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Abstract: Studying posttranslational modifications classically relies on experimental strategies 

that oversimplify the complex biosynthetic machineries of living cells. Protein glycosylation 

contributes to essential biological processes, but correlating glycan structure, underlying protein 

and disease-relevant biosynthetic regulation is currently elusive. Here, we engineer living cells to 

tag glycans with editable chemical functionalities while providing information on biosynthesis, 5 

physiological context and glycan fine structure. We introduce a non-natural substrate biosynthetic 

pathway and use engineered glycosyltransferases to incorporate chemically tagged sugars into the 

cell surface glycome of the living cell. We apply the strategy to a particularly redundant yet 

disease-relevant human glycosyltransferase family, the polypeptide N-acetylgalactosaminyl 

transferases. This approach bestows a gain-of-function modification on cells where the products 10 

of individual glycosyltransferases can be selectively characterized or manipulated at will. 

Main Text: Posttranslational modifications expand the structural diversity of proteins, but are 

notoriously difficult to study in living systems. Most modifications are refractory to direct genetic 

manipulation and require reductionist strategies such as in vitro systems or simplified cells. 

Glycans are the prime example for this: the human glycome is constructed by the combinatorial 15 

activity of more than 250 glycosyltransferases (GTs) with both hierarchical and competing 

activities. On the cell surface, glycans play a central role in modulating signal transduction, cell-

cell interactions and biophysical properties of the plasma membrane (1, 2). Understanding and 

manipulating these processes should thus be possible by adorning specific glycans with editable 

chemical functionalities. In such a synthetic biology approach, individual GTs could be engineered 20 

to accommodate a chemical functionality that is not found in native substrates and not 

accommodated by other GTs. This “bump-and-hole” tactic has been applied to a range of enzymes 

by us and others (3-9), but application in the living cell is a substantial technical challenge: the 
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nucleotide-based substrate analog must be delivered across the plasma membrane and the cell must 

stably express the correctly localized and folded mutant enzyme. Bump-and-hole engineering is 

particularly attractive to deconvolve GT families of multiple homologous isoenzymes: the 

complex interplay of these isoenzymes in the secretory pathway cannot be probed in sufficient 

detail in in vitro assays. 5 

One of the largest GT families in the human genome is the polypeptide N-acetylgalacosaminyl 

(GalNAc) transferase family (GalNAc-T-1…T-20). Transferring GalNAc to Ser/Thr side chains, 

GalNAcTs initiate abundant O-linked glycosylation in the secretory pathway (Fig. 1A) (10, 11). 

O-GalNAc glycosylation can differ based on cell type or activation stage, and clear disease 

phenotypes are associated with glycan aberration (12, 13). Unsurprisingly, GalNAcT expression 10 

is often associated with tumorigenesis, sometimes with opposite effects on different types of 

cancer (14, 15). However, the absence of a glycosylation consensus sequence and the variability 

of glycan elaboration render O-GalNAc glycans challenging to study by mass spectrometry (MS) 

based glycoproteomics. Thus, the protein substrate specificity of each isoenzyme is poorly studied 

and largely built on data inferred from synthetic peptide libraries (16). So-called SimpleCells that 15 

do not elaborate O-GalNAc glycans make glycoproteins that are easier to enrich and study by MS 

(17-20). Knock-outs of single GalNAcTs in the SimpleCell background have been profiled by 

glycosproteomics (18, 21). Similarly, glycopeptides from non-SimpleCells with titratable 

GalNAcT knock-in have been enzymatically simplified to allow for enrichment and MS (22). 

These studies have revealed comprehensive glycoproteomics datasets, but suffer from loss of 20 

glycan elaboration and laborious genome engineering required for targeted knock-in. Further, the 

activity of GalNAcT isoenzymes is both redundant and competitive, such that compensation and/or 
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shift of glycosylation sites occurs upon knock-out (21, 22). A gain-of-function strategy to visualize 

the products of a particular GT on the living cell is currently elusive. 

 

Fig. 1: GalNAcT bump-and-hole engineering. A, GalNAcTs initiate O-GalNAc glycosylation. 

Transfer of GalNAc to a Ser or Thr side chain is followed by downstream glycan elongation. B, 5 

the principle of bump-and-hole engineering. Engineered double mutant (DM) GalNAcTs are 

paired with UDP-GalNAc analogs 1-4 to chemically tag GalNAcT substrates that can be monitored 

by click chemistry. C, Overview of the steps taken in this study toward GalNAcT bump-and-hole 

engineering in the living cell. PG = Protecting group. 

