1	Tomato yellow leaf curl virus V2 protein plays a critical role in the
2	nuclear export of V1 protein and viral systemic infection
3	Wenhao Zhao ^{1, 2} , Yinghua Ji ¹ , Shuhua Wu ¹ , Elizabeth Barton ² , Yongjian Fan ¹ ,
4	Xiaofeng Wang ² *, Yijun Zhou ¹ *
5	
6	¹ Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of
7	Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base,
8	Nanjing, 210014, China
9	² School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061,
10	United States of America
11	
12	*Corresponding author: Yijun Zhou: yjzhou@jaas.ac.cn
13	Xiaofeng Wang: reachxw@vt.edu
14	
15	Abstract
16	Geminiviruses are an important group of circular, single-stranded DNA viruses
17	that cause devastating diseases in crops. Geminiviruses replicate their genomic DNA
18	in the nucleus. The newly-synthesized viral DNA is subsequently transported to the
19	cytoplasm, moved to adjacent cells through plasmodesmata with the help of viral
20	movement proteins, and, ultimately, moved long-distance to establish systemic
21	infection. Thus, the nucleocytoplasmic transportation is crucial for a successful

22 infection by geminiviruses. For Tomato yellow leaf curl virus (TYLCV), the V1 23 protein is known to bind and shuttle viral genomic DNA, but the role of V2 protein in 24 this process is still unclear. Here, we report that the nucleus-localized V1 protein 25 dramatically decreases when co-expressed with V2 protein, and that V2-facilitated 26 nuclear export of V1 protein depends on host exportin- α and a specific V1-V2 27 interaction. Chemical inhibition of exportin- α or a substitutions at cysteine 85 of V2 28 protein, which abolishes the V1-V2 interaction, blocks the promoted redistribution of V1 protein to the perinuclear region and the cytoplasm. When the V2^{C85S} mutation is 29 30 incorporated into a TYLCV infectious clone, the TYLCV-C85S causes delayed onset 31 of very mild symptoms compared to wild-type TYLCV, indicating that the V1-V2 32 interaction and, thus, V2-mediated nuclear export of V1 protein is crucial for viral 33 spread and systemic infection. Our data point to a critical role of the V2 protein in 34 promoting the nuclear export of the V1 protein, likely by promoting V1-mediated 35 nucleocytoplasmic transportation of TYLCV genomic DNA, and in turn, promoting 36 viral systemic infection.

37

38 Author summary

As both replication and the transcription of geminiviruses occur in the nucleus, transportation of the viral genomic DNA into and out of the nucleus of the infected cells is essential for a successful infection cycle. However, the nuclear export of geminiviruses is still little known and even less is known about the process for

43	monopartite geminiviruses. We use TYLCV, a typical monopartite begomovirus in
44	the family Geminiviridae, to examine the nucleocytoplasmic transportation. In this
45	study, we found TYLCV V2 is able to redistribute the nucleus-localized V1 protein to
46	the perinuclear region. Moreover, the nuclear export of V1 protein is dependent on the
47	V1-V2 interaction and host exportin- α . Blocking the V1-V2 interaction impeded the
48	V2-mediated V1 protein redistribution and decrease TYLCV infection efficiency with
49	delayed and mild symptoms. This report shows us a new explanation for the role of
50	V2 in the nuclear export of V1 protein and TYLCV viral systemic infection.
51	
52	Introduction
53	Geminiviruses are a group of plant viruses with a circular, single-stranded DNA
54	genome. Viruses in this family cause devastating diseases in crop plants, leading to
55	agricultural losses worldwide [1-4]. While viral gene expression occurs in the
56	cytoplasm, replication of geminiviruses occurs in the nucleus of infected host cells [5].
57	It is crucial that viral proteins involved in replication enter into the nucleus to execute
58	their functions and in addition, newly synthesized viral genomic DNA are exported
59	from the nucleus to the cytoplasm for further spread to adjacent cells and cause
59 60	from the nucleus to the cytoplasm for further spread to adjacent cells and cause systemic infection through long-distance movement. Therefore, the

63	Geminiviruses can be divided into two major groups based on their genomic
64	components: one group is the monopartite geminiviruses, while the other group is the
65	bipartite geminiviruses [5]. The bipartite geminiviruses genome is composed of two
66	circular 2.5- to 2.8-kb ss-DNA molecules (DNA-A and DNA-B). The movement of
67	bipartite geminiviruses requires two proteins, BV1 and BC1, that are encoded by
68	DNA-B [6-10]. BV1 is a nuclear shuttle protein and plays an important role in the
69	nucleocytoplasmic shuttling of viral genomic DNA [6-9, 11]. BC1 facilitates
70	cell-to-cell movement after genomic DNAs are exported out of the nucleus.
71	The genome of monopartite geminiviruses contains only one component,
72	DNA-A. Because monopartite geminiviruses lack the DNA-B component, the
73	mechanism for movement of the virus is not clear yet. As DNA-A encode more viral
74	proteins compared with DNA-B, and many of the proteins are multifunctional, which
75	makes it more challenging to examine the nucleocytoplasmic shuttling of viral DNA
76	of monopartite geminiviruses. Only a few viruses have been examined, such as Maize
77	streak virus (MSV) and Tomato yellow leaf curl virus (TYLCV) [12, 13, 14]. It has
78	been reported that V1 protein binds to viral genomic DNA and shuttles them between
79	the nucleus and cytoplasm [11, 15, 16]. It was later reported that host proteins are also
80	required for the process. Nuclear transporter KAP α helps TYLCV to enter the
81	nucleus [17, 18] and exportin- α is required for the nuclear export of the C4 protein of
82	Tomato leaf curl Yunnan virus (TLCYnV) [19]. In addition, nuclear shuttling of
83	monopartite geminiviruses also involve viral proteins other than V1 protein,

