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While single cell RNA sequencing (scRNA-seq) is invaluable for studying cell 17 

populations, cell-surface proteins are often integral markers of cellular function and 18 

serve as primary targets for therapeutic intervention. Here we propose a transfer learning 19 

framework, single cell Transcriptome to Protein prediction with deep neural network 20 

(cTP-net), to impute surface protein abundances from scRNA-seq data by learning from 21 

existing single-cell multi-omic resources. 22 

Keywords: genomics, immunophenotypes, single cell sequencing, deep learning, prediction, 23 

multi-omics 24 

Introduction 25 

Recent technological advances allow the simultaneous profiling, across many cells in parallel, of 26 

multiple omics features in the same cell 1-5. In particular, high throughput quantification of the 27 

transcriptome and a selected panel of cell surface proteins in the same cell is now feasible 28 
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through the REAP-seq and CITE-seq protocols 2, 3.  Cell surface proteins can serve as integral 29 

markers of specific cellular functions and primary targets for therapeutic intervention. 30 

Immunophenotyping by cell surface proteins has been an indispensable tool in hematopoiesis, 31 

immunology and cancer research during the past 30 years. Yet, due to technological barriers 32 

and cost considerations, most single cell studies, including Human Cell Atlas project 6, quantify 33 

the transcriptome only and do not have cell-matched measurements of relevant surface proteins 34 

7, 8. Sometimes, which cell types and corresponding surface proteins are essential become 35 

apparent only after exploration by scRNA-seq. This motivates our inquiry of whether protein 36 

abundances in individual cells can be accurately imputed by the cell’s transcriptome.  37 

We propose cTP-net (single cell Transcriptome to Protein prediction with deep neural network), 38 

a transfer learning approach based on deep neural networks that imputes surface protein 39 

abundances for scRNA-seq data. Through comprehensive benchmark evaluations and 40 

applications to Human Cell Atlas and acute myeloid leukemia data sets, we show that cTP-net 41 

outperform existing methods and can transfer information from training data to accurately 42 

impute 24 immunophenotype markers, which achieve a more detailed characterization of 43 

cellular state and cellular phenotypes than transcriptome measurements alone. cTP-net relies, 44 

for model training, on accumulating public data of cells with paired transcriptome and surface 45 

protein measurements. 46 

 47 

Results 48 

Method overview 49 

An overview of cTP-net is shown in Figure 1a. Studies based on both CITE-seq and REAP-seq 50 

have shown that the relative abundance of most surface proteins, at the level of individual cells, 51 
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is only weakly correlated with the relative abundance of the RNA of its corresponding gene 2, 3, 9. 52 

This is due to technical factors such as RNA and protein measurement error 10, as well as 53 

inherent stochasticity in RNA processing, translation and protein transport 11-15. To accurately 54 

impute surface protein abundance from scRNA-seq data, cTP-net employs two steps: (1) 55 

denoising of the scRNA-seq count matrix and (2) imputation based on the denoised data 56 

through a transcriptome-protein mapping (Figure 1a). The initial denoising, by SAVER-X 16, 57 

produces more accurate estimates of the RNA transcript relative abundances for each cell. 58 

Compared to the raw counts, the denoised relative expression values have significantly 59 

improved correlation with their corresponding protein measurement (Figure 1b, S3a, S4ab). Yet, 60 

for some surface proteins, such as CD45RA, this correlation for denoised expression is still 61 

extremely low.  62 

The production of a surface protein from its corresponding RNA transcript is a complicated 63 

process involving post-transcriptional modifications and transport 11, translation 12, post-64 

translational modifications 13 and protein trafficking 14. These processes depend on the state of 65 

the cell and the activities of other genes 9, 15. To learn the mapping from a cell’s transcriptome to 66 

the relative abundance of a given set of surface proteins, cTP-net employs a multiple branch 67 

deep neural network (MB-DNN, Figure S1). Deep neural networks have recently shown success 68 

in modeling complex biological systems 17, 18, and more importantly, allow good generalization 69 

across data sets16, 19. Generalization performance is an important aspect of cTP-net, as we 70 

would like to perform imputation on tissues that do not exactly match the training data in cell 71 

type composition. Details of the cTP-net model and training procedure, as well as of alternative 72 

models and procedures that we have tried, are in Methods and Supplementary Note. 73 

 74 

Imputation accuracy assessment and transfer learning 75 
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Evaluation via random holdout 76 

