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Abstract 1

Tumor growth curves are classically modeled by ordinary differential equations. In analyzing the 2

Gompertz model several studies have reported a striking correlation between the two parameters of 3

the model. 4

We analyzed tumor growth kinetics within the statistical framework of nonlinear mixed-effects 5

(population approach). This allowed for the simultaneous modeling of tumor dynamics and inter- 6

animal variability. Experimental data comprised three animal models of breast and lung cancers, 7

with 843 measurements in 94 animals. Candidate models of tumor growth included the Exponential, 8

Logistic and Gompertz. The Exponential and – more notably – Logistic models failed to describe 9

the experimental data whereas the Gompertz model generated very good fits. The population-level 10

correlation between the Gompertz parameters was further confirmed in our analysis (R2
> 0.96 in all 11

groups). Combining this structural correlation with rigorous population parameter estimation, we 12

propose a novel reduced Gompertz function consisting of a single individual parameter. Leveraging the 13

population approach using bayesian inference, we estimated the time of tumor initiation using three 14

late measurement timepoints. The reduced Gompertz model was found to exhibit the best results, 15

with drastic improvements when using bayesian inference as compared to likelihood maximization 16

alone, for both accuracy and precision. Specifically, mean accuracy was 12.1% versus 74.1% and mean 17

precision was 15.2 days versus 186 days, for the breast cancer cell line. 18

These results offer promising clinical perspectives for the personalized prediction of tumor age 19

from limited data at diagnosis. In turn, such predictions could be helpful for assessing the extent of 20

invisible metastasis at the time of diagnosis. 21

Author summary 22

Mathematical models for tumor growth kinetics have been widely used since several decades but mostly 23

fitted to individual or average growth curves. Here we compared three classical models (Exponential, 24

Logistic and Gompertz) using a population approach, which accounts for inter-animal variability. The 25

Exponential and the Logistic models failed to fit the experimental data while the Gompertz model showed 26

excellent descriptive power. Moreover, the strong correlation between the two parameters of the Gompertz 27

equation motivated a simplification of the model, the reduced Gompertz model, with a single individual 28

parameter and equal descriptive power. Combining the mixed-effects approach with Bayesian inference, 29

we predicted the age of individual tumors with only few late measurements. Thanks to its simplicity, the 30

reduced Gompertz model showed superior predictive power. Although our method remains to be extended 31

to clinical data, these results are promising for the personalized estimation of the age of a tumor from 32

limited measurements at diagnosis. Such predictions could contribute to the development of computational 33

models for metastasis. 34
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1 Introduction 35

In the era of personalized oncology, mathematical modelling is a valuable tool for quantitative description 36

of physiopathological phenomena [1, 2]. It allows for a better understanding of biological processes and 37

to generate useful individual clinical predictions, for instance for personalized dose adaptation in cancer 38

therapeutic menagement [3]. Tumor growth kinetics have been studied since several decades both clinically 39

[4] and experimentally [5]. One of the main findings of these early studies is that tumor growth is not 40

entirely exponential, provided it is observed over a long enough timeframe (100 to 1000 folds of increase) 41

[6]. The specific growth rate slows down and this deceleration can be particularly well captured by the 42

Gompertz model [7, 6, 8]. The analytical expression of this model reads as follows: 43

V (t) = Vinje
α
β (1−e−βt), (1)

where Vinj is the initial tumor size at tinj = 0 and α and β are two parameters. 44

While the etiology of the Gompertz model has been long debated [9], several independent studies 45

have reported a strong and significant correlation between the parameters α and β in either experimental 46

systems [6, 10, 11], or human data [11, 12, 13]. While some authors suggested this would imply a constant 47

maximal tumor size (given by Vinje
α
β in (1)) across tumor types within a given species [11], others argued 48

that because of the presence of the exponential function, this so called ’carrying capacity’ could vary over 49

several orders of magnitude [14]. To date, the generalizability, implications and understanding of this 50

observation are still a source of active debate in the oncology modeling community. 51

Mathematical models for tumor growth have been previously studied and compared at the level of 52

individual kinetics and for prediction of future tumor growth [15, 16]. However, to our knowledge, a 53

detailed study of statistical properties of classical growth models at the level of the population (i.e. 54

integrating structural dynamics with inter-animal variability) yet remains to be reported. Longitudinal 55

data analysis with nonlinear mixed-effects is an ideal tool to perform such a task [17, 18]. In addition, 56

the reduced number of parameters (from p × N to p + p(p+1)
2 where N is the number of animals and 57

p the number of parameters of the model) ensures higher robustness (smaller standard errors) of the 58

estimates. This framework is particularly adapted to study the above-mentioned correlation of the 59

Gompertz parameter estimates. 60

Moreover, using population distributions as priors allows to make predictions on new subjects by means 61

of Bayesian algorithms [19, 20, 21]. The added value of the latter methods is that only few measurements 62

per individual are necessary to obtain reliable predictions. In contrast with previous work focusing on the 63

forward prediction of the size of a tumor [15], the present study focuses on the backward problem, i.e. the 64

estimation of the age of a tumor [22]. This question is of fundamental importance in the clinic since the 65

age of a tumor can be used as a proxy for determination of the invisible metastatic burden at diagnosis 66

[23]. In turn, this estimation has critical implications for decision of the extent of adjuvant therapy [24]. 67