 10 

Here, we equipped living cells with the ability to tag the protein substrates of individual GalNAcTs 

with chemical, editable functionalities. We made use of the fact that a double mutation (“DM”, 
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I253A/L310A double mutant in T-2, fig. 1B) re-programmed GalNAcTs to accept alkyne-

containing uridine diphosphate (UDP)-GalNAc analogs such as compounds 1-4 instead of the 

native substrate UDP-GalNAc (Fig. 1B) (8). We endowed living cells with the capacity to 

biosynthesize a UDP-GalNAc analog that was complementary to engineered DM-GalNAcTs. 

Further, we showed that DM-GalNAcTs emulate wild type (WT) GalNAcTs with regard to 5 

structure, localization and protein substrate specificity. This approach bestowed a bioorthogonal 

tag (23-27) on the protein substrates of distinct GalNAcT isoenzymes while conserving the 

complexity of glycan elaboration in the secretory pathway (Fig. 1C). Precision glycome 

engineering has widespread applications in biomarker discovery, GT profiling and targeted cell 

surface engineering. 10 

Structural basis for GalNAcT engineering 

As bump-and-hole engineering of a GT family in living cells has no precedent, we first set out to 

understand the structural implications of this approach. All GalNAcTs are type II transmembrane 

proteins with luminal GT and lectin domains connected through a flexible linker (10, 11, 28). We 

crystallized the luminal part of DM-T-2 in complex with the native ligands Mn2+, UDP, and the 15 

substrate peptide EA2 (PTTDSTTPAPTTK) at 1.8 Å resolution. Comparison of DM-T-2 and WT-

T-2 (PDB 2FFU) revealed complete conservation of both the three-dimensional enzyme 

architecture and bound ligand structure (Fig. 2A, fig. S1 and Table S1) (29). In DM-T-2, the 

interdomain linker adopts an extended conformation previously found in the catalytically active 

WT enzyme (30, 31). The mutant A253 and A310 side chains in the DM enzyme are congruent 20 

with the WT side chains I253 and L310, respectively (Fig. 2B). Two glycine residues, G308 and 

G309, are slightly shifted by 1.2 Å and 1.7 Å (Cα distances), respectively, likely to account for the 
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changes elsewhere in the active site. DM-T-2 thus retains the native structural properties of the 

WT-GalNAcT enzyme. 

 

Fig. 2: Bump-and-hole engineering conserves folding and substrate binding of GalNAcT-2. A, 

crystal structure of DM-T-2 at 1.8 Å superposed with WT-T-2 (PDB 2FFU). Bound EA2 substrate 5 

peptide is cyan (sticks), Mn2+ magenta (sphere) and UDP grey (sticks). Ligands are taken from 

DM-T-2. For superposition with WT-T-2 ligands, see figure S1A. B, superposition of the UDP-

sugar binding site of DM-T-2 and WT-T-2. Electron density is rendered at 1 σ and carved at 1.6 

Å. C, depiction of UDP-GalNAc analog 1 in a co-crystal structure with DM-T-2 at 3.1 Å, and 

UDP-GalNAc in a co-crystal structure with WT-T-2 (PDB 4D0T) (30), as well as WT and mutated 10 

gatekeeper residues. D, substrate specificities of DM-T1 and DM-T-2 as determined in an in vitro 

glycosylation assay with detection by SAMDI-MS. For comparison with WT-GalNAcT 

glycosylation, see figure S2. Data are from one representative out of two independent experiments. 

A co-crystal structure of DM-T-2, Mn2+ and UDP-GalNAc analog 1 at 3.1 Å resolution helped us 

visualize how the DM-T-2 active site mutations affect enzyme-substrate binding. In comparison 15 

with a corresponding WT-T-2/UDP-GalNAc/Mn2+/EA2 complex (PDB 4D0T), UDP-sugar 
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binding is completely conserved (Fig. S1B, C and table S1) (30). DM-T-2 indeed contains a hole 

that accommodates the alkyne side chain bump in UDP-GalNAc analog 1 (Fig. 2C). The formation 

of additional van der Waals interactions between enzyme and substrate explain why the KM of 

DM-T-2 toward 1 is approximately ten-fold lower than the KM of WT-T-2 toward UDP-GalNAc 

(8). 5 

 

To corroborate our structural interpretation that GalNAcT bump-and-hole engineering does not 

alter substrate peptide binding, we profiled the substrate specificities of two engineered 

GalNAcTs, DM-T-1 and DM-T-2 (8, 33-35). A peptide library containing a single Thr residue 

with randomized neighboring residues was used in in vitro glycosylation experiments and analyzed 10 

by self-assembled monolayers for matrix-assisted desorption/ionization mass spectrometry 

(SAMDI-MS, fig. 2D and fig. S2) (32). We found a striking difference in substrate specificity 

between DM-T-1 and DM-T-2 that was similar to the differences seen in the corresponding WT-