To examine imputation accuracy, we first consider the ideal case where imputation is conducted 77 

on cells of types that exactly match those in training data. For benchmarking, we used 78 

peripheral blood mononuclear cells (PBMCs) and cord blood mononuclear cells (CBMCs) 79 

processed by CITE-seq and REAP-seq 2, 3, described in Table S1. We employed holdout 80 

method, where the cells in each data set were randomly partitioned into two sets: a training set 81 

with 90% of the cells and a holdout set with the remaining 10% of the cells for validation 82 

(Methods, Figure S2a). Each cell type is well represented in both the training and validation 83 

sets. Figure 1b and S3a show that, for all proteins examined in the CITE-seq PBMC data, cTP-84 

net imputed abundances have much higher correlation to the measured protein levels, as 85 

compared with the denoised and raw RNA counts of the corresponding genes. We obtained 86 

similar results for the CITE-seq CBMC and REAP-seq PBMC data sets (Figure S4ab).  87 

 88 

Generalization to unseen cell types  89 

Next, we considered the generalization accuracy of cTP-net, testing whether it produces 90 

accurate imputations for cell types that are not present in the training set. For each of the high-91 

level cell types in each data set in Table S2, all cells of the given type are held out during 92 

training, and cTP-net, trained on the rest of the cells, was then used to impute protein 93 

abundances for the held out cells (Methods, Figure S2b). We did this for each cell type and 94 

generated an “out-of-cell-type” prediction for every cells.  95 

Across all benchmarking data sets and all cell types, these out-of-cell-type predictions still 96 

improve significantly upon the corresponding RNA counts while slightly inferior in accuracy to 97 

the traditional holdout validation predictions above (Figure 2a, S4a). This indicates that cTP-net 98 
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provides informative predictions on cell types not present during training, vastly improving upon 99 

using the corresponding mRNA transcript abundance as proxy for the protein level.  100 

 101 

Generalization across tissue and lab protocol  102 

To further examine the case where cell types in the training and test data are not perfectly 103 

aligned, we considered a scenario where the model is applied to perform imputation on a tissue 104 

that differs from the training data. We trained cTP-net on PBMCs and then applied it to perform 105 

imputation on CBMCs, and vice versa, using the data from Stoeckius et al. 3 (Methods). Cord 106 

blood is expected to be enriched for stem cells and cells undergoing differentiation, whereas 107 

peripheral blood contains well-differentiated cell types, and thus the two populations are 108 

composed of different but related cell types. Figure 2a and S3b shows the result on training on 109 

CBMC and then imputing on PBMC. Imputing across tissue markedly improves the correlation 110 

to the measured protein level, as compared to the denoised RNA of the corresponding gene, 111 

but is worse than imputation produced by model trained on the same population. For practical 112 

use, we have trained a network using the all cell populations combined, which indeed achieves 113 

better accuracy than a network trained on each separately (Methods, Figure S3b, S4ac). The 114 

weights for this network are publicly available at https://github.com/zhouzilu/cTPnet.  115 

We then tested whether cTP-net’s predictions are sensitive to the laboratory protocol, and in 116 

particular, whether networks trained using CITE-seq data yields good predictions by REAP-117 

seq’s standard, and vice versa. Using a benchmarking design similar to above, we found that, in 118 

general, cTP-net maintains good generalization power across these two protocols (Figure 2a, 119 

S3b).  120 

 121 

Comparison to Seurat v3 122 
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Seurat v3 anchor transfer 20 is a recent approach that uses cell alignment between data sets to 123 

impute features for single cell data. For comparison, we applied Seurat v3 anchor transfer to the 124 

holdout validation and out-of-cell-type benchmarking scenarios above (Methods). In the 125 

validation scenario, we found the performance of cTP-net and Seurat v3 to be comparable, with 126 

cTP-net slightly better, as both methods can estimate protein abundance by utilizing marker 127 

genes to identify the cell types. cTP-net, however, vastly improves upon Seurat in the out-of-128 

cell-type scenario (Figure 2a, S5a). This is because cTP-net’s neural network, trained across a 129 

diversity of cell types, learns a direct transcriptome-protein mapping that can more flexibly 130 

generalize to unseen cell types, while Seurat v3 depends on a nearest neighbor method that 131 

can only sample from the training dataset. As shown by the cross-population and out-of-cell-132 

type benchmarking above, cTP-net does not require direct congruence of cell types across 133 

training and test sets. 134 

In addition to predictions on unseen cell type, cTP-net also improves upon the existing state-of-135 

the-art in capturing within cell-type variation in protein abundance. As expected, within cell-type 136 

variation is harder to predict, but cTP-net’s imputations nevertheless achieve high correlations 137 

with measured protein abundance for a subset of proteins and cell types (Figure S3c, S4d). 138 