Since predictions of the initiation time of clinical tumors are hardly possible to verify for clinical cases, we 68

developed and validated our method using experimental data from multiple data sets in several animal 69

models. This setting allowed to have enough measurements, on a large enough time frame in order to 70

assess the predictive power of the methods. 71

2 Material and methods 72

2.1 Mice experiments. 73

The experimental data comprised three data sets. Animal tumor model studies were performed in 74

strict accordance with guidelines for animal welfare in experimental oncology and were approved by local 75
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ethics committees. Precise description of experimental protocols was reported elsewhere (see [15] for the 76

volume measurements and [25] for the fluorescence measurements). 77

Breast data measured by volume (N = 66). This data consisted of human LM2-4LUC+ triple negative 78

breast carcinoma cells originally derived from MDA-MB-231 cells. Animal studies were performed as 79

described previously under Roswell Park Comprehensive Cancer Center (RPCCC) Institutional Animal 80

Care and Use Committee (IACUC) protocol number 1227M [PMID: 25167199 and 26511632]. Briefly, 81

animals were orthotopically implanted with LM2-4LUC+ cells (106 cells at injection) into the right 82

inguinal mammary fat pads of 6- to 8-week-old female severe combined immunodeficient (SCID) mice. 83

Tumor size was measured regularly with calipers to a maximum volume of 2 cm3, calculated by the 84

formula V = π/6w2L (ellipsoid) where L is the largest and w is the smallest tumor diameter. The data 85

was pooled from eight experiments conducted with a total of 581 observations. All LM2-4LUC+ implanted 86

animals used in this study are vehicle-treated animals from published studies [PMID: 25167199 and 87

26511632]. Vehicle formulation was carboxymethylcellulose sodium (USP, 0.5% w/v), NaCl (USP, 1.8% 88

w/v), Tween-80 (NF, 0.4% w/v), benzyl alcohol (NF, 0.9% w/v), and reverse osmosis deionized water 89

(added to final volume) and adjusted to pH 6 (see [PMID: 18199548]) and was given at 10ml/kg/day for 90

7-14 days prior tumor resection. 91

Breast data measured by fluorescence (N = 8). This data consisted of human MDA-MB-231 cells stably 92

transfected with dTomato lentivirus. Animals were orthotopically implanted (80,000 cells at injection) 93

into the mammary fat pads of 6-week-old female nude mice. Tumor size was monitored regularly with 94

fluorescence imaging. The data comprised a total of 64 observations. To recover the fluorescence value 95

corresponding to the injected cells, we computed the ratio between the fluorescence signal and the volume 96

measured in mm3. We used linear regression considering the volume data of a different data set with same 97

experimental setup (mice, tumor type and number of injected cells). The estimated ratio was 1.52· 109 98

photons/(s·mm3) with relative standard error of 11.3%, therefore the initial fluorescence signal was 1.22· 99

107 photons/s. 100

Lung data measured by volume (N = 20). This data consisted of murine Lewis lung carcinoma 101

cells originally derived from a spontaneous tumor in a C57BL/6 mouse [26]. Animals were implanted 102

subcutaneously (106 cells at injection) on the caudal half of the back in anesthetized 6- to 8-week-old 103

C57BL/6 mice. Tumor size was measured as described for the breast data to a maximum volume of 1.5 104

cm3. The data was pooled from two experiments with a total of 188 observations. 105

2.2 Tumor growth models. 106

We denoted by tI and VI the initial conditions of the equation. At time of injection (tinj = 0), we 107

assumed that all tumor volumes within a group had the same volume Vinj (taken to be equal to the 108

number of injected converted in the appropriate unit) and denoted by α the specific growth rate (i.e. 109

1
V

dV
dt

) at this time and volume. 110

We considered the Exponential, Logistic and Gompertz models [15]. The first two are respectively defined 111

by the following equations 112











dV

dt
= αV,

V (tI) = VI ,

and











dV

dt
= αV

(

1−

(

V

K

))

,

V (tI) = VI .

(2)

In the Logistic equation, K is a carrying capacity parameter. It expresses a maximal reachable size due to 113

competition between the cells (e.g. for space or nutrients). 114

The Gompertz model is characterized by an exponential decrease of the specific growth rate with rate 115

denoted here by β. Although multiple expressions and parameterizations coexist in the litterature, the 116
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definition we adopted here reads as follows: 117











dV

dt
=

(

α− β log

(

V

Vinj

))

V,

V (tI) = VI .

(3)

Note that the injected volume Vinj appears in the differential equation defining V . This is a natural 118

consequence of our assumption of α as being the specific growth rate at V = Vinj. This model exhibits 119

sigmoidal growth up to a saturating value given by K = Vinje
α
β . 120

2.3 Population approach. 121

Let N be the number of subjects within a population (group) and Y i = {yi1, ..., y
i
ni} the vector of 122

longitudinal measurements in animal i, where yij is the observation of subject i at time tij for i = 1, ..., N 123

and j = 1, ..., ni (ni is the number of measurements of individual i). We assumed the following observation 124

model 125

yij = f(tij ;θ
i) + eij , j = 1, ..., ni, i = 1, ..., N, (4)

where f(tij ;θ
i) is the evaluation of the tumor growth model at time tij , θi ∈ R

p is the vector of the 126

parameters relative to the individual i and eij the residual error model, to be defined later. An individual 127

parameter vector θi depends on fixed effects µ, identical within the population, and on a random effect 128

ηi, specific to each animal. Random effects follow a normal distribution with mean zero and variance 129

matrix ω. Specifically: 130

θi = µ exp(ηi).