GalNAcTs: T-1 generally preferred hydrophobic amino acids at -1-position and Glu, Ile, Pro, Val 

or Trp at +1-position of the Thr glycan acceptor, whereas T-2 showed a preference for Pro, Ala, 15 

Ser and Thr at -1-position (Fig. S2) (32). These data indicate that bump-and-hole engineering 

faithfully reports on GalNAcT isoenzyme activity, a crucial prerequisite for a cellular bump-and-

hole system. 
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Fig. 3: Engineered GalNAcTs localize to the Golgi compartment and glycosylate protein 

substrates. A, expression construct for full-length GalNAcTs under the control of a Dox-inducible 

promoter. Inverted Tandem Repeats (ITR) are recognized by Sleeping Beauty transposase. WT-

T-2 and DM-T-2 were expressed by stably transfected HepG2 cells in a Dox-inducible fashion. B, 5 

fluorescence microscopy of HepG2 cells stably transfected with T-2 constructs, induced with 0.2 

µg/mL Dox and subsequently stained. C, in vitro glycosylation of proteins in a membrane fraction 

by full-length GalNAcTs using UDP-GalNAc analogs. Data are from one representative out of 

two independent experiments. Experiments were repeated with the membrane fraction of non-
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transfected cells and soluble, purified GalNAcTs as an enzyme source (Fig. S3). DIC = Differential 

interference contrast; TA = Trans-activator. 

 

DM-GalNAcTs glycosylate membrane proteins 

We next sought to confirm that DM-GalNAcTs localize to the Golgi compartment and glycosylate 5 

proteins in a membrane environment. Full-length WT- and DM-T-1 and -T-2 with a C-terminal 

VSV-G epitope tag exhibited doxycycline (Dox) dose-dependent expression under the control of 

a tetracycline-responsive promoter in stably transfected HepG2 cells (Fig. 3A and fig. S3A) (36). 

All tested GalNAcTs co-localized with the Golgi marker giantin, confirming native localization of 

engineered GalNAcTs (Fig. 3B and fig. S3B). To assess GalNAcT activity, membrane protein 10 

fractions were prepared from WT- and DM-GalNAcT expressing HepG2 cells and used for in vitro 

glycosylation experiments. After incubation with alkyne-containing UDP-GalNAc analog 1, 

alkyne-tagged glycoproteins were derivatized with azide-biotin using CuI-catalyzed [3+2] “click” 

cycloaddition, and characterized on a streptavidin blot. Compounds 1, 2 and 3 were specific 

substrates for DM- but not WT-GalNAcTs.  In the presence of these substrates, DM-T-1 and DM-15 

T-2 labeled overlapping and also unique glycoprotein species (Fig. 3C and fig. S3C, D). In 

contrast, treatment of lysates from WT-T-1 and -2 expressing cells with compound 4 with a shorter 

alkyne chain led to substantial labeling, consistent with 4 being a substrate for WT-GalNAcTs (8, 

26). These results were confirmed using soluble GalNAcTs and a membrane fraction of non-

transfected cells (Fig. S3E). Importantly, profiling both enzyme activity and protein specificity of 20 

single GalNAcT isoenzymes has been impossible to date even in cell lysates. We next targeted a 

GalNAcT bump-and-hole platform in the living cell. 
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Biosynthesis of a bumped UDP-GalNAc analog 

Among the insightful bump-and-hole studies that have probed various enzyme families, few have 

been performed in living cells due to the inability to deliver negatively charged substrates across 

the plasma membrane (5, 6, 9, 37). GalNAc analogs have been fed to cells as membrane-permeable 5 

per-acetylated precursors that are deprotected by esterases and converted to UDP-GalNAc analogs 

via the kinase GALK2 and the pyrophosphorylase AGX1 (Fig. 4A) (26, 27, 38, 39). By delivery 

of the corresponding protected GalNAc-1-phosphate analog, a GalNAc analog can bypass 

GALK2, such that only AGX1 is necessary for biosynthesis to the UDP-GalNAc analog. However, 

in accordance with previous findings (39), bumped UDP-GalNAc analogs 1, 2 and 3 were not 10 

biosynthesized from their sugar-1-phosphate precursors in the living cell (Fig. 4A, B). 

