 

CGTAGCTCAGGCCTCAAGAC 
 

AGGCTGCGGGCTCAATTTAT 
 

Negative 

 

Sequencing 

Prepared libraries were submitted to the VARI Genomics Core for library QC and quantification using 

the Agilent 2100 Bioanalyzer and KAPA Library Quantification Kit, respectively. Libraries were 
sequenced on an Illumina NextSeq 500 with 2 X 75 bp paired-end reads.  

NGS Data Preprocessing  

Adapters were trimmed from fastq sequences using TrimGalore! version 0.5.0 

(https://github.com/FelixKrueger/TrimGalore). Trimmed sequences were queried for overall sequencing 

quality using FastQC version v.0.11.8 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 
Sequences were then aligned to the human hg38 genome build using the following command in 
bowtie2 version 2.3.4.3 (PMID: 22388286):  

bowtie2 -I 0 -X 700 --end-to-end --sensitive -x /path_to_hg38_index -1 
/path_to_first_paired_read.fastq.gz -2 /path_to_second_paired_read.fastq.gz -S sample.sam 

SAM files were further processed with the following command to isolate paired reads with high mapping 
quality, correct pair orientation, and to calculate fragment length:  

awk -v MAQ=20  ‘$5>=MAQ && $2==99 || $5>=MAQ && $2==163 {print $3”\t”$4”\t”$4+$9-1} 
sample.sam | awk ‘$2<=$3{print $1”\t”$2”\t”$3”\t”$3-$2} | sort -k1,1 -k2,2n > outfile.bed 

Finally, known blacklisted regions were removed from the bed files using the subtract function from 
bedtools (PMID: 24782889, 20110278).  
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MACS2 peak calling: To call peaks of modification enrichment for both our H3K9me3 ChIP-seq and 
H3K27me3 ChIP-seq datasets, we used the following command from macs2 (v2.1.2): 

macs2 callpeak -t {IP_sample}.bam  -c {Input_sample}.bam -f BAMPE -n {SAMPLE} –outdir 
/path_to_output_dir/ --broad -B 

Bedtools intersection: To determine the coverage of the genome (in bp) that intersected between two 
datasets we performed the following command in bedtools for the different datasets: 

bedtools intersect -a dataset1.bed -b dataset2.bed -wo |  awk '{ sum += 
$column_with_overlap_bp_count; } END { print sum; }' "$@" 

 

Chromatin-antibody Binding Assay 

Antibody+chromatin interaction was measured (Fig. S2) on a MicroCal PEAQ-ITC (Malvern) at 4°C to 
investigate relevance of equilibrium models. HeLa poly-nucleosomes (EpiCypher, 16-0003) or 

H3K27me3 antibody (CST #9733) were diluted in ChIP Buffer 1 to 0.75 ug in 280 uL (cell volume) or 5 

uL into 40 uL (syringe), respectively. After an initial delay of 150 seconds, a single 40 uL injection was 

performed over 8 seconds, followed by an equilibration period. Equilibrium is reached in approximately 
three minutes, showing that IP conditions are compatible with equilibrium binding models. 
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Figure S1. ChIP Optimizations. A) ChIPs from vehicle and EPZ6438 (EPZ) treated samples (chromatin 

equivalent to 3 ug DNA) using Abcam (ab6002) and Cell Signaling Technologies (CST #9733) 

H3K27me3 antibodies were compared. H3K27me3-positive (blue: chr17-1, chr17-2, chr22-1) and 
negative regions (red: ACTB, RPL30, and GAPDH promoters) were tested by qPCR. CST#9733 pulled 

down H3K27me3-positive regions more robustly. B) Different concentrations of chromatin equivalent to 

1.5, 1.0, and 0.5 ug DNA were immunoprecipitated with CST #9733 (5 uL). Average of technical 
duplicates plotted for each. 

         

Figure S2. To evaluate whether the antibody-chromatin complex formation behaves as an equilibrium 

binding reaction, we performed a single injection isothermal titration calorimetry (ITC) experiment under 
the same conditions as a standard ChIP. H3K27me3 antibody and HeLa chromatin were each diluted in 

ChIP Buffer 1 and completely combined with a single injection on a microcalorimeter. After 
approximately three minutes, the binding reaction reached equilibrium. 
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