We considered a combined residual error model eij , defined as 131

eij = (σ1 + σ2f(t
i
j ;θ

i))εij ,

where εij ∼ N (0, 1) are the residual errors and σ = [σ1, σ2] is the vector of the residual error model 132

parameters. 133

In order to compute the population parameters, we maximized the population likelihood, obtained 134

by pooling all the data together. Usually, this likelihood cannot be computed explicitely for nonlinear 135

mixed-effect models. We used the stochastic approximation expectation minimization algorithm (SAEM) 136

[17], implemented in the Monolix 2018 R2 software [27]. 137

In the remainder of the manuscript we will denote by φ = {µ,ω,σ} the set of the population parameters 138

containing the fixed effects µ, the covariance of the random effects ω and the error model parameters σ. 139

2.4 Individual predictions 140

For a given animal i, the backward prediction problem we considered was to predict the age of the 141

tumor based on the three last measurements yi = {yi
ni

−2, y
i
ni

−1, y
i
ni}. Since we were in an experimental 142

setting, we considered the injection time as the initiation time and thus the age was given by ai = ti
ni

−2. To 143

avoid using knowledge from the past, we first shifted the times of measurement by ai: tij 7→ tij − ai. Then, 144

we considered as model f(t; θi) the solution of the Cauchy problem (3) endowed with initial conditions 145

(

tI = 0, VI = yi
ni

−2

)

. For estimation of the parameters (estimate θ̂
i
), we applied two different methods: 146

likelihood maximization alone (no use of prior population information) and Bayesian inference (use of 147

prior). The predicted age âi was then defined by 148

f
(

−âi; θ̂i
)

= Vinj,

4
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that is: 149

âi =
1

β̂i

(

log

(

α̂i

β̂i

)

− log

(

α̂i

β̂i
− log

(

V i
I

Vinj

)))

(5)

in case of the Gompertz model. 150

2.4.1 Likelihood maximization 151

For individual predictions with likelihood maximization, no prior information on the distribution of the 152

parameters was used. Parameters of the error model were not re-estimated: values from the population 153

analysis were used. The constant part σ1 was found negligible compared to the large volumes at late 154

times, thus only the proportional term of the error model was used (σ = σ2). The log-likelihood can be 155

derived from (4): 156

l(θi) = ln





ni

∏

j=ni
−2

p
(

yij
∣

∣θi
)



 (6)

= −
3

2
log (2π)−

1

2

ni

∑

j=ni
−2



log
(

σf
(

tij ,θ
i
))

+

(

yij − f
(

tij ,θ
i
)

σf
(

tij ,θ
i
)

)2


 . (7)

In order to guarantee the positivity of the parameters, we introduced the relation θi = g(γi) = eγ
i

and 157

substituted this in equation(7). The negative of equation (7) was minimized with respect to γi (yielding 158

the maximum likelihood estimate γ̂
i) with the function minimize of the python module scipy.optimize, 159

for which the Nelder-Mead algorithm was applied. Thanks to the invariance property, the maximum 160

likelihood estimator of θi was determined as θ̂
i
= eγ̂

i

. Individual prediction intervals were computed 161

by sampling the parameters θi from a gaussian distribution with variance-covariance matrix of the 162

estimate defined as ∇g(γ̂i)T ·
(

ŝ2,i(I−1(γ̂i))
)

· ∇g(γ̂i) where ŝ2,i = 1
3−p

(

yi
j−f

(

tij ,θ̂
i
)

σf
(

ti
j
,θ̂

i
)

)2

, with p the 163

number of parameters and I(γ̂i) and ∇g(γ̂i) the Fisher information matrix and the gradient of the 164

function g(γ) evaluated, respectively, in the estimate γ̂
i. Denoting by f(γ) =

[

f
(

tij , e
γ
)]ni

j=ni
−2

and by 165

Ω(γ) = diag
(

σ
[

f
(

tij , e
γ
)]ni

j=ni
−2

)

, the Fisher information matrix was defined by [28] : 166

[I(γ)]l,m =

[

∂f(γ)

∂γl

]T

Ω
−1(γ)

[

∂f(γ)

∂γm

]

+
1

2
tr

[

Ω
−1(γ)

∂Ω(γ)

∂γl

Ω
−1(γ)

∂Ω(γ)

∂γm

]

. (8)

2.4.2 Bayesian inference 167

When applying the Bayesian method, we considered training sets to learn the distribution of the 168

parameters φ and test sets to derive individual predictions. For a given animal i of a test set, we predicted 169

the age of the tumor based on the combination of: 1) population parameters φ identified on the training 170

set using the population approach and 2) the three last measurements of animal i. We set as initial 171

conditions tI = 0 and VI ∼ N (yi
ni

−2, σy
i
ni

−2). This last assumption was made to account for measurement 172

uncertainty on yi
ni

−2. We then estimated the posterior distribution p(θi|yi) of the parameters θi using a 173

Bayesian approach [20]: 174

p
(

θi|yi
)

=
p
(

θi
)

p
(

yi|θi
)

p(y)
, (9)
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where p
(

θi
)

is the prior distribution of the parameters estimated through nonlinear mixed-effects modeling 175

and p
(

yi|θi
)

is the likelihood, defined from equation (4). The predicted distributions of extrapolated 176

growth curves and subsequent âi were computed by sampling θi from its posterior distribution (9) using 177

Pystan, a Python interface to the software Stan [21] for Bayesian inference based on the No-U-Turn 178

sampler, a variant of Hamiltonian Monte Carlo [19]. Predictions of âi were then obtained from (5), 179

considering the median value of the distribution. 180

Different data sets were used for learning the priors (training sets) and prediction (test sets) by means of 181

k-fold cross validation, with k equal to the total number of animals of the dataset (k = N , i.e. leave-one-out 182

strategy). At each iteration we computed the parameters distribution of the population composed by 183

N − 1 individuals and used this as prior to predict the initiation time of the excluded subject i. The 184

Stan software was used to draw 2000 realizations from the posterior distribution of the parameters of the 185

individual i. 186

3 Results 187

The results reported below were similar for the three data sets presented in the materials and methods. 188

For conciseness, the results presented herein are related to the large dataset (breast cancer data measured 189

by volume). Results relative to the other (smaller) datasets are reported in the Supplemental. 190

3.1 Population analysis of tumor growth curves 191

The population approach was applied to test the descriptive power of the Exponential, Logistic and 192