84	suggesting a protein complex may be involved [13, 19, 20]. However, it is unclear
85	what viral proteins or how they work together to accomplish transportation between
86	the nucleus and the cytoplasm.
87	TYLCV is a typical monopartite begomovirus in the family Geminiviridae. The
88	single ssDNA genome has six open reading frames (ORFs) and an intergenic region
89	(IR). Four ORFs (C1, C2, C3 and C4) are located on the complementary strand and
90	the other two ORFs (V1 and V2) are located on the viral strand [21].
91	Replication-associated protein (Rep) encoded by C1, transcriptional activator protein
92	(TrAP) encoded by C2 and replication enhancer protein (REn) encoded by C3 are all
93	involved in viral replication. C4 protein is likely involved in symptom development
94	and viral movement. V1 encodes the capsid protein (CP), which facilitates virion
95	assembly and viral trafficking [1, 13, 22, 23]. V2 protein is a gene silencing
96	suppressor at both the post-transcriptional stage (PTGS) [24] and the transcriptional
97	level stage (TGS) [25]. V2 protein is also involved in the regulation of host defense
98	responses [26] and viral movement [13], playing important roles in viral spread and
99	systemic infection [27].
100	For the nucleocytoplasmic transportation of TYLCV, V1 protein is well-known
101	as a nuclear shuttle protein and for its role in binding viral genomic DNA [13]. Early
102	studies showed that V1 protein binds viral genomic ssDNA in the cytoplasm and
103	moves them into the nucleus for replication [28, 29]. V1 protein also interacts with the
104	host plant nuclear transporter protein to facilitate the entry of virus into the nucleus

105	[17]. In addition, V1 protein also helps viral genomic DNA to move out of the
106	nucleus for further translation and expression when offspring genomic DNA is
107	synthesized [13]. This suggests that V1 protein is functionally equivalent to BV1 of
108	bipartite geminiviruses. However, several lines of evidence suggest that other viral
109	proteins, such as V2, are also involved [5, 13, 17, 30, 31, 32]. Rojas et al. found that
110	the efficiency of nuclear export of viral DNA was enhanced by 20-30% in the
111	presence of V2 protein, suggesting a role for V2 protein in the V1 protein-mediated
112	nuclear export of viral genomic DNA [13]. However, the mechanism whereby V2
113	protein facilitates V1-mediated viral genomic DNA trafficking from the nucleus is
114	unknown.
115	In this study, we demonstrate that V2 protein affects the subcellular localization
116	of V1 protein by dramatically decreasing the nucleus-localized V1 protein in
117	Nicotiana benthamian cells, possibly through host exportin- α (XPO I), which often
118	mediates nuclear export of proteins. A specific interaction between V2 and V1
119	proteins has been identified by co-immunoprecipitation (Co-IP) and bimolecular
120	fluorescence complementation (BiFC). Substitutions in cystine 85 of the V2 protein
121	inhibits the V1-V2 interaction, blocks the effect of V2 protein on the subcellular
122	localization of V1 protein, and causes delayed and mild symptom in plants. Our
123	results indicate that V2 protein interacts with V1 protein, promotes the nuclear export
124	of V1 protein, and plays an important role in viral systemic infection.
125	

126 **Results**

127 V2 Protein Affects the Nuclear Localization of V1 Protein

128 TYLCV V1 protein is known as a nucleocytoplasmic shuttle protein that

- 129 facilitates the transport of viral genomic DNA into and out of the nucleus. When
- 130 expressed in cells of *Nicotiana benthamiana* by agroinfiltration as a YFP-tagged
- 131 protein, V1-YFP, the YFP signal was found in both the nucleus and cytoplasm at 40
- 132 hours post infiltration (hpi) (Fig 1a), consistent with its role in nuclear transportation
- 133 of viral genomic DNA.