Compared to Seurat v3, cTP-net’s imputations align more accurately with measured protein 139 

levels when zoomed into cells of the same type (Figure 2b, S5b); see Figure 2c, for example, 140 

CD11c in CD14-CD16+ monocytes, CD2 in CD8 T cells, and CD16 in dendritic cells. All of these 141 

surface proteins have important biological function in the corresponding cell types, as CD11c 142 

helps trigger respiratory burst in monocyte 21, CD2 co-stimulates molecule on T cells 22 and 143 

CD16 differentiate DC subpopulation 23. The learning of such within-type heterogeneity gives 144 

cTP-net the potential to attain higher resolution in the discovery and labeling of cell states. 145 

 146 

Network interpretation and feature importance 147 
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What types of features are being used by cTP-net to form its imputation? To interpret the 148 

network, we conducted a permutation-based interpolation analysis, which calculates a 149 

permutation feature importance for each protein-gene pair (Methods, Figure S6a). Interpolation 150 

can be done using all cells, or cells of a specific type, the latter allowing us to probe 151 

relationships that may be specific to a given cell type. Applying this analysis to cTP-net trained 152 

on PBMC, we found that, at the level of the general population that includes all cell types, the 153 

most important genes for the prediction of each protein are those that exhibit the highest cell-154 

type specificity in expression (Table S3).  This is because most of these surface proteins are 155 

cell type markers, and thus when cells of all types are pooled together, “cell type” is the key 156 

latent variable that underlies their heterogeneity. Within cell type interpolation, on the other 157 

hand, reveals genes related to RNA processing, RNA binding, protein localization and 158 

biosynthetic processes, in addition to immune-related genes that differentiate the immune cell 159 

sub-types (Table S4). This analysis shows that cTP-net combines different types of features, 160 

both cell type markers and genes involved in RNA to protein conversion and transport, to 161 

achieve multiscale imputation accuracy. 162 

In addition, we analyzed the bottleneck layer with 128 nodes before the network branched out to 163 

the protein-specific layers. We performed dimension reduction (UMAP) directly on the 164 

bottleneck layer intermediate output of 7000 PBMCs from CITE-seq. Figure S6b shows that the 165 

cells are cleanly separated into different clusters, representing cell types as well as gradients in 166 

surface protein abundance. This confirms that the bottleneck layer captures the essential 167 

information on cell stages and transitions, and that each subsequent individual branch then 168 

predicts its corresponding protein’s abundance. 169 

 170 

Application to Human Cell Atlas 171 
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Having benchmarked cTP-net’s generalization accuracy across immune cell types, tissues, and 172 

technologies, we then applied the network trained on the combined CITE-seq dataset of 173 

PBMCs,CBMCs and bone marrow mononuclear cells (BMMCs) 3, 24 to perform imputation for the 174 

Human Cell Atlas CBMC and BMMC data sets (Table S1). Figure 3 shows the raw RNA count 175 

and predicted surface protein abundance for 24 markers across 6023 BMMCs from sample 176 

MantonBM1 and 4176 CBMCs from sample MantonCB1. (Similar plots for the other 7 BMMC 177 

and 7 CBMC samples are shown in Figure S8, S9). Similar to what was observed for actual 178 

measured protein abundances in the CITE-seq and REAP-seq studies, the imputed protein 179 

levels differ markedly from the RNA expression of its corresponding gene, displaying higher 180 

contrast across cell types and higher uniformity within cell type. Thus, the imputed protein levels 181 

can serve as interpretable intermediate features for the identification and labelling of cell states. 182 

For example, imputed CD4 and CD8 levels separate CD4+ T cells from CD8+ T cells with high 183 

confidence. Further separation of naïve T cells to memory T cells can be achieved through 184 

imputed CD45RA/CD45RO abundance, as CD45RA is a naïve antigen and CD45RO is a 185 

memory antigen. Consistent with flow cytometry data, the large majority of CB T cells are naïve, 186 

whereas the BM T cell population is more diverse 25. Also, for BM B cells that have high imputed 187 