Gompertz models for tumor growth kinetics. The number of injected cells at time tinj = 0 was 106, 193

therefore we fixed the initial volume Vinj = 1 mm3 in the whole dataset [15]. We set (tI , VI) = (tinj, Vinj) 194

as initial condition of the equations. 195

We ran the SAEM algorithm with the Monolix software to estimate the fixed and random effects [27]. 196

Moreover, we evaluated different statistical indices in order to compare the different tumor growth models. 197

This also allowed learning of the parameter population distributions that were used later as priors for 198

individual predictions. Results are reported in Table 1, where the models are ranked according to their 199

AIC (Akaike Information Criterion), a metrics combining parsimony and goodness-of-fit. The Gompertz 200

model was the one with the lowest values, indicating superior goodness-of-fit. This was confirmed by 201

diagnostic plots (Figure 1). The visual predictive checks (VPCs) in Figure 1A compare the empirical 202

percentiles with the theoretical percentiles, i.e. those obtained from simulations of the calibrated models. 203

The VPC of the Exponential and Logistic models showed clear model misspecification. On the other hand, 204

the VPC of the Gompertz model was excellent, with observed percentiles close to the predicted ones and 205

small prediction intervals (indicative of correct identifiability of the parameters). Figure 1B shows the 206

prediction distribution of the three models. This allowed to compare the observations with the theoretical 207

distribution of the predictions. Only the prediction distribution of the Gompertz model covered the entire 208

dataset. The Logistic model exhibited a saturation of tumor dynamics at lower values than compatible 209

with the data. 210

Moreover, the distribution of the residuals was symmetrical around a mean value of zero with the 211

Gompertz model (Figure 1C), strengthening its good descriptive power, while the Exponential and Logistic 212

models exhibited clear skewed distributions. The observations vs individual predictions in Figure 1D 213

further confirmed these findings. 214

These observations at the population level were confirmed by individual fits, computed from the mode 215

of the posterior conditional parameter distribution for each individual (Figure 2). Confirming previous 216

results [15], the optimal fits of the Exponential and Logistic models were unable to give appropriate 217

description of the data, suggesting that these models should not be used to describe tumor growth, at 218
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least in similar settings to ours. Fitting of late timepoints data forced the proliferation parameter of the 219

Exponential model to converge towards a rather low estimate, preventing reliable description of the early 220

datapoints. The converse occurred for the Logistic. Constrained by the early data points imposing to 221

the model the pace of the growth deceleration, the resulting estimation of the carrying capacity K was 222

biologically irrelevant (much too small, typical value 1332 mm3, see Table 2), preventing the model to 223

give a good description of the late growth. 224

Table 2 provides the values of the population parameters. The relative standard error estimates 225

associated to population parameters were all rather low (<4.39%), indicating good practical identifiability 226

of the model parameters. Standard error estimates of the constant error model parameters were found to 227

be slightly larger (<22.3%), suggesting that for some models a proportional error model might have been 228

more appropriate - but not in case of the Exponential model. Since our aim was to compare different 229

tumor growth equations, we established a common error model parameter, i.e. a combined error model. 230

Relative standard errors of the standard deviations of the random effects ω were all smaller than 9.6% 231

(not shown). 232

These model findings in the breast cancer cell line were further validated with the other cell lines. For 233

both the lung cancer and the fluorescence-breast cancer cell lines, the Gompertz model outperformed the 234

other competing models (see Supplementary Tables S1 and Tables S2 for the two data sets), as also shown 235

by the diagnostic plots (Figures S1,S2). For the fluorescence-breast cancer cell line we used a proportional 236

error model (i.e., we fixed σ1 = 0). In this case the inter-individual variability was found to be modest. 237

This was due to the small number of animals in the data set and to a considerable intra-individual 238

variability (Supplementary Figure S4) associated to large measurement error (see Table S4). 239

Together, these results confirmed that the Exponential and Logistic models are not appropriate models 240

of tumor growth while the Gompertz model has excellent descriptive properties, for both goodness-of-fit 241

and parameter identifiability purposes. 242

Model -2LL AIC BIC

Gompertz 7296 7310 7326
Reduced Gompertz 7467 7477 7488
Logistic 7780 7793 7806
Exponential 8832 8840 8849

Table 1. Models ranked in ascending order of AIC (Akaike information criterion). Other statistical indices are
the log-likelihood estimate (-2LL) and the Bayesian information criterion (BIC).

3.2 The reduced Gompertz model 243

3.2.1 Correlation between the Gompertz parameters. 244

During the estimation process of the Gompertz parameters, we found a high correlation between α 245

and β within the population. At the population level, the SAEM algorithm estimated a correlation of 246

the random effects equal to 0.981. At the individual level, αi and βi were also highly linearly correlated 247

(Figure 3A, R2 = 0.968). This motivated the reformulation of the alpha parameter as follows: 248

αi = kβi + c, (10)

where k and c are representing the slope and the intercept of the regression line, respectively. In our 249

analysis we found c to be small (c = 0.14), thus we further assumed this term to be negligible and fixed it 250

to 0. This suggests k as a characteristic constant of tumor growth within a given animal model [11, 29]. 251
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Figure 1. Population analysis of experimental tumor growth kinetics. A) Visual predictive checks assess
goodness-of-fit for both structural dynamics and inter-animal variability by reporting model-predicted percentiles
(together with confidence prediction intervals (P.I) in comparison to empirical ones. B) Prediction distributions.
C) Individual weighted residuals (IWRES) with respect to time. D) Observations vs predictions Left: Exponential,
Center: Logistic, Right: Gompertz models.
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Figure 2. Individual fits from population analysis. Three representative examples of individual fits
computed with the population approach relative to the Exponential (left), the Logistic (center) and the Gompertz
(right) models.
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Model Parameter Unit Fixed effects CV
(%)