134 Since V2 protein was reported to facilitate the export of viral genomic DN
--

135 from the nucleus [13], we tested whether V2 protein does so by promoting the nucleus

136 export of the V1 protein. We first tested for the subcellular localization of V2 as a

- 137 YFP-tag (V2-YFP) in *N. benthamiana* cells via agroinfiltration. The fluorescence
- 138 signal was observed under a laser confocal microscope at 40 hpi. YFP-V2 was mainly

139 present in the cytoplasm and perinuclear regions, but a much weaker signal was also

140 present in the nucleus (Fig 1b). To further clarify the function of V2 protein in the

141 nuclear export of TYLCV, we co-expressed FLAG-tagged V2 protein (FLAG-V2)

142 with V1-YFP. Interestingly, only a weaker fluorescence signal of V1 protein was

143 found in the nucleus compared to that of V1 protein alone (Fig 1a). To rule out the

- 144 possibility that the weaker signal of V1-YFP in the nucleus was due to decreased
- 145 expression and/or stability in the presence of V2, we checked the accumulation of
- 146 V1-YFP by Western blotting. Our results showed that both V2 and V1 proteins were

147	expressed well when co-expressed (Fig 1a). An increased accumulation of V1-YFP
148	was sometimes noticed when it was co-expressed with FLAG-V2 than when it was
149	expressed alone, indicating that the lower V1-YFP signal in the nucleus was not due
150	to its decreased accumulation in the presence of FLAG-V2.
151	To confirm our visual observations, we performed a fractionation assay to
152	separate the nucleus from the cytoplasm [19] and tested the localization of V1-YFP in
153	the absence and presence of the V2 protein. To this end, we expressed FLAG-V2 and
154	V1-YFP in Histone 2B (H2B)-RFP transgenic plants. As shown in Fig 1c, we only
155	detected H2B-RFP in the nuclear fraction but not the cytoplasmic fraction; a
156	cytoplasmic marker, phosphoenolpyruvate carboxylase (PEPC), was only present in
157	the cytoplasm fraction, not in the nuclear fraction. Under such conditions, FLAG-V2
158	was primarily detected in the cytoplasm fraction but only weakly in the nucleus.
159	Although V1-YFP was detected in both fractions when expressed alone, the amount
160	in the nuclear fraction significantly decreased in the presence of FLAG-V2, which is
161	consistent with the results based on fluorescence microscopy (Fig 1c). To provide a
162	numeric reading, we set the sum of V1-YFP signal intensity in the cytoplasm and
163	nucleus at 100%. In the absence of FLAG-V2, we found 43% of V1-YFP was
164	associated with the nuclear fraction but decreased to 11% in the presence of
165	FLAG-V2. We concluded from these results that V2 is able to change the nuclear
166	localization of V1 protein.
167	

168 V2 Protein Interacts with V1 Protein

169	We set out to understand the underlying mechanism by which V2 protein affects
170	the subcellular localization of V1 protein by first testing whether there is an
171	interaction between V2 and V1 proteins by using a co-immunoprecipitation (Co-IP)
172	assay. FLAG-tagged V2 (FLAG-V2) was co-expressed with YFP or V1-YFP in N.
173	benthamiana. Total protein extracts were subject to immunoprecipitation by using
174	FLAG-trap beads, and the resulting precipitates were analyzed using an anti-YFP
175	antibody or an anti-FLAG antibody. Although a similar amount of FLAG-V2 was
176	pulled down with FLAG-trap beads, only V1-YFP, but not YFP, was detected (Fig
177	2a), even though both YFP and V1-YFP were well expressed (Fig 2a).
178	The fact that V1 protein was co-precipitated with V2 protein suggests that V2
179	protein may bind to V1 to form a V1-V2 protein complex. To confirm the V1-V2
180	interaction and identify the location where the V1 and V2 proteins may form a
181	complex, we used a bimolecular fluorescence complementation (BiFC) assay. A
182	positive interaction between nYFP-V1 and cYFP-V2 was observed in both the
183	cytoplasm and perinuclear region, as indicated by the presence of reconstituted green
184	fluorescence (Fig 2b). We also noticed a faint fluorescence signal inside the nucleus.
185	It should be noted that V1-YFP also localized in the cytoplasm and the perinuclear
186	region when it was co-infiltrated with FLAG-V2 (Fig 1a), suggesting that V2 binds
187	V1 protein at the perinucleus and the cytoplasm. No green fluorescence signal was
188	generated when nYFP-V1 and cYFP, or nYFP and cYFP-V2, or nYFP and cYFP

189	were co-expressed (Fig 2b), reinforcing a specific interaction between V2 and V1
190	proteins in plant cells.
191	
192	V2 Mediates the Nucleocytoplasmic Shuttling of V1 Protein Through Host
193	Exportin-α
194	V2 can change the nuclear localization of the V1 protein, decreasing its
195	accumulation in the nucleus. These results raised the possibility that V2 might help
196	V1 protein export from the nucleus to the cytoplasm. Because the nuclear export of
197	proteins is often mediated by exportin- α , we tested the subcellular localization of V2
198	upon treatment with leptomycin B (LMB), an inhibitor of exportin- α [33]. As
199	expected, the level of nuclear-localized V2-YFP was increased after LMB treatment
200	in epidermal cells of H2B-RFP transgenic N. benthamiana plants (Fig 3a), suggesting
201	that V2 depends on exportin- α to move out of the nucleus. To confirm our
202	observations, we performed a nuclear-cytoplasmic fractionation assay on H2B-RFP
203	transgenic <i>N. benthamiana</i> plants expressing V2-YFP with or without LMB treatment.

204 H2B-RFP and PEPC were used as nuclear- and cytoplasmic-localized marker proteins,

205 respectively. About 32% of the total V2-YFP accumulated in the nucleus and

206 increased to 54% with the LMB treatment (Fig 3b), agreeing well with our imaging

207 results (Fig 3a).