CD19 levels, cTP-net allows us to confidently distinguish the Pre.B (CD38+, CD127+), immature 188 

B (CD38+, CD79b+), memory B (CD27+) and naïve B cells (CD27-), whose immunophenotypes 189 

have been well characterized 26.  190 

In addition, consider natural killer cells, in which the proteins CD56 and CD16 serve as 191 

indicators for immunostimulatory effector functions, including an efficient cytotoxic capacity 27, 28. 192 

We observe an opposing gradient of imputed CD56 and CD16 levels within transcriptomically 193 

derived natural killer (NK) cell clusters that reveal CD56bright and CD56dim subsets, coherent with 194 

previous studies3 (Figure 2f, Figure S10, F-test: p-value = 1.667e-15). This pattern is not found 195 

in RNA abundances due to low expression (F-test: p-value= 0.9377). Between CD56brignt and 196 
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CD56dim subsets, 7 out of 10 of previously studied differentially expressed genes are significant 197 

in the single cell analysis (Fisher test: p-value = 1.07e-04) 3, 29, 30. This gradient in CD56 and 198 

CD16, where decrease in CD56 is accompanied by increase in CD16, is replicated across the 8 199 

CBMC and 8 BMMC samples in HCA (Figure S8, S9, S10). 200 

Consider also the case of CD57, which is a marker for terminally differentiated “senescent” cells 201 

in the T and NK cell types. The imputed level of CD57 is lower in CBMCs (fetus’s blood), and 202 

rises in BMMCs (95% quantile: bootstrap p-value<1e-6). This is consistent with expectation 203 

since CD57+ NK cell and T cell populations grow after birth and with ageing 31-33 (Figure S8, 204 

S9).   205 

These results demonstrate how cTP-net, trained on a combination of PBMCs, CBMCs and 206 

BMMCs, can impute cell type, cell stage, and tissue-specific protein signatures in new data 207 

without explicitly being given the tissue of origin. 208 

 209 

Application to Acute Myeloid Leukemia 210 

We further apply cTP-net to an acute myeloid leukemia (AML) data set from Galen et al. 34. AML 211 

is a heterogeneous disease where the diversity of malignant cell types partially recapitulates the 212 

stages of myeloid development. Mapping the malignant cells in AML to the differentiation stage 213 

of their cell of origin strongly impacts tumor prognosis and treatment, as malignant cells that 214 

originate from earlier stage progenitors have higher risk of relapse 35, 36. In the original paper, 215 

the authors sequenced 7698 cells from 5 healthy donors to build a reference map of cell types 216 

during myeloid development, and then mapped 30712 cells from 16 AML patients across 217 

multiple time points to this reference to identify the differentiation stage of the malignant cells. 218 

Here, by imputing 24 immunophenotype markers with cTP-net, we can directly characterize the 219 

differentiation stage of cell-of-origin for the malignant cells.  220 
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Figure 4a is a UMAP plot based on imputed surface protein abundance of 5 normal BMs and 12 221 

Day 0 samples from AML patients. The majority of the malignant cells as identified in the 222 

original paper reside on the right half of the plot, which recapitulate the myeloid differentiation 223 

trajectory as revealed by the imputed values of canonical protein markers (Figure 4b): From 224 

CD34+ progenitors to CD38+CD123+ cells in transition to CD11c+ and CD14+ mature 225 

monocytes 37.  All of the malignant cells have imputed protein values that place them along this 226 

monocyte lineage. Using the transcriptome for visualization, on the other hand, reveals large 227 

batch effects across samples, due to both technical batch and biological differences (Figure 228 

S11).  Thus, unlike the imputed protein data, the transcriptomic data cannot be directly 229 

combined without alignment.    230 

Based on the trajectory revealed by the imputed protein levels, we can determine the 231 

differentiation cell stage(s) for the malignant cells of each tumor, according to which the 12 AML 232 

patients can be divided into three categories: (1) AMLs of single differentiation stage (AML420B, 233 

AML556, AML707B and AML916; Figure 4c), (2) AMLs of two differentiation stages (AML210A, 234 

AML328, AML419A and AML475; Figure 4e) and (3) AMLs of many differentiation stages 235 

(AML1012, AML329, AML870 and AML921A; Figure 4f). This stage assignment is consistent 236 

with the original study 34. For example, AML419A harbors two malignant cell types at opposite 237 

ends of the monocyte differentiation axis, distinguished by imputed CD34 and CD11c levels as 238 