R.S.E. (%)

Gompertz α day−1 0.573 34.73 2.56
β day−1 0.0705 391.49 3.61
σ - [19.1, 0.12] [18.3, 7.36]

Reduced Gompertz β day−1 0.0725 180.69 1.91
k - 7.98 0 0.363
σ - [13.9, 0.183] [22.3, 5.17]

Logistic α day−1 0.324 42.90 1.88
K mm3 1332 0.02 4.39
σ - [57.2, 0.136] [9.8, 8.74]

Exponential α day−1 0.229 34.98 1.35
σ - [283, 0.254] [6.06, 14.3]

Table 2. Fixed effects (typical values) of the parameters of the different models. CV = Coefficient of Variation,
expressed in percentage and estimated as the standard deviation of the parameter divided by the fixed effect and
multiplied by 100. σ is vector of the residual error model parameters. Last column shows the relative standard
errors (R.S.E.) of the estimates.

In turn, this implies an approximately constant limiting size 252

Ki = Vinje
αi

βi ≃ Vinje
k ≃ 2900 mm3, ∀i.

The other data sets gave analogous results. The estimated correlations of the random effects were 253

0.967 and 0.998 for the lung cancer and for the fluorescence-breast cancer, respectively. The correlation 254

between the parameters was also confirmed at the individual level (see Supplementary Figures S5A and 255

Supplementary Figures S6A, R2 was 0.961 and 0.99 for the two data sets, respectively). 256

3.2.2 Biological interpretation in terms of the proliferation rate. 257

By definition, the parameter α is the specific growth rate at the time of injection. Assuming that the 258

cells don’t change their proliferation kinetics when implanted, this value should thus be equal to the in 259

vitro proliferation rate (supposed to be the same for all the cells of the same cell line), denoted here by λ. 260

The value of this biological parameter was assessed in vitro and estimated at 0.837 [23]. Confirming our 261

theory, we indeed found estimated values of α close to λ (fixed effects of 0.585), although strictly smaller 262

estimates were reported in the majority of cases (Figure 3A). We postulated that this difference could 263

be explained by the fact that not all the cells will be successfully grafted when injected in an animal. 264

Denoting by V̂ i
inj < Vinj the volume of these cells, our mathematical expression of λ would now read as: 265

λ = αi − βi log

(

V̂ i
inj

Vinj

)

,

which is consistent with our findings since this leads to values of λ > αi. In turn, this gives estimates of 266

the percentage of successful egraftment at 18%± 5.9%. 267

3.2.3 Population analysis of the reduced Gompertz model. 268

The high correlation among the Gompertz parameters, combined to the biological rationale explained 269

above, suggested that a reduction of the degrees of freedom (number of parameters) in the Gompertz 270

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2019. ; https://doi.org/10.1101/670869doi: bioRxiv preprint 

https://doi.org/10.1101/670869
http://creativecommons.org/licenses/by/4.0/


model could improve identifiability and yield a more parsimonious model. We considered the expression 271

(10), assuming c negligible. We therefore propose the following reduced Gompertz model: 272

dV

dt
=

(

βk − β log

(

V

Vinj

))

V, (11)

where β has mixed effects, while k has only fixed effects, i.e., is constant within the population. 273

Figure 3 shows the results relative to the population analysis performed. Results of the diagnostic plots 274

indicated no deterioration of the goodness-of-fit as compared with the Gompertz model (Figure 3B-D). 275

Only on the last timepoint was the model slightly underestimating the data (Figure 3D), which might 276

explain why the model performs slightly worse than the two-parameters Gompertz model in terms of 277

strictly quantitative statistical indices (but still better than the Logistic or Exponential models, Table 278

1). Individual dynamics were also accurately described (Figure 3E). Parameter identifiability was also 279

excellent (Table 2). 280

The other two data sets gave similar results (see Supplementary Figures S5 and S6). 281

Together, these results demonstrated the accuracy of the reduced Gompertz model, with improved 282

robustness as compared to previous models. 283

3.3 Prediction of the age of a tumor 284

Considering the increased robustness of the reduced Gompertz model (one individual parameter less 285

than the Gompertz model), we further investigated its potential for improvement of predictive power. We 286

considered the problem of estimating the age of a tumor, that is, the time elapsed between initiation 287

(here the time of injection) and detection occurring at larger tumor size (Figure 4). For a given animal 288

i, we considered as first observation yi
ni

−2 and aimed to predict its age ai = ti
ni

−2 (see Methods). We 289

compared the results given by the Bayesian inference with the ones computed with standard likelihood 290

maximization method (see Methods). To that end, we did not consider any information on the distribution 291

of the parameters. For the reduced Gompertz model however (likelihood maximization case), we used the 292

value of k calculated in the previous section (Table 2), thus using information on the entire population. 293

Importantly, for both prediction approaches, our methods allowed not only to generate a prediction of ai 294

for estimation of the model accuracy (i.e. absolute relative error of prediction), but also to estimate the 295

uncertainty of the predictions (i.e. precision, measured by the width of the 90% prediction interval (PI)). 296

Figure 4 presents a few examples of prediction of three individuals without (LM) and with (Bayesian 297

inference) priors relative to the breast cancer measured by volume. For the other two cell lines, see the 298

Supplementary Figures S7 and S9. The reduced Gompertz model combined to Bayesian inference (bottom 299

row) was found to have the best accuracy in predicting the initiation time (mean error = 12.1%, 9.4% and 300

12.3% for the volume-breast cancer, lung cancer and fluorescence-breast cancer respectively) and to have 301

the smallest uncertainty (precision = 15.2, 7.34 and 23.6 days for the three data sets, respectively). Table 302

3 gathers results of accuracy and precision for the Gompertz and reduced Gompertz models under LM and 303