208 We also checked whether V2-mediated V1-YFP nuclear export can be affected

209 by the LMB treatment. Co-expressed with FLAG-V2, V1-YFP had very low

210	accumulation in the nucleus (Fig 1a), but a strong nuclear signal was observed after
211	treatment with LMB (top panel, -DMSO, Fig 3c), suggesting that V2-mediated V1
212	protein nucleocytoplasmic shuttling is similar to the V2 protein export, which depends
213	on exportin-α.
214	To confirm the specific effect of LMB on localizations of the V1 and V2 proteins,
215	we further infiltrated LMB-treated cells with 0.5% dimethyl sulfoxide (DMSO),
216	which degrades LMB. As expected, the V1-YFP signal was detected in the nucleus in
217	the presence of FLAG-V2 and LMB at the beginning of DMSO treatment (top panel,
218	-DMSO, Fig 3c). However, the V1-YFP signal in the nucleus decreased gradually
219	after a longer DMSO treatment that eliminated the inhibitory effect of LMB (Fig 3c).
220	To verify the nucleocytoplasmic shuttling of the V1-V2 complex, we performed
221	a BiFC assay applying the same treatments as above. In the presence of LMB only,
222	the reconstituted YFP signal was strongly detected in the nucleus (Fig 3d), indicating
223	that the V1-V2 complex was also present in the nucleus as well as in the cytoplasm
224	and perinuclear region (Fig 2b). After DMSO treatment for 2 hours, the
225	nucleus-localized YFP signal clearly diminished, indicating an exportin- α -mediated
226	nucleocytoplasmic shuttling of the V1-V2 complex (Fig 3d). These results indicated
227	that the nucleocytoplasmic shuttling of V1 protein is dependent on the V1-V2
228	interaction and exportin-α.
229	

230 The V2 Mutants C85A Abolishes the V1-V2 Interaction

231	To verify that the V1-V2 interaction plays a crucial role in the V1 nuclear export
232	and to identify the approximate sites in V2 that are responsible for the interaction, we
233	constructed six V2 mutants, each with single or double substitutions (Fig 4a). We then
234	tested their interactions with V1 protein using the Co-IP assay. Among the six V2
235	mutants, only the V2 ^{C85A} mutant, which has a cysteine to alanine substitution in the
236	residue at position 85, was not pulled down along with FLAG-V1 (Fig 4a,4b).
237	Alanine substitution did not affect expression and stability of the V2 ^{C85A} mutant
238	because V2-YFP and V2 ^{C85A} -YFP accumulated at similar levels (top Input panel, Fig
239	4b).
240	It is well-known that V2 protein is involved in PTGS by binding to tomato SGS3
241	(SISGS3), a homologue of Arabidopsis SGS3 protein [34]. It has been confirmed that
242	a mutant of V2 (V2 $^{C84A/C86A}$) does not interact with SISGS3 and lost its function as a
243	suppressor of gene silencing [34]. Given the fact that C85 is adjacent to C84 and C86,
244	it is possible that V2 ^{C85A} may be dysfunctional not only in interacting with V1 protein
245	but also with SISGS3. To this end, we confirmed that $V2^{C85A}$, but not $V2^{C84AC86A}$,
246	interacted with SISGS3 in the yeast two-hybrid system (Fig 4c), indicating that the
247	C85A substitution specifically blocked the V1-V2 interaction but did not disrupt other
248	functions of the V2 protein, such as the ability to interact with SISGS3 that leads to a
249	block of host gene silencing-mediated host defense. To further confirm that C85,
250	rather than C84 and C86, is required for different V2 roles, we also tested the ability
251	of V2 ^{C84A/C86A} (Fig 4a) to interact with V1 protein. The Co-IP assay indicated that the

252	V2 ^{C84A/C86A} mutant interacted with the V1 protein (Fig 4d). Taken together, the
253	activities of the V2 protein in interacting with V1 protein and SISGS3 can be
254	separated, where the C85A mutation blocks V2 protein's interaction with V1 protein
255	but not with SISGS3.
256	
257	The V2 ^{C85A} Mutant Fails to Redistribute the V1 Protein
258	After confirming that V2 ^{C85A} accumulated well and interacted with SISGS3, we
259	next checked the localization of $V2^{C85A}$ by expressing YFP-tagged $V2^{C85A}$
260	(V2 ^{C85A} -YFP) in <i>N. benthamiana</i> . The fluorescence signal was observed in the
261	cytoplasm and perinuclear region (Fig 5a), similar to wild-type (wt) V2-YFP, in 56%
262	of cells expressing V2 ^{C85A} -YFP (Fig 5b). In 44% of cells, however, the fluorescence
263	signal was more spread than that of V2-YFP and was localized in an elongated region
264	that does not exactly surround the DAPI-stained nucleus (Fig 5a). The nature of the
265	localization remains to be determined. The C85A mutation did not affect the
266	expression and stability of V2-YFP as V2 ^{C85A} -YFP accumulated at a similar level as
267	V2-YFP (Fig 5c). These results indicated that C85 has some effects on the perinuclear
268	localization and the nuclear export function of the V2 protein.
269	To test the effect of $V2^{C85A}$ on the localization of V1, FLAG- $V2^{C85A}$ was
270	co-expressed with V1-YFP in N. benthamiana cells. A strong V1-YFP signal was
271	detected in the nucleus in the presence of FLAG- V2 ^{C85A} , similar to that when