A lack of AGX1 activity towards synthetic N-acetylglucosamine (GlcNAc) analogs has previously 

prompted the engineering of AGX1 to recognize the corresponding GlcNAc-1-phosphate analog 

as a substrate (40). As WT-AGX1 accepts both GlcNAc-1-phosphate and GalNAc-1-phosphate as 

substrates, we investigated whether AGX1 mutants could biosynthesize UDP-GalNAc analogs 1, 15 

2 and 3 from the corresponding GalNAc-1-phosphate analogs in the living cell. We mutated the 

gatekeeper residues F381 and F383 to Gly or Ala in FLAG-tagged AGX1 expression constructs 

(40). GalNAc-1-phosphate analogs were delivered to stably transfected HEK293T cells by virtue 

of caged precursors 5, 6 and 7. UDP-sugar biosynthesis was then determined by high performance 

anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) of cell 20 

lysates. Gly and Ala mutants of F383 efficiently biosynthesized bumped UDP-GalNAc analog 1, 

while neither F381 single mutants nor any F381/F383 double mutants produced 1 despite equal 

expression levels (Fig. 4A) (40). In contrast to linear alkyne 1, neither methylated alkynes (2 or 3) 
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were biosynthesized by engineered AGX1F383A, hereby called mut-AGX1 (Fig. 5B and fig. S4B). 

We thus concluded that bumped GalNAc-1-P(SATE)2 precursor 5 can be used in conjunction with 

mut-AGX1 to deliver UDP-GalNAc analog 1 to the living cell and establish a GalNAcT bump-

and-hole system. 

 5 

Fig 4: Substrate delivery to the cytosol of living cells. a, schematic of substrate delivery. Non-

permissive steps are indicated by crossed arrows. The epimerase GALE interconverts UDP-

GlcNAc and UDP-GalNAc. b, HPAEC-PAD traces of extracts from HEK293T cells stably 

expressing WT-AGX1 or mut-AGX1 and fed with the indicated compounds. Dashed boxes 

indicate retention times of standards in separate reference runs (Fig. S4B). The product of potential 10 

epimerization of 1 by GALE, compound 8, is marked with an arrowhead. Data is of one experiment 

and was repeated for compound 5 in HEK293T cells transiently transfected with AGX1 constructs, 

as well as stably transfected K-562 cells (Fig. S4B and fig. S5). Insert: epimerization to 8 is 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2019. ; https://doi.org/10.1101/669861doi: bioRxiv preprint 

https://doi.org/10.1101/669861
http://creativecommons.org/licenses/by-nd/4.0/


12 

 

suppressed in GALE-deficient K-562 cells expressing mut-AGX1 and fed with 5, but not cells 

carrying a control single guide (sg)RNA. A reference trace of compound 1 is shown. Data are of 

one representative out of two independent experiments. 

 

In HPAEC-PAD chromatograms of cells biosynthesizing UDP-GalNAc analog 1, we consistently 5 

found a satellite peak that eluted after 1 (arrowhead in figure 4B). The epimerase GALE maintains 

a cytosolic equilibrium between UDP-GalNAc and UDP-GlcNAc and has been shown to also 

accept azide-containing analogs (38, 41). We found that GALE epimerizes UDP-GalNAc analog 

1 to the corresponding UDP-GlcNAc analog 8 (Fig. 4A): first, HPAEC-mass spectrometry 

confirmed that the satellite peak was caused by an isomer of UDP-GalNAc analog 1 with 328 m/z 10 

[M-2H]2-. Second, CRISPR-mediated GALE-KO in the K-562 background abrogated the satellite 

peak (Fig. 4B and fig. S5). In contrast, epimerization was still observed in GALE-containing cells. 

Alkyne-containing UDP-GlcNAc analog 8 might result in labeling of GlcNAc-containing glycans 

on the cell surface, such as N-linked glycans. We thus concluded that epimerization of 1 to 8 must 

be accounted for in glycoproteomics experiments, for example by enzymatic abrogation of cell 15 

surface N-glycans during sample processing. 

A glyosyltransferase bump-and-hole-system in living cells 

With a GalNAcT bump-and-hole system and a method for cellular substrate delivery of 1 in hand, 

we set out to probe isoenzyme-dependent glycosylation in the living cell. We cloned FLAG-tagged 

WT- or mut-AGX1 under a constitutive promoter into an expression vector containing VSV-G-20 

tagged WT or DM versions of GalNAcT-1 or T-2 under the control of a Dox-inducible promoter 

(Fig. 5A). This setup allowed us to systematically assess any potential background protein labeling 

when UDP-GalNAc analog 1 could not be biosynthesized, or when 1 was biosynthesized but DM-
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GalNAcTs were absent. To preclude any labeling due to epimerization of 1 to UDP-GlcNAc 

analog 8, we first used GALE-KO K-562 cells for labeling. Cells were supplemented with GalNAc 

to compensate for the loss of UDP-GalNAc biosynthesis (Fig. S5A). GalNAcT expression was 

induced (Fig. S6A), cells were fed with caged GalNAc-1-phosphate analog 5, and the cell surface 

was reacted with clickable Alexa488-picolyl azide in the presence of a non-membrane-permissive 5 

Cu(I) complex (3, 42). After gating for positive VSV-G signal, flow cytometry showed a more 

than 15-fold fluorescence increase when both DM-T-2 and substrate 1 were present over controls 

lacking either (Fig. 5B and fig. S6B). In GALE-containing cells, a more than 2-fold higher signal 

was still measured over control cells when a functional bump-and-hole system was present (Fig. 