CD34+CD11c- indicates progenitor-like and CD34-CD11c+ indicates differentiated monocyte-239 

like cells (Figure 4d, 4e). AML707B, which carries a RUNX1/RUNX1T1 fusion, consists of cells 240 

of a specific cell stage that is distinct from the normal myeloid trajectory (Figure 4c). Such 241 

unique cell cluster was due to hyper CD38 level in surface protein prediction (Figure 4d). Such 242 

hyper-CD38 levels have been reported in AMLs with RUNX1/RUNX1T1 fusion38-40 and recent 243 

studies have also shown that CD38 can be a potential target for adult AML41, 42.   244 
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In this example, the imputed protein levels served as useful features for trajectory visualization.  245 

This analysis also indicates that even though cTP-net is currently trained only on normal 246 

immune cells, it can reveal disease-specific signatures in malignant cells and the imputed 247 

protein levels are useful for characterizing tumor phenotypes. 248 

 249 

Discussion 250 

Taken together, our results demonstrate that cTP-net can leverage existing CITE-seq and 251 

REAP-seq datasets to predict surface protein relative abundances for new scRNA-seq data 252 

sets, and that the predictions generalize to cell types that are absent from, but related to those 253 

in the training data. cTP-net was benchmarked on PBMC and CBMC immune cells, showing 254 

good generalization across tissues and technical protocols.  On Human Atlas Data, we show 255 

that the imputed surface protein levels allow easy assignment of cells to known cell types, as 256 

well as the revealing of intra-cell type gradients. We then demonstrate that, even though cTP-257 

net used only immune cells from healthy individuals for training, it is able to impute 258 

immunophenotypes for malignant cells from acute myeloid leukemia, and that these 259 

immunophenotypes allow placement of the cells along the myeloid differentiation trajectory.  260 

Furthermore, we show that cTP-net is able to impute protein signatures in the malignant cells 261 

that are disease specific and that are not easily detectable from the transcriptomic counts.     262 

SAVER-X serves an important role in the training procedure of cTP-net. As shown in Table S5, 263 

without SAVER-X denoising, the cTP-net prediction performance retracts by 0.02 in correlation, 264 

more significant than any other parameter tweaks. This discrepancy in performance is due to: 265 

(1) SAVER-X makes use of the noise model to obtain estimates of the true RNA counts. This 266 

helps cTP-net learn the underlining relationship between true RNA counts and protein level, 267 

rather than the noisy raw counts and protein levels, which varies more across data sets and 268 
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thus does not generalize well. (2) By denoising the scRNA-seq, the input for learning the RNA-269 

protein relationship is less sparse. Manifold learning on a more continuous input space usually 270 

works better43, 44. (3) Comparing to other autoencoder based denoising method, SAVER-X 271 

performs Bayesian shrinkage on top of autoencoder framework to prevent over-imputation 272 

(over-smoothing) 16, 45. 273 

Despite these promising results, cTP-net has limitations. (1) cTP-net can only apply to count 274 

based expression input (UMI-based). CITE-seq data with TPM and RPKM expression metric is 275 

not available for testing. Thus, the prediction accuracy is unknown. (2) The generalization ability 276 

of cTP-net to unrelated cell types has limitations. Even though the final cTP-net model, trained 277 

on immune cells, has good results on immune cells from diverse settings, we have not tried to 278 

perform imputation of these immune-related markers on cells that are not of the hematopoietic 279 

lineage. 280 

With the accumulation of publicly available CITE-seq and REAP-seq data across diverse 281 

proteins, cell types and conditions, cTP-net can be retrained to accommodate more protein 282 

targets and improve in generalization accuracy. The possibility of such cross-omic transfer 283 

learning underscores the need for more diverse multi-omic cell atlases, and demonstrate how 284 

such resources can be used to enhance future studies. The cTP-net package is available both 285 

in Python and R at https://github.com/zhouzilu/cTPnet.  286 
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Figure legends 399 