272 V1-YFP was expressed alone (Fig 5d). Among 50 cells that were observed for the

273	localization of V1 protein, no obvious difference in the V1-YFP distribution pattern
274	was observed in the absence or presence of V2 ^{C85A} (Fig 5e), suggesting that V2 ^{C85A}
275	was not able to affect the nuclear localization of V1 protein. Because V1 protein
276	accumulated at similar levels in the absence or presence of V2 ^{C85A} (Fig 5f), we
277	propose that the disrupted V1-V2 interaction is responsible for the failed
278	redistribution of V1-YFP in the presence of V2 ^{C85A} .
279	
280	A C85 Substitution in V2 Protein Delays Viral Systemic Infection
281	To assess the role of the V1-V2 interaction in viral infection, we constructed an
282	infectious TYLCV clone with a substitution in the C85 of V2 coding sequence. As V2
283	ORF overlaps with V1 ORF in the TYLCV genome, mutations in V2 may affect V1
284	amino acid sequence. To ensure that changes in C85 has no effect on V1 protein in
285	TYLCV genome, the C85S mutation was introduced into a TYLCV clone to generate
286	TYLCV-C85S, based on the fact that V2-C85S mutant did not interact with V1
287	protein (S1a Fig), but interacted with SISGS3 (S1b Fig), and did not affect the
288	subcellular localization of V1-YFP (S1c Fig). TYLCV-C85S and TYLCV were used
289	to inoculate solanum lycopersicum and N. benthamiana plants.
290	Fifteen tomato plants were inoculated with either wt TYLCV or TYLCV-C85S.
291	Typical symptoms such as chlorosis on leaves were first observed at 16 days post
292	agro-infection (dpai) on tomato plants inoculated with TYLCV. No obvious
293	symptoms were observed in the plants inoculated with TYLCV-C85S at 16 dpai (Fig

294 6a). The vast majority of TYLCV-C85S-inoculated tomato plants remain	ants remained	omato plants remai	tomato	ited t	ulate	nocu	S-111	_83	V-	LC	ΙY	01	rity	najoi	vast i	Ine	6a).	294	4
--	---------------	--------------------	--------	--------	-------	------	-------	-----	----	----	----	----	------	-------	--------	-----	------	-----	---

- symptomless even at 32 dpai and only 1-2 plants among 15 eventually developed mild
- symptoms eventually, such as leaf yellowing (Fig 6b). Real-time PCR showed that
- 297 viral DNA accumulation was much lower in plants inoculated with TYLCV-C85S
- than in plants inoculated with wt TYLCV (Fig 6c). Almost no virus particles
- accumulated in the TYLCV-C85S-inoculated plants based on a Western blotting
- 300 assay using an anti-CP antiserum at 16 dpai (Fig 6d).
- 301 Similar results were also obtained in TYLCV-C85-inoculated *N. benthamiana*
- 302 plants. All wt TYLCV-inoculated plants showed typical symptoms at 22 dpai, such as
- 303 leaf yellowing and curling, but only one out of fifteen plants inoculated with
- 304 TYLCV-C85S showed mild symptoms (Fig 7a, 7b). Accumulated TYLCV genomic
- 305 DNA (Fig 7c) and virus particles (Fig 7d) in systemic leaves of
- 306 TYLCV-C85S-inoculated plants were much lower than those in wt
- 307 TYLCV-inoculated plants.
- 308 These results collectively showed that the mutation at C85 of V2 protein caused
- 309 significant low levels of virus accumulation in the systemic leaves and dramatic
- 310 decrease of the infection efficiency with delayed and mild symptoms.

311

312 **Discussion**

- 313 Because genome replication of geminiviruses takes place in the nucleus of the
- 314 infected host cells [5], it is crucial to transport the viral offspring DNAs from the

315	nucleus back to the cytoplasm for intracellular, cell-to-cell, and long-distance
316	movement. In bipartite geminiviruses, it is well-known that BV1 protein encoded by
317	the DNA-B component facilitates trafficking of the viral genome into and out of the
318	host nucleus [6-9, 35]. However, monopartite geminiviruses, which do not contain the
319	DNA-B component, does not encode BV1 protein. So, the viral DNA shuttling
320	between the nucleus and the cytoplasm is accomplished by protein or a protein
321	complex encoded by the DNA-A component. It has been reported that V1 protein of
322	monopartite geminiviruses mediates the import and export of viral DNA [13, 17, 28].
323	However, V1 protein might not be the only viral protein that is involved in the
324	nucleocytoplasmic shuttling of TYLCV. Previous reports based on triple
325	microinjection experiments revealed that the nuclear export of DNA was enhanced
326	20–30% in the presence of V2 (V2+V1+viral DNA), suggesting that V2 enhances
327	nuclear export of viral DNA [13]. But the mechanism by which V2 protein promotes
328	viral DNA export is unclear. We report here that V2 may facilitate viral DNA export
329	by interacting with V1 and promoting the nuclear export of V1 protein.
330	In this study, we found that V2 protein localized primarily in the perinuclear
331	region and the cytoplasm (Fig 1b). A very weak signal was also present in the nucleus
332	(Fig 1b, 1c), but upon treatment with the exportin- α inhibitor LMB, the amount of
333	nucleus-localized V2 protein increased significantly (Fig 3a), suggesting V2 protein
334	shuttles between the nucleus and the cytoplasm but is quickly exported out of the
335	nucleus via exportin- α . It is unclear, however, how V2 imported into the nucleus.