S6C). 10 

In order to better visualize the scope of protein labeling by our bump-and-hole system, we reacted 

cell surfaces with a clickable version of the infrared dye CF680 to profile labeled cell surface 

glycoproteins by in-gel fluorescence. We compared protein labeling patterns of GALE-containing 

K-562 cells stably expressing T-1 or T-2 constructs. Here, N-linked glycans were removed by 

PNGase F treatment prior to analysis to reduce background fluorescence (Fig. S7A). A profound 15 

band pattern was observed when functional bump-and-hole pairs (5, mut-AGX1 and DM-

GalNAcTs) were present (Fig. 5C and fig. S7B). Mut-AGX1 was required for labeling, confirming 

that our experiments probe enzymatic glycosylation rather than non-specific protein modification 

(43). Fluorescence was of similar intensity as in cells treated with well-characterized alkyne-

containing N-acetylneuraminic acid precursor Ac4ManNAlk (44). Furthermore, the presence of 20 

DM-GalNAcT protein was essential, as omission of Dox induction prevented fluorescent labeling 

(Fig. S7B). Importantly, DM-T-1 and DM-T-2 produced slightly different band patterns, especially 

between 25 and 37 kDa. The most intense 110 kDa band migrated at slightly higher molecular 
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weight when glycosylated by DM-T-1 instead of DM-T-2, indicating that T-1 potentially labeled 

more sites of this particular protein. Digestion with the mucin-selective protease StcE completely 

removed this band in T-2 labeled samples (Fig. S7C), confirming labeling of mucin-type proteins 

that are rich in O-GalNAc glycosylation (45). Discrete band patterns were obtained from in-gel 

fluorescence experiments when GALE-KO cells were used and a functional bump-and-hole pair 5 

was present. In contrast, pulsing the same cells with GlcNAc analog 9, a precursor of UDP-

GlcNAc analog 8, led to a diffuse background whenever mut-AGX1 was present, but independent 

of the GalNAcT construct used (Fig. S7D). To profile the identity of labeled cell surface 

glycoproteins, we synthesized clickable, acid-cleavable biotin-picolyl azide 10 as an enrichment 

handle of cell surface glycoproteins (Fig. 5D). Following lysis and PNGase F treatment, O-10 

glycoproteins were enriched and digested on-bead with trypsin to profile the corresponding 

unmodified peptides by mass spectrometry. The myelogenous K-562 cell line expresses mucins 

and mucin-like proteins that are rich in O-GalNAc glycans such as CD36, CD43, CD45, 

Glycophorins A and C, and MUC18 (https://www.proteinatlas.org/). We found all these proteins 

enriched (log prob > 5 for DM and < 5 for WT samples, or at least 40 units higher for DM than 15 

controls) from lysates of cells carrying functional T-1 or T-2 bump-and-hole systems (5, mut-

AGX1, DM-GalNAcT) over control cells lacking any component (Fig. S8). It is noteworthy that 

we found mainly cell surface glycoproteins with abundant O-glycosylation in these experiments, 

probably because DM-GalNAcTs were in constant competition for protein substrates with the 

corresponding endogenous WT-GalNAcTs in these cells. 20 
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Fig. 5: Selective bioorthogonal labeling of the living cell surface with bump-and-hole engineered 

GalNAcTs. A, GalNAcT and AGX1 co-expression construct and workflow of cell surface labeling. 

Red star depicts a fluorophore. B, labeling analysis of K-562 GALE-KO cells by flow cytometry 

of MB488-picolyl azide labeled and intracellular VSV-G-stained cells. Data are individual values 5 

from three independent experiments, means ± SEM of MB488 median fluorescence intensity of 

VSV-G positive cells. Statistical analysis was performed by two-tailed ratio paired t-test. C, 

labeling analysis by in-gel fluorescence of PNGase F-treated lysates from metabolically labeled 