Figure 1. cTP-net analysis pipeline and imputation of example proteins.  400 

(a) Overview of cTP-net analysis pipeline, which learns a mapping from the denoised scRNA-401 

seq data to the relative abundance of surface proteins, capturing multi-gene features that reflect 402 

the cellular environment and related processes. (b) For three example proteins, cross-cell 403 

scatter and correlation of CITE-seq measured abundances vs. (1) raw RNA count, (2) SAVER-X 404 

denoised RNA level, and (3) cTP-net predicted protein abundance. 405 

Figure 2. Benchmark evaluation on CITE-seq PBMC data  406 

(a) Benchmark evaluation of cTP-net on CITE-seq PBMC data, with comparisons to Seurat v3, 407 

in validation, across cell type, across tissue and across technology scenarios. The table on the 408 

left shows the training scheme of each test, the heatmap shows correlations with actual 409 

measured protein abundances. (b) Within cell type correlations between imputed and measured 410 

protein abundance on the CITE-seq PBMC data, Seurat v3 versus cTP-net. Each point (color 411 

and shape pair) indicates a cell type and surface protein pair, where the x-axis is correlation 412 

between actual measured abundance and Seurat imputation and y-axis is the correlation 413 

between actual measured abundance and cTP-net imputation. (c) Scatter of imputed versus 414 

measured abundance for the three (surface protein, cell type) pairs marked by arrows in (b): 415 

CD11c in CD14-CD16+ monocytes, CD2 in CD8 T cells, and CD19 in dendritic cells.  416 

Figure 3. Imputation results analysis on Human Cell Atlas data sets. 417 

(a) Left panel: UMAP visualization of MantonBM1 BMMCs T cell subpopulation based on RNA 418 

expression, colored by cell type. CD4 T: mature CD4+ T cells; mature CD8 T: CD8+ T cells; 419 

naïve CD4 T: naïve CD4+ T cells; naïve CD8 T: naïve CD8+ T cells; CD8 senescent T: CD8+ 420 

senescent T cells. Right panel: Related imputed protein abundance and RNA expression of its 421 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 2, 2019. ; https://doi.org/10.1101/671180doi: bioRxiv preprint 

https://doi.org/10.1101/671180
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

corresponding gene. (b) UMAP visualization of MantonBM1 BMMCs based on RNA expression, 422 

colored by cell type. B: B cells; CD4 T: CD4+ T cells; CD8 T: CD8+ T cells; cMono: classical 423 

monocyte; ncMono: non-classical monocyte; NK: natural killer cells; Pre.: precursors; Plasma: 424 

plasma cells. (c) Left panel: UMAP visualization of MantonBM1 BMMCs B cell subpopulation 425 

based on RNA expression, colored by cell type. Pre.B: B cell precursors; immature B: immature 426 

B cells; memory B: memory B cells; naïve B: naïve B cells. Right panel: Related imputed protein 427 

abundance and RNA expression of its corresponding gene. (d) UMAP visualization of 428 

MantonCB2 CBMCs based on RNA expression, colored by cell type. (e) cTP-net imputed 429 

protein abundance and RNA read count of its corresponding gene for 24 surface proteins. (f) 430 

UMAP visualization of MantonCB2 CBMCs NK cell subpopulation colored by CD56 and CD16 431 

imputed protein abundance and RNA read count. Reverse gradient is observed in cTP-net 432 

prediction but not in the read count for its corresponding RNA. (f) Contour plot of cells based on 433 

imputed CD56 and CD16 abundance in NK cell populations. Strong negative correlation with 434 

two subpopulation observed. 435 

Figure 4. Imputation results analysis on Acute Myeloid Leukemia data sets. 436 

(a) UMAP visualization of normal cells and malignant cells from 12 AML samples at Day0 based 437 

on imputed protein abundance (red: malignant cells; grey: normal cells). (b) UMAP visualization 438 

of the myeloid trajectory. cTP-net imputed protein abundance of markers that perfectly 439 

recapitulate the myeloid development. (c, e, f) UMAP visualization of the myeloid trajectory with 440 

corresponding malignant cells from AML sample highlighted. (d) Scatter plot of normal and AML 441 

malignant cells based on imputed protein expression. 442 

  443 
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Online Methods 444 

Data sets and pre-processing 445 

Table S1 summarizes the five data sets analyzed in this study: CITE-PBMC, CITE-CBMC, 446 

REAP-PBMC, HCA-CBMC and HCA-BMMC. Among these, CITE-PBMC, CITE-CBMC and 447 

REAP-PBMC have paired scRNA-seq and surface protein counts, while HCA-CBMC and HCA-448 