Bayesian inference relative to the three data sets. With only local information of the three last data points, 304

the Gompertz model predictions were very inaccurate (mean error = 205%, 175% and 236%) and the 305

Fisher information matrix was often singular, preventing standard errors to be adequately computed. With 306

one degree of freedom less, the reduced Gompertz model had better performances with LM estimation but 307

still large uncertainty (mean precision under LM = 186, 81.6 and 368 days) and poor accuracy using LM 308

(mean error = 74.1%, 66.1% and 91.7%). Examples shown in Figure 4 were representative of the entire 309

population relative to the breast cancer measured by volume. Eventually, for 97%, 95% and 87.5% of the 310

individuals of the three data sets the actual value of the age fell in the respective prediction interval when 311

Bayesian inference was applied in combination with the reduced Gompertz models. This means a good 312

coverage of the prediction interval and indicates that our precision estimates were correct. On the other 313

hand, this observation was not valid in case of likelihood maximization, where the actual value fell in the 314
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Figure 3. Correlation of the Gompertz parameters and diagnostic plots of the reduced Gompertz

model from population analysis. Correlation between the individual parameters of the Gompertz model (A)
and results of the population analysis of the reduced Gompertz model: visual predictive check (B), examples of
individual fits (C) and scatter plots of the residuals (D).
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Figure 4. Backward predictions computed with likelihood maximization and with Bayesian infer-

ence. Three examples of backward predictions of individuals A, B and C computed with likelihood maximization
(LM) and Bayesian inference: Gompertz model with likelihood maximization (first row); reduced Gompertz with
likelihood maximization (second row); Gompertz with Bayesian inference (third row) and reduced Gompertz
with Bayesian inference (fourth row). Only the last three points are considered to estimate the parameters. The
grey area is the 90% prediction interval (P.I) and the dotted blue line is the median of the posterior predictive
distribution. The red line is the predicted initiation time and the black vertical line the actual initiation time.
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respective prediction interval for only 40.9%, 30% and 87.5% of the animals when the reduced Gompertz 315

model was used. 316

As a general result, addition of a priori population information by means of Bayesian estimation 317

resulted in drastic improvement of the prediction performances (Figure 5). Results relative to the other 318

data sets are shown in Supplementary Figures S7, S8 for the lung cell line and S9, S10 for the breast cell 319

line measured by fluorescence. For the fluorescence-breast cancer cell line we could not report a significant 320

difference in terms of accuracy between the Gompertz and the reduced Gompertz when applying Bayesian 321

inference. This can be explained by the low number of individuals included in the data set. 322

Overall, the combination of the reduced Gompertz model with Bayesian inference clearly outperformed 323

the other methods for prediction of the age of experimental tumors. 324

Cell line Model Estimation
method

Error PI

Breast, volume Reduced Gompertz Bayesian 12.1 (1.02) 15.2 (0.503)
Reduced Gompertz LM 74.1 (11.6) 186 (52.8)
Gompertz Bayesian 19.6 (1.77) 40.1 (1.94)
Gompertz LM 205 (55.4) -

Lung, volume Reduced Gompertz Bayesian 9.4 (1.57) 7.34 (0.33)
Reduced Gompertz LM 66.1 (31) 81.6 (71.7)
Gompertz Bayesian 19.6 (2.99) 18.2 (2.38)
Gompertz LM 175 (69.6) -

Breast, fluorescence Reduced Gompertz Bayesian 12.3 (2.9) 23.6 (5.15)
Reduced Gompertz LM 91.7 (21.1) 368 (223)
Gompertz Bayesian 13.5 (3.5) 45.4 (4.43)
Gompertz LM 236 (150) -

Table 3. Accuracy and precision of methods for prediction of the age of experimental tumors of the three cell
lines. Accuracy was defined as the absolute value of the relative error (in percent). Precision was defined as the
width of the 95% prediction interval (in days). Reported are the means and standard errors (in parenthesis). LM
= likelihood maximization

4 Discussion 325

We have analyzed tumor growth curves from multiple animal models and experimental techniques, using 326

a population framework (nonlinear mixed-effects [17]). This approach is ideally suited for experimental or 327

clinical data of the same tumor types within a given group of subjects. Indeed, it allows for a description 328

of the inter-subject variability that is impossible to obtain when fitting models to averaged data (as often 329

done for tumor growth kinetics [30]), while enabling robust population-level description that does not 330

require individual fits. As expected from the classical observation of decreasing specific growth rates 331

[6, 31, 8, 32, 33], the Exponential model generated very poor fits. More surprisingly given its popularity 332

in the theoretical community (probably due to its ecological ground), the Logistic model was also rejected, 333

due to unrealistically small inferred value of the carrying capacity K. This finding confirms at the 334

population level previous results obtained from individual fits [15, 34]. It suggests that the underlying 335

theory (competition between the tumor cells for space or nutrients) is unable – at least when considered 336

alone – to explain the d decrease of the specific growth rate, suggesting that additional mechanisms need 337

to be accounted for. Few studies have previously compared the descriptive performances of growth models 338

on the same data sets [15, 35, 16]. In contrast to our results, Vaidya and Alexandro [16] found admissible 339

description of tumor growth data employing the Logistic model. Beyond the difference of animal model, 340
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Figure 5. Accuracy of the prediction models. Swarmplots of relative errors obtained under likelihood
maximization (A) or Bayesian inference (B). (C) Absolute errors. In (A) four extreme outliers were omitted (values
of the relative error were greater than 20) for both the Gompertz and the reduced Gompertz in order to ensure
readability.
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we believe the major reason explaining this discrepancy is the type of error model that was employed, as 341

also noticed by others [34]. Here we used a combined error model, in accordance to our previous study 342

that had examined repeated measurements of tumor size and concluded to rejection of a constant error 343

model (used in [16]). To avoid overfitting, we also made the assumption to keep the initial value VI fixed 344

to Vinj. As noted before [15], releasing this constraint leads to acceptable fits by either the Exponential or 345