K-562 cells. Data is representative of three independent experiments. D, schematic of glycoprotein 

enrichment and on-bead digest. The bifunctional molecule 10 bears an acid-labile 10 

diphenyldisiloxane moiety. E, exemplary mass spectrometry data: mass spectrum (HCD) of a fully 

elaborated glycopeptide from SERPIN5A (site Thr39), and further examples from T-2-specific 

sites from STC2 (Thr28) and APOE (S308). FA = formic acid; MFI = mean fluorescence intensity. 
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The use of GalNAcT-KO SimpleCells has enabled the mapping of glycosylation sites that are 

introduced by several GalNAcTs including T-1 and T-2, but by design is not suited to profile the 

diversity of glycan structures beyond the initiating GalNAc. Our bump-and-hole approach can 

contribute this information if the bumped GalNAc analog is recognized and extended by 

downstream GTs. To probe this, we used bump-and-hole pairs to profile the glycoproteome of T-5 

1-KO or T-2-KO HepG2 cells (21). Cells were transfected with GalNAcT-1 or T-2 and Dox-

induced before labeling with GalNAc-1-phosphate analog 5. As glycoproteins are abundant in the 

HepG2 secretome (21), we clicked acid-labile enrichment handle 10 onto proteins in conditioned 

cell culture supernatants. Following on-bead tryptic digest to release non-glycosylated peptides, 

glycopeptides were liberated by acidic cleavage of the enrichment handle, and analyzed by mass 10 

spectrometry. We used the presence of a 491.2238 m/z ion in higher-energy collisional dissociation 

(HCD) as an indicator for a bumped glycan to trigger peptide sequencing by electron-transfer 

dissociation (ETD, fig. 5E and fig. S9). Following an automated search for glycopeptides 

containing the GalNAc analog alone or as a part of longer glycans, we obtained raw glycopeptide 

hits which we manually validated. Seventy-seven spectra were found of DM-T-2-modified 15 

glycopeptides that corresponded to 37 peptides with 27 glycosylation sites and the presence of up 

to four different glycan compositions per glycopeptide, the structures of which were inferred based 

on biosynthetic considerations (Data S1) (18). In contrast, four glycopepetides were found as 

modified by DM-T-1. Control cells fed with DMSO or containing WT GalNAcTs and fed with 

GalNAc-1-phosphate analog 5 showed no hits at all, or one (WT-T-2) and two (WT-T-1) 20 

glycopeptides, respectively. Several known glycosylation sites in the SimpleCell glycoproteomics 

dataset by Schjoldager et al. were confirmed herein, and new sites were revealed (Data S1) (19). 

For instance, we found hitherto unannotated T-2 glycosylation sites in the proteins ITIL2, AMBP, 
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Complement C3 and C4, GPC3 and STC2, and Laminin subunit gamma-1, among others (Fig. 5E 

and Data S1). T-2 is involved in lipid homeostasis and was found to glycosylate certain 

apolipoproteins, including ApoE at Thr307 and Ser308, in HepG2 cells (17, 21). Both sites were 

confirmed herein and, additionally, found to be elaborated up to the trisaccharide Neu5Acα-Galβ-

GalNAc-Ser/Thr or tetrasaccharide Neu5Acα-Galβ-(Neu5Acα)GalNAc-Ser/Thr structures (Data 5 

S1) (18). Our data resolved ambiguity about O-glycosylation of apolipoprotein A-1 (ApoA1) in 

the peptide sequence 220-ATEHLSTLSEK-230 (21): previous data showed that upon T-2-KO, 

glycosylation of Thr221, Thr226 and Ser228 is slightly increased, but the reason for this was 

elusive (21). Our gain-of function approach revealed that DM-T-2 glycosylated Ser225 while DM-

T-1 glycosylated Thr221, indicating that T-2-KO cells lose Ser225 glycosylation that is 10 

compensated by increased glycosylation at the other sites. We attribute the smaller number of 

annotated glycopeptides in DM-T-1 cells versus DM-T-2 to the lower expression of T-1 versus T-

2 GalNAcTs at 0.5 µg/mL Dox and/or the fact that T-1 glycosylates extracellular matrix proteins 

which may not be sufficiently soluble in conditioned media (Fig. 3B and fig. S3A). We repeated 

the experiment using DM-GalNAcTs and treatment with caged GalNAc-1-phosphate analog 5 15 

only, and found similar results (Data S2). Such detailed analysis is facilitated by the gain-of-

function chemical tagging strategy that emulates native GalNAcT activity as a result of our bump-

and-hole approach.  

Discussion 

The cellular glycoproteome is subject to disease-related alterations. Yet, we still lack methodology 20 

to selectively visualize, modify or sequence either a certain glycan subtype or the product of a 

certain GT. Bump-and-hole engineering has been artfully employed to obtain insight into the 

protein substrates of single kinases (4, 46), ADP-ribosyltransferases (5, 6), and methyltransferases 
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(37, 47, 48), among others (9). Only few of these systems have been established in the living cell, 

as cellular delivery of bumped substrates is rarely straightforward, especially when substrates are 

nucleotide-based. Herein, we established the first GT bump-and-hole system in the living cell to 

profile GalNAcTs, the largest GT family in the human genome. The fascinating biology of 

GalNAcTs, with multiple isoenzymes and a profound cross-talk between glycosylation and 5 

proteolysis (34, 49), prompted us to develop an isoenzyme-specific chemical reporter. This 

approach allowed us to expand our knowledge on T-1 and T-2 glycosylation sites by adding 

information on the nature of the mature glycans after extension by other GTs. 