336	Our work indicates that V2 plays a critical role in the nuclear export of V1
337	protein as the nucleus-localized V1 diminished when V2 was present (Fig 1a).
338	Supporting this notion, we found that LMB treatment, which prevented V2 from
339	exporting out of the nucleus (Fig 3a), blocked V2-mediated nuclear export of V1 (Fig
340	3c). We also showed that the specific V1-V2 interaction is closely related to V1
341	trafficking. The V1-V2 interaction primarily occurred at the perinuclear region and
342	the cytoplasm (Fig 2b) but was strongly detected in the nucleus upon LMB treatment
343	(Fig 3d), suggesting that they may be in a complex or complexes throughout the viral
344	replication and movement in infected cells. In addition, it also suggested that LMB
345	only specifically blocked V2's transport out of the nucleus but had no effect on the
346	V1-V2 interaction. However, our data are not able to determine whether V2 mediates
347	the nuclear import of V1 protein. In addition, our results do not rule out the possibility
348	that other viral proteins, such as C4 protein, may also be involved in this process.
349	Cysteine at 85 of V2 was found to be crucial for the V1-V2 interaction because
350	substitutions of Cys85 with alanine (Fig 4b) or serine (S1a Fig) led to substantially
351	inhibited interaction with V1 and thus, its ability to facilitate V1's transport out of the
352	nucleus (Fig 5d, 5e for C85A and S1c Fig for C85S). Because V1 is known for
353	binding to and facilitating nucleocytoplasmic trafficking of viral DNA [13, 17, 28],
354	and because V2 facilitates the nuclear export of viral DNA along with V1 [13], we
355	propose that the V2-promoted nuclear export of viral DNA is via the V1-V2
356	interaction. Our hypothesis is consistent with our results that the TYLCV-C85S

357	mutant, which has the C85S mutation incorporated into an infectious TYLCV clone,
358	led to the delayed onset of symptoms with only mild symptoms only in 1-2 tomato or
359	N. benthamiana plants out of a total of 15 (Fig 6a, 6b, 7a, 7b). Real-time PCR and
360	Western blotting assay results confirmed significant reduction in viral accumulation in
361	TYLCV-C85S-inoculated plants compared with those plants inoculated by wt
362	TYLCV (Fig 6c, 6d, 7c, 7d). These results showed that the cysteine at 85 of V2 was
363	very important for viral systemic infection. The mutant on C85 caused V2 to lose its
364	ability to bind with V1 and lead to V2 being unable to help with V1 accumulation at
365	the perinuclear region nor participate in V1-mediated nuclear export of viral genomic
366	DNA, which eventually affected the viral systemic infection.
367	In monopartite geminiviruses, V2 is a multifunctional protein that is involved in
368	suppressing host PTGS and TGS, pathogenicity and systemic infection [5,30,31,32].
369	Substitution in cysteine 85 may affect functions other than its interaction with V1,
370	especially since both Cys84 and Cys86 are critical for interacting with SISGS3 and
371	the suppression of gene silencing [34]. We found that even though the C85A (Fig 4b)
372	and C85S (S1a Fig) mutants failed to interact with V1 protein and thus, V1's
373	trafficking out of the nucleus (Fig 5d, 5e, S1c), but both interacted with SISGS3 (Fig
374	4c, S1b), suggesting that C85A and C85S mutants maintain their activity as gene
375	silencing suppressors. These results also are consistent with the notion that the C85S
376	mutation delays viral systemic infection by affecting V1-mediated viral genomic
377	DNA transportation from the nucleus to the cytoplasm, not by disturbing gene

378	silencing-mediated host defense. However, we cannot totally rule out the possibility
379	that other V2-mediated viral infection step(s) besides viral DNA trafficking are
380	affected by the C85S mutation.
381	Our data also showed that the C84A/C86A double mutant interacted with V1
382	(Fig 4d) but not SISGS3 (Fig 4c), indicating that C84 and C86 are not related to V2's
383	ability to interact with V1. Our results therefore revealed that motifs responsible for
384	V1's nuclear export and gene silencing suppressor activity are independent from one
385	another.
386	Our results indicate that V2 binds to V1 protein and facilitate the nuclear export
387	of V1. During TYLCV infection, V1 mediates both nuclear import and export of viral
388	DNA. The equilibrium between nuclear targeting and nuclear egress is changed upon
389	completion of replication and the V1-V2 interaction can improve the nuclear export of
390	the V1-DNA complex. Thus, viral DNA will be preferentially transported out of the
391	nucleus for subsequent infection events. In the presence of the $V2^{C85S}$ mutant, the
392	nuclear export of V1 is slowed down or eliminated and therefore, viral DNA and
393	subsequent viral cell-to-cell and systemic movement is delayed. However, we cannot
394	totally rule out that the V1-V2 complex is also required for intracellular, cell-to-cell,
395	and/or long-distance movement besides nuclear export of V1 protein and
396	V1-mediated viral offspring DNAs.
397	Based on our findings here, we propose a working model for the role of V2 in
398	V1-mediated nuclear export of TYLCV genomic DNA (Fig 8). When offspring viral