BMMC have only scRNA-seq counts. For all scRNA-seq data sets, low quality gene (< 10 449 

counts across cells) and low-quality cells (less than 200 genes detected) are removed, and the 450 

count matrix (𝐶) for all remaining cells and genes is used as input for denoising. scRNA data 451 

denoising was performed with SAVER-X using default parameters. Denoised counts (Λ) were 452 

further transformed with Seurat default LogNormalize function, 453 

𝑋𝑖𝑗 = 𝑙𝑜𝑔 (
Λ𝑖𝑗 ∗ 10,000

𝑚𝑗
) 454 

where Λ𝑖𝑗 is the denoised molecule count of gene 𝑖 in cell 𝑗, and 𝑚𝑗 is the sum of all molecule 455 

counts of cell 𝑗. The normalized denoised count matrix 𝑋 is the training input for the subsequent 456 

multiple branch neural network. For the surface protein counts, we adopted the relative 457 

abundance transformation from Stoeckius et al.3. For each cell 𝑐, 458 

𝑦𝑐 = [ln (
𝑝1𝑐
𝑔(𝑝𝑐)

) , ln (
𝑝2𝑐
𝑔(𝑝𝑐)

)… ln⁡(
𝑝𝑑𝑐
𝑔(𝑝𝑐)

)] 459 

where 𝑝𝑐 is vector of antibody-derived tags (ADT) counts, and 𝑔(𝑝𝑐)) is the geometric mean of 460 

𝑝𝑐. The network trained using this transformed relative protein abundance as the response 461 

vector yields better prediction accuracy than the network trained using raw protein barcode 462 

counts. 463 

 464 
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cTP-net neural network structure and training parameters 465 

Figure S1 shows the structure of cTP-net. Here, we have a normalized expression matrix 𝑋 of 𝑁 466 

cells and 𝐷 genes, and a normalized protein abundance matrix 𝑌 of the same 𝑁 cells and 𝑑 467 

surface proteins. Let’s denote cTP-net as a function 𝐹 that maps from ℝ𝐷 to ℝ𝑑. Starting from 468 

the input layer, with dimension equals to number of genes 𝐷, the first internal layer has 469 

dimension 1000, followed by a second internal layer with dimension 128. These two layers are 470 

designed to learn and encode features that are shared across proteins, such as features that 471 

are informative for cell type, cell state and common processes such as cell cycle. The remaining 472 

layers are protein specific, with 64 nodes for each protein that feed into a one node output layer 473 

giving the imputed value. All layers except the last layer are fully connected (FC) with rectified 474 

linear unit (ReLU) activation function 46, while the last layer is a fully connected layer with 475 

identity activation function for output. The objective function here is, 476 

argmin
𝐹

|𝑌 − 𝐹(𝑋)|1⁡ 477 

where the loss is L1 norm. The objective function was optimized stochastically with Adam 47 with 478 

learning rate set to 10e-5 for 139 epochs (cross-validation). Other variations of cTP-net, which 479 

we found to have inferior performance, are illustrated in more details in Supplementary Note.  480 

 481 

Benchmarking procedure 482 

Validation set testing procedure. Figure S2a shows the validation set testing procedure. Given 483 

limited amount of data, we keep only 10% of the cells as the testing set, and use the other 90% 484 

of the cells for training. The optimal model was selected based on the testing error.  485 

Out-of-cell type prediction procedure. We perform the out-of-cell type prediction based on 486 

Figure S2b. This procedure mimics cross-validation, except that, instead of selecting the test set 487 
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cells randomly, we partition the cells by their cell types. Iteratively, we designate all cells of a 488 

given cell type for testing and use the remaining cells for training. We then perform prediction on 489 

the hold-out cell type using the model trained on all other cell types. In the end, every cell has 490 

been tested once and has the corresponding predictions. In the benchmark against the 491 

validation set testing procedure, we limit comparisons to the same cells that were in the 492 

validation set in the holdout scheme to account for variations between subsets. 493 