The era of quantitative biology demands great specificity in tools to probe cellular processes or 

expressed antigens. Biological tools, including antibodies, lectins, engineered binding proteins, or 10 

silenced hydrolases have been employed to profile or isolate cellular glycans (45, 50). While 

powerful probes, these proteins suffer from various drawbacks, including the dependence of 

binding on the structural context or the requirement to simplify glycans before performing binding 

studies. Additionally, all conventional strategies for glycan pull-down or visualization rely on post-

glycosylation derivatization or binding. As a consequence, information on GT isoenzyme 15 

specificity is already lost or – in the context of knock-out cell lines – may have been obscured by 

partial redundancy. This “specificity space” is covered by our bump-and-hole approach that 

enables GT- and glycosite-specific labeling. As GalNAcT engineering retains both three-

dimensional structure and peptide glycosylation preferences, this strategy probes glycosylation in 

an unbiased fashion without context dependence. Thereby, we obtained for the first time 20 

information on both site and structure of glycans initiated by a single GT isoenzyme in a single 

experiment. 
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Taken together, we now have a strategy in hand to specifically modify GT isoenzyme-dependent 

glycosylation sites on the living cell. 
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Fig. S1. A, overlay of ligands bound in DM-T-2/EA2/UDP/Mn2+ (ligands cyan) and a published 

crystal structure of WT-T-2/EA2/UDP/Mn2+ (ligands olive, PDB 2FFU), with electron density 

(map rendered at 1 σ and carved at 1.6 Å) taken from the DM-T-2 co-crystal structure. Mn2+ ions 

are colored in magenta and overlay completely. B, crystal structure of DM-T-2/1/Mn2+ in the 5 

hexameric unit cell. UDP-GalNAc analog 1 is rendered in sphere representation. C, superposition 

of the active sites of WT-T-2 (PDB 4D0T, orange) with UDP-GalNAc (light brown) and DM-T-2 

(blue) with UDP-GalNAc analog 1 (grey). Gatekeeper residues are rendered in stick 

representation. Mn2+ ions are magenta and overlay completely. 
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Fig. S2. Substrate specificities of DM-T1 and DM-T-2 and comparison with WT enzymes as 

determined in an in vitro glycosylation assay with detection by SAMDI-MS. WT data corresponds 

with reported substrate specificities, and two replicates are shown for DM enzymes with the full 

library or a focused sub-library. 5 
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Fig. S3. A, WT-T-1 and DM-T-1 are expressed by stably transfected HepG2 cells in a Dox-

inducible fashion. B, fluorescence microscopy of HepG2 cells stably transfected with T-1 

constructs, induced with 2 µg/mL Dox and subsequently stained. C, streptavidin blot from figure 

3C depicted in two different intensities. D, Western blot to assess expression of GalNAcTs in 5 

lysates used in C. E, in vitro glycosylation was repeated with a membrane fraction from 

untransfected HepG2 cells, using soluble GalNAcTs to perform glycosylations (8). Reactions were 

performed with or without a two-fold excess of UDP-GalNAc over UDP-sugars 1, 2, 3 and 4. 
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Fig. S4. Biosynthesis of UDP-GalNAc analog 1 by mut-AGX1. A, HPAEC-PAD traces of extracts 

from HEK293T cells transiently expressing AGX1 constructs, and fed with GalNAc-1-phosphate 

analog 5 or DMSO. All traces are normalized to the retention time of ADP-Glc as an external 

standard. Data is of a single experiment. B, full traces of the data displayed in Fig. 4B. Asterisk 5 

indicates an artefact from solvent filling. 
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Fig. S5. GALE-KO cells are deficient in epimerization of UDP-GalNAc and UDP-GlcNAc, as 

well as chemically modified analogs. A, HPAEC-PAD traces of GALE-KO or control sgRNA-

transduced K-562 cells stably transfected with the indicated FLAG-tagged AGX1 constructs and 

fed with different concentrations of GalNAc or GlcNAc. Expression of AGX1 (FLAG) and GALE 5 

were analyzed by Western blot. Samples were re-blotted with a higher concentration of GALE 

antibody to assure absence of GALE in KO cells. Data are from one experiment. B, cells were fed 

with DMSO or compound 5, and UDP-sugar production was measured by HPAEC-PAD. GALE-