399	genomic DNA are produced in the nucleus, they are bound by V1 [29]. A V2-V1-viral
400	DNA complex is subsequently formed via a specific interaction between V1 and V2
401	and, with the help of exportin- α , V2 facilitates the V1-viral DNA complexes to egress
402	from the nucleus to the perinucleus and the cytoplasm with an enhanced efficiency.
403	Eventually TYLCV then spreads to adjacent cells and upper leaves, which results in a
404	systemic infection. The infection efficiency and the accumulation of TYLCV in the
405	systemic leaves are dramatically decreased without a defective V2-V1 interaction.
406	In summary, our results revealed that one mechanism of V2 protein's
407	involvement in viral DNA transportation is to promote V1-mediated viral
408	transportation from the nucleus to the perinuclear region and the cytoplasm, which is
409	with a specific interaction with V1, form V2-V1-viral DNA complex, and via host
410	exportin- α . However, whether V2 promotes the ability of V1 to bind viral DNA and
411	whether the V1-V2 interaction works after nuclear transportation require further
412	research.
413	
414	Materials and Methods
415	Plant Materials and Growth Conditions

416 Transgenic *Nicotiana benthamiana* plants expressing a nuclear marker,

417 H2B-RFP (red fluorescent protein fused to the C terminus of histone 2B) [36], were

418 kindly provided by Dr. Xiaorong Tao (Nanjing Agricultural University, Nanjing,

419 China).

420	All agro-infiltration experiments were performed in wild-type (wt) or H2B-RFP
421	transgenic N. benthamiana. Plants were grown in a growth chamber
422	(ModelGXZ500D, Jiangnan Motor Factory, Ningbo, China) at 26°C (16 h, light) and
423	22°C (8 h, dark) for 4-6 weeks before being infiltrated with the agrobacterium. After
424	infiltration, the plants were kept under the same growth conditions.
425	Plasmid Construction
426	The coding sequences of TYLCV V2 and V1 genes were amplified from the
427	cDNA of a TYLCV-infected tomato plant from Jiangsu Province, China (GenBank
428	accession number GU111505) [37], using corresponding primers (S1 Table).
429	Site-specific mutants of V2 ^{G70A} , V2 ^{S71A} , V2 ^{K73A} , V2 ^{C85A} , V2 ^{C84AC86A} , V2 ^{C85S} , V2 ^{T96A}
430	were synthesized (Invitrogen, China) and confirmed by sequencing (Fig 4a).
431	To investigate the subcellular localization, the TYLCV V2 (BglII), V1 genes
432	(BamHI) and V2 ^{C85A} , V2 ^{C84AC86A} , V2 ^{C85S} were amplified using specific primers
433	(Supplementary Table S1). Yellow fluorescent protein (YFP) tag was inserted
434	between the CaMV 35S promoter and the 35S terminator (35St) in the pCambia1300
435	binary vector to construct the p1300-YFP vector as previously described [38]. Then,
436	amplified products were individually inserted either into the BamHI or BglII
437	(compatible with <i>Bam</i> HI) site of the p1300-YFP vector to fuse in frame with YFP at
438	the N-terminus or C-terminus to generate V2-YFP, V1-YFP, YFP-V2 and
439	V2 ^{C85A} -YFP, V2 ^{C84AC86A} -YFP, V2 ^{C85S} -YFP.

440	To make BiFC vectors, full-length coding sequences of V2 and V1 genes were
441	amplified using the primers listed in Supplemental Table S1, then V1 was cloned into
442	the BamHI site as a fusion with the N-terminal fragment of YFP and V2 was cloned
443	into the BamHI site as a fusion with the C-terminal fragment of YFP, resulting in
444	nYFP-V1 and cYFP-V2.
445	FLAG tagged V2 and V1 were amplified by PCR using specific primers (S1
446	Table) and inserted into the BamHI site between the 35S promoter and the 35St in the
447	pCambia1300 binary vector to generate FLAG-V2 and FLAG-V1 for the further
448	Co-IP experiments.
449	For the yeast two-hybrid assay, V2, V2 ^{C85A} , V2 ^{C84AC86A} , V2 ^{C85S} were amplified
450	and inserted into the NdeI/EcoRI-digested pGADT7 vector and SISGS3 was cloned
451	into the NdeI/BamHI-digested pGBDT7 vector.
452	Agro-infiltration Assays in <i>N. benthamiana</i>
453	Target vectors were transformed into A. tumefaciens strain GV3101 by
454	electroporation. Agrobacterial cultures were harvested when the OD600 was
455	approximately 0.8-1.0, collected by centrifugation, resuspended in the induction
456	buffer (10 mM MgSO4, 100 mM 2-N-morpholino ethanesulfonic acid [pH 5.7], 2
457	mM acetosyringone), and incubated for 2 h at room temperature. The suspensions
458	were then adjusted to OD600=0.5 and infiltrated into 4- to 6-week-old wt N.
459	benthamiana or H2B-RFP transgenic N. benthamiana leaves for the further
460	experiments.