Cell population and technology transfer learning procedure. To apply the models we trained in 494 

validation set testing procedure to different cell populations and technologies, the inputs have to 495 

be in the same feature space. Even though all data sets considered are from human cells, the 496 

list of genes differs between experiments and technologies. Genes that are in the training data 497 

but not in the testing data are filled with zeros. Because cTP-net utilizes overrepresented 498 

number of genes to predict the surface proteins level, having a small number of genes missing 499 

has little effect on the performance. After prediction, we selected only the shared proteins 500 

between two data sets for comparison. 501 

 502 

cTP-net interpolation 503 

To better interpret the relationships that the neural network is learning, we developed a 504 

permutation-based interpolation scheme that can calculate an influence score 𝑒𝑝𝑖 for each gene 505 

in the imputation of each protein (Figure S6). The idea is to assess how much changing the 506 

expression value of certain genes in the training data affects the training errors for a given 507 

model⁡𝐹. In each epoch, we interpolate all of the genes in a stochastic manner. Let’s denote 𝑋 508 

as the expression matrix (𝑁 by 𝐺 matrix, where 𝑁 is the number of cells and 𝐺 is number of 509 

genes), 𝑌 as protein abundance matrix and 𝐿 as the loss function. The algorithm goes as follow 510 

(Figure S6): 511 
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(1) Estimate the original model error 𝜖𝑜𝑟𝑖𝑔 = 𝐿(𝑌, 𝐹(𝑋)). 512 

(2) Sampling batch of genes denote by 𝑔𝑠 . Generate expression matrix 𝑋𝑝𝑒𝑟𝑚 by permuting 513 

genes in 𝑔𝑠 in the data⁡𝑋. This breaks the association between 𝑔𝑠 and protein 514 

abundance⁡𝑌, i.e. the cell order within 𝑔𝑠 does not coordinate with protein abundance⁡𝑌.  515 

(3) Estimate error 𝜖𝑝𝑒𝑟𝑚 = 𝐿(𝑌, 𝐹(𝑋𝑝𝑒𝑟𝑚)) based on the predictions of the permuted data. 516 

(4) Calculate permutation feature importance Δ𝑔𝑠 = |𝜖𝑜𝑟𝑖𝑔 − 𝜖𝑝𝑒𝑟𝑚| of gene set 𝑔𝑠 to this 517 

model⁡𝐹. 518 

We set batch size as 100 with 500 epochs. Furthermore, by picking different cells to interpolate, 519 

we could identify gene influence score in different cell types. For example, if matrix 𝑋 belongs to 520 

a given cell type, the cell type specific genes are consistent across cells of the given cell type, 521 

and thus, the permutation will not influence these genes. Genes that influence the surface 522 

protein abundance within the cell type, such as cell cycle genes and protein synthesis genes, 523 

tend to be rewarded with high influence scores in such a cell-type specific interpolation analysis.  524 

For the top 100 highest influence scored genes from the following scenarios in CITE-PBMC: (1) 525 

CD45RA in CD14-CD16+ monocytes, (2) CD11c in CD14-CD16+ monocytes, (3) CD45RA in 526 

CD8 T cells, (4) CD45RA in CD4 T cells, (5) CD11c in CD14+CD16+ monocytes, (6) CD45RA 527 

in dendritic cells, and (7) CD11c in dendritic cells, we employed a Gene Ontology analysis 48 528 

which identify top 10 pathways based on GO gene sets with FDR q-value < 0.05 as significant 529 

(Table S4). 530 

 531 

Seurat anchor-transfer analysis 532 

We compared cTP-net with an anchor-based transfer learning method developed in Seurat v3 533 

20. For Seurat v3, RNA count data are normalized by LogNormalization method, while surface 534 

protein counts are normalized by centered log-ratio (CLR) method. In validation test setting, we 535 
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used the same cells for training and testing as in cTP-net so as to be directly comparable to 536 

cTP-net. For out-of-cell type prediction, default parameters did not work for several cell types in 537 

anchor-transfer step, because, for those cell types, there are few anchors shared between the 538 

training and testing sets. To overcome this, we reduced the number of anchors iteratively until 539 

the function ran successfully. 540 

 541 

HCA data analysis 542 

HCA RNA-seq transcriptome data analysis. HCA RNA-seq data sets are processed as 543 

discussed above, resulting in log-normalized denoised values. We applied default pipeline of 544 

Seurat and generated t-SNE plot for both data sets (Figure S7). Cells are clearly clustered by 545 

individuals, indicating strong batch effects. As a result, the following analysis was performed on 546 

cells of each individual. Major cell types were determined by known gene markers. 547 

Surface protein prediction by cTP-net. From the log-normalized denoised expression value, we 548 

predict the surface protein abundance with cTP-net model trained jointly on CITE-seq PBMC 549 

and CBMC data sets. We embedded 12 surface protein abundance across 16 individuals on t-550 

SNE plot, showing consistent results with cell type information (Figure S8, S9).  551 
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