Logistic models (to the price of deteriorated identifiability). However, the estimated values of VI are in 346

this case are biologically inconsistent. 347

On the other hand, the Gompertz model demonstrated excellent goodness-of-fit in all the experimental 348

systems that we investigated. This is in agreement with a large body of previous experimental and clinical 349

research work using the Gompertz model to describe unaltered tumor growth in syngeneic [36, 6, 10, 34] 350

and xenograft [37, 38] preclinical models, as well as human data [32, 13, 12, 8]. The poor performances of 351

the Logistic model compared to the Gompertz model can be related to the structural properties of the 352

models. The two sigmoid functions lie between two asymptotes (V = 0 and V = K) and are characterized 353

by an initial period of fast growth followed by a phase of decreasing growth. These two phases are 354

symmetrical in the Logistic model, that is indeed characterized by a decrease of the specific growth rate 355

1
V

dV
dt

at constant speed. On the other hand, the Gompertz model exhibits a faster decrease of the specific 356

growth rate, at speed − β
V

, or e−βt as a function of t, and the sigmoidal curve is not symmetric around its 357

inflexion point. 358

Similarly to previous reports [6, 10, 39, 11, 12, 13], we also found a very strong correlation between 359

the two parameters of the Gompertz model, i.e. α the proliferation rate at injection and β the rate of 360

decrease of the specific growth rate. Of note, this is not due to a lack of identifiability of the parameters 361

at the individual level, which we investigated and found to be excellent. Such finding motivated our choice 362

to introduce a novel model, the reduced Gompertz model, with only one individual-specific parameter, 363

and one population-specific parameter. We rigorously assessed its descriptive power and found that 364

performances were similar to the two-parameters Gompertz model. Critically, while previous work had 365

demonstrated that two individual parameters were sufficient to describe tumor growth curves [15], these 366

new results now show that this number can be reduced to one. Interestingly, the values of k that we 367

inferred were different for the breast and the lung cancer cell lines measured in volume (k = 7.98 - 9.51, 368

respectively), in contrast with previous results [11]. This suggests that there might not be a characteristic 369

constant of tumor growth within a species [29] but the correlation could be a typical feature of a tumor 370

type in an animal model. Indeed a small variation of the parameter k is associated to a large variation of 371

the carrying capacity K = Vinj exp(k). Moreover, we believe that our formulations of the Gompertz (3) 372

and reduced Gompertz (11) give to α a physiological meaning (the in vitro proliferation rate) that could 373

be used clinically to predict past or future tumor growth kinetics based on proliferation assays, derived 374

for example from a patient’s tumor sample. 375

The reduced Gompertz model, combined to Bayesian estimation from the population prior, allowed 376

to reach good levels of accuracy and precision of the time elapsed between the injection of the tumor 377

cells and late measurements, used as an experimental surrogate of the age of a given tumor. Importantly, 378

performances obtained without using a prior were substantially worse. The method proposed herein 379

remains to be extended to clinical data, although it will not be possible to have a firm confirmation since 380

the natural history of neoplasms since their inception cannot be reported in a clinical setting. Nevertheless, 381

the encouraging results obtained here could allow to give approximative estimates. Importantly, the 382

methods we developed also provide a measure of precision, which would give a quantitative assessment of 383

the reliability of the predictions. For clinical translation, Vinj should be replaced by the volume of one cell 384

Vc = 10−6 mm3. Moreover, because the Gompertz model has a specific growth rate that tends to infinity 385

when V gets arbitrarily small, our results might have to be adapted with the Gomp-Exp model [40, 23]. 386

Personalized estimations of the age of a given patient’s tumor would yield important epidemiological 387

insights and could also be informative in routine clinical practice [22]. By estimating the period at which 388

the cancer initiated, it could give clues on the possible causes (environmental or behavioral) of neoplastic 389

formation. Moreover, reconstruction of the natural history of the pre-diagnosis tumor growth might inform 390
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on the presence and extent of invisible metastasis at diagnosis. Indeed, an older tumor has a greater 391

probability of having already spread than a younger one. Altogether, the present findings contribute to 392

the development of personalized computational models of metastasis [23, 41]. 393
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Population analysis

Table S1 (lung). Statistical indices of the tumor growth models

Model -2LL AIC BIC

Gompertz 2232 2246 2253

Reduced Gompertz 2256 2266 2271

Logistic 2315 2327 2333

Exponential 2644 2652 2656

Table S1: Lung, volume. Models ranked in ascending order of AIC (Akaike information criterion). Other statistical indices

are the log-likelihood estimate (-2LL) and the Bayesian information criterion (BIC).

Table S2 (breast-fluorescence). Statistical indices of the tumor growth models

Model -2LL AIC BIC

Reduced Gompertz 2953 2961 2962

Gompertz 2953 2965 2966

Logistic 3009 3019 3020

Exponential 3097 3103 3104

Table S2: Breast, fluorescence. Models ranked in ascending order of AIC (Akaike information criterion). Other statistical

indices are the log-likelihood estimate (-2LL) and the Bayesian information criterion (BIC).