KO contain elevated levels of UDP-Gal as cells are supplemented with galactose to maintain 

viability and UDP-Gal cannot be epimerized to UDP-Glc. Expression levels of AGX1 (FLAG) 10 

and GALE are analyzed by Western blot. Data are of one representative out of two independent 

experiments. C, GALE-KO or control sgRNA-transduced K-562 cells stably transfected with the 

indicated AGX1 constructs were fed with the indicated compounds, and UDP-sugar production 

was measured by HPAEC-PAD. Data are from one experiment. 
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Fig. S6. A, gating scheme for flow cytometry experiments in Fig. 5. B, primary flow cytometry 

data of the experiment in figure 5C. Two technical replicates are shown. C, primary flow cytometry 

data of “wild type” K-562 cells after induction with 0.5 µg/mL Dox and gating on VSV-G-positive 

cells. Two technical replicates are shown for cells treated with compound 5. At least 500 gated 5 

cells were used for analysis per sample in B and C. D, statistical analysis of the experiment in C. 

Data are individual values from three independent experiments, means ± SEM of MB488 median 

fluorescence intensity of VSV-G positive cells. Statistical analysis was performed by two-tailed 

ratio paired t-test. 
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Fig. S7. Labeling analysis of K-562 cells by in-gel fluorescence. A, cells expressing AGX1 and 

GalNAcT-2 constructs were labeled as in figure 5C and analyzed by in-gel fluorescence. 

Treatment of lysates with PNGase F significantly shifts certain background bands to lower 

molecular weight. Arrow indicates PNGase F band in Coomassie stain. B, full gel of the 5 

experiment depicted in figure 5C. The sialic acid precursor Ac4ManNAlk was used as a positive 

control, and the effect of omitting Dox was investigated. C, treatment of lysates prepared as in A 

with the glycoprotease StcE. Arrow indicates StcE band in Coomassie stain. D, dissecting GlcNAc 

vs. GalNAc labeling by using probes 5 and 9. GALE-KO K-562 cells expressing AGX1 and 

GalNAcT-2 constructs were treated with Dox or left untreated, and fed with compounds 5 or 9. 10 

Labeling was performed as in figure 5C. Wild type K-562 cells prepared as in A were used to 

compare labeling patterns. Data are from one representative out of three independent experiments. 
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Fig. S8. GalNAcT bump-and-hole pairs selectively label highly O-glycosylated proteins. Heat map 

represents log prob of detected proteins after enrichment of cell surface proteins of K-562 cells 

expressing mut-AGX1 and indicated GalNAcT constructs and fed with the indicated compounds. 
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Fig. S9. Exemplary mass spectra from glycopeptides after modification by DM-T-2. HCD (mainly 

glycan fragmentation) and ETD (mainly peptide fragmentation) spectra are shown, and ions are 

annotated. A, glycosylation at Thr28 of STC2 as a newly-identified T-2-specific modification (63). 

B, confirmation of Ser308 as a T-2-specific modification of ApoE. C, extension of chemically 5 

tagged GalNAc by elaborating glycosyltransferases on T39 of SERPIN5A. Legend depicts 

tentative structural assignments of oxonium ions. Loss of 161 m/z in HCD and 194 m/z peak in 

ETD likely depicts fragment masses of the triazole-based linker. 
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Table S1. 

Crystallographic data statistics. 

 

 
Figures in parenthesis relate to the outer shell. 5 
*Rmerge  = Σhkl Σj=1 to N | Ihkl – Ihkl (j) | /  Σhkl Σj=1 to N Ihkl (j), where N is the redundancy of the data. 

In parentheses, outermost shell statistics at these limiting values: 1.85 – 1.80 Å in GalNac T2 with 

EA2 and UDP and 3.21 - 3.05 Å in GalNac T2 UDP-GalNAc analog 1. 
†Rfactor  = Σhkl ||Fobs| - |Fcalc|| / Σhkl |Fobs|, where the Fobs and Fcalc are the observed and calculated 

structure factor amplitudes of reflection hkl. 10 
‡Rfree  = is equal to Rfactor for a randomly selected 5.0 % subset of the total reflections that were 

held aside throughout refinement for cross-validation. 
§According to Procheck. 
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Data S1. Glycoproteomics data of secretome from HepG2-T1-/- and HepG2-T2-/- cells stably 

transfected with combinations of AGX1 and T-1 or T-2, respectively, and treated with compound 

5 or DMSO. 
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Data S2. Glycoproteomics data of secretome from HepG2-T1-/- and HepG2-T2-/- cells stably 

transfected with mut-AGX1 and DM-T-1 or -T-2, respectively, and treated with compound 5. 
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