Table S3 (lung). Parameter values estimated with the SAEM algorithm

Model Parameter Unit Fixed effects CV (%) R.S.E. (%)

Gompertz α day−1 0.713 22.57 3.79

β day−1 0.0731 318 5.77

σ - [28.2,0.081] - [13.8,14.3]

Reduced Gompertz β day−1 0.0757 158.37 10.7

k - 9.51 - 5.26

σ - [27.6,0.106] - [14.03,11.7]

Logistic α day−1 0.477 25.48 2.84

K mm3 1.65e+03 0.006 4.67

σ - [38.5,0.11] - [13.2,14.01]

Exponential α day−1 0.403 28.01 2.75

σ - [87.8,0.37] - [19.1,14.8]

Table S3: Lung, volume. Fixed effects (typical values) of the parameters of the different models. CV = Coefficient of

Variation, expressed in percentage and estimated as the standard deviation of the parameter divided by the fixed effect

and multiplied by 100. σ is vector of the residual error model parameters. Last column shows the relative standard errors

(R.S.E.) of the estimates.
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Table S4 (breast-fluorescence). Parameter values estimated with the SAEM algorithm

Model Parameter Unit Fixed effects CV (%) R.S.E. (%)

Reduced Gompertz β day−1 0.0771 95.8 4.21

k - 9.85 - 0.935

σ - [0,0.324] - [0,10.2]

Gompertz α day−1 0.758 11.9 4.52

β day−1 0.0768 128.4 5.69

σ - [0,0.32] - [0,10.3]

Logistic α day−1 0.405 12.1 2.39

K mm3 1.19e+10 1.18e-9 8.78

σ - [0,0.476] - [0,11.7]

Exponential α day−1 0.077 39.98 9.58

σ - [0,596] - [0,17.1]

Table S4: Breast, fluorescence. Fixed effects (typical values) of the parameters of the different models. CV = Coefficient

of Variation, expressed in percentage and estimated as the standard deviation of the parameter divided by the fixed effect

and multiplied by 100. σ is vector of the residual error model parameters. Last column shows the relative standard errors

(R.S.E.) of the estimates.
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Figure S1 (lung). Diagnostic plots from population analysis.
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Figure S1: Lung, volume. Population analysis of experimental tumor growth kinetics. A) Visual predictive checks assess

goodness-of-fit for both structural dynamics and inter-animal variability by reporting model-predicted percentiles (together

with confidence prediction intervals (P.I) in comparison to empirical ones. B) Prediction distributions. C) Individual weighted

residuals (IWRES) with respect to time. D) Observations vs predictions Left: exponential, Center: logistic, Right: Gompertz

models.
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Figure S2 (breast-fluorescence). Diagnostic plots from population analysis.
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Figure S2: Breast, fluorescence. Population analysis of experimental tumor growth kinetics. A) Visual predictive checks

assess goodness-of-fit for both structural dynamics and inter-animal variability by reporting model-predicted percentiles

(together with confidence prediction intervals (P.I) in comparison to empirical ones. B) Prediction distributions. C) Individual

weighted residuals (IWRES) with respect to time. D) Observations vs predictions Left: exponential, Center: logistic, Right:

Gompertz models.
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Figure S3 (lung). Individual fits from population analysis.
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Figure S3: Lung, volume. Three representative examples of individual fits computed with the population approach relative

to the exponential (left), the logistic (center) and the Gompertz (right) models.
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Figure S4 (breast-fluorescence). Individual fits from population analysis.
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Figure S4: Breast, fluorescence. Three representative examples of individual fits computed with the population approach

relative to the exponential (left), the logistic (center) and the Gompertz (right) models.
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The reduced Gompertz model

Figure S5 (lung). Correlation between the Gompertz parameters and diagnostic plots of the reduced Gompertz

model with the population approach.
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Figure S5: Lung, volume. Correlation between the individual parameters of the Gompertz model (A) and results of the

population analysis of the reduced Gompertz model : visual predictive check (B), examples of individual fits (C) and scatter

plots of the residuals (D).
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Figure S6 (breast-fluorescence). Correlation between the Gompertz parameters and diagnostic plots of the re-

duced Gompertz model with the population approach.
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Figure S6: Breast, fluorescence. Correlation between the individual parameters of the Gompertz model (A) and results

of the population analysis of the reduced Gompertz model : visual predictive check (B), examples of individual fits (C) and

scatter plots of the residuals (D).
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Prediction of the age of a tumor

Figure S7 (lung). Backward predictions computed with likelihood maximization (LM) and with bayesian inference.
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Figure S7: Lung, volume. Three examples of backward predictions of individuals A, B and C computed with likelihood

maximization (LM) and bayesian inference: Gompertz model with likelihood maximization (first row); reduced Gompertz

with likelihood maximization (second row); Gompertz with bayesian inference (third row) and reduced Gompertz with

bayesian inference (fourth row). Only the last three points are considered to estimate the parameters. The grey area is the

90% prediction interval (P.I) and the dotted blue line is the median of the posterior predictive distribution. The red line is

the predicted initiation time and the black vertical line the actual initiation time.
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Figure S8 (lung). Error analysis of the predicted initiation time.
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Figure S8: Lung, volume. Accuracy of the prediction models. Swarmplots of relative errors obtained under likelihood

maximization (A) or bayesian inference (B). (C) Absolute errors.
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Figure S9 (breast-fluorescence). Backward predictions computed with likelihood maximization (LM) and with

bayesian inference.
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Figure S9: Breast, fluorescence. Three examples of backward predictions of individuals A, B and C computed with

likelihood maximization (LM) and bayesian inference: Gompertz model with likelihood maximization (first row); reduced

Gompertz with likelihood maximization (second row); Gompertz with bayesian inference (third row) and reduced Gompertz

with bayesian inference (fourth row). Only the last three points are considered to estimate the parameters. The grey area

is the 90% prediction interval (P.I) and the dotted blue line is the median of the posterior predictive distribution. The red line

is the predicted initiation time and the black vertical line the actual initiation time.
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Figure S10 (breast-fluorescence). Error analysis of the predicted initiation time.
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Figure S10: Breast, fluorescence. Accuracy of the prediction models. Swarmplots of relative errors obtained under

likelihood maximization (A) or bayesian inference (B). (C) Absolute errors.
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