461 Subcellular Localization of Proteins

462	P1300-YFP, YFP-V2, V2-YFP, V1-YFP, V2 ^{C84AC86A} and V2 ^{C85A} -YFP were
463	individually introduced into A. tumefaciens strain GV3101 through electroporation.
464	Leaves of 4-week-old N. benthamiana plants were infiltrated with A. tumefaciens
465	harbouring the designated constructs. At 40 hours post infiltration (hpi), plants leaves
466	were excised and YFP fluorescence was examined in epidermal cells using confocal
467	microscopy (Zeiss LSM 880). The microscope was configured with a 458-515 nm
468	dichroic mirror for dual excitation and a 488-nm beam splitter to help separate YFP
469	fluorescence.
470	Bimolecular Fluorescence Complementation (BiFC) Assay
471	BiFC experiments were performed as previously described [39] with minor
472	modifications. nYFP-V1 and cYFP-V2 were introduced individually into A.
473	tumefaciens strain GV3101 by electroporation. After overnight growth and activation,
474	agrobacterium cultures were combined and infiltrated into leaves of N. benthamiana
475	as above. After agroinfiltration, N. benthamiana plants were grown in a growth
476	chamber with a 16 h light/8 h dark cycle. YFP fluorescence was observed and
477	photographed by using confocal microscopy (Zeiss LSM 710) at 48 hpi. YFP was
478	observed under a mercury lamp light using a 488-nm excitation filter. Photographic
479	images were prepared using ZEN 2011SP1.
480	Co-Immunoprecipitation

481	The Co-IP as	say was p	performed as	previously	y described	[38]. 40 h after

- 482 infiltration, *N. benthamiana* leaves were harvested and ground in liquid nitrogen.
- 483 Proteins were extracted in IP buffer (40 mM Tris-HCl at pH 7.5, 100 mM NaCl, 5
- 484 mM MgCl2, 2 mM EDTA, 2×EDTA-free proteinase inhibitor, 1 mM PMSF, 4 mM
- 485 DTT, 1% glycerol, and 0.5% Triton-X100). After centrifugation, the supernatant was
- 486 mixed with FLAG-conjugated beads (Sigma, USA). After 1 h incubation at 4°C, the
- 487 beads were washed six times with IP buffer, resuspended in 2×SDS gel loading buffer,
- 488 and boiled for 10 min. The samples were loaded onto a 12% (vol/vol) SDS/PAGE gel
- 489 and target proteins were detected using a polyclonal anti-GFP antibody (GenScript,
- 490 USA) or a monoclonal anti-FLAG (Sigma, USA) antibody.
- 491 Yeast Two-Hybrid Assay

492 The yeast two-hybrid system was used to examine interactions between V2,

- 493 $V2^{C85A}$, $V2^{C84AC86A}$ and SISGS3. V2, $V2^{C85A}$, and $V2^{C84AC86A}$ were cloned into the
- 494 activation domain (AD)-containing vector and SISGS3 was cloned into the vector
- 495 harboring the DNA binding domain (BD). Both constructs were transformed into
- 496 Saccharomyces cerevisiae strain AH109. The plasmid pairs BD-53 and AD-recT
- 497 served as a positive controls, while the plasmid pairs BD-Lam and AD-recT were
- 498 used as a negative controls. Transformants were grown at 30°C for 72 h on
- 499 SD/-His/-Leu/-Trp/ synthetic medium to test for protein-protein interaction.
- 500 Nuclear-Cytoplasmic Fractionation Assay

501	Nuclear-cytoplasmic fractionation assays were performed as described
502	previously [40] with minor modifications. Infiltrated leaves were harvested and mixed
503	with 2 mL/g of lysis buffer (20 mM Tris-HCl, pH 7.5, 20 mM KCl, 2 mM EDTA, 2.5
504	mM MgCl2, 25% glycerol, 250 mM Sucrose, 5 mM DTT and 10 mM protease
505	inhibitor). The homogenate was filtered through a double layer of Miracloth. The
506	supernatant, consisting of the cytoplasmic fraction, was centrifuged at 10,000 rpm for
507	10 min at 4°C and collected. The pellet was resuspended with 500 μL of NRB2 (20
508	mM Tris-HCl, pH 7.5, 0.25 M Sucrose, 10 mM MgCl2, 0.5% Triton X-100, 5 mM
509	b-mercaptoethanol and 10 mM protease inhibitor) and overlaid on top of 500 μL
510	NRB3 (20 mM Tris-HCl, pH 7.5, 1.7 M Sucrose, 10 mM MgCl2, 0.5% Triton X-100,
511	5 mM b-mercaptoethanol and 10 mM protease inhibitor). These were centrifuged at
512	12,000 rpm for 40 min at 4°C. The final nuclear pellet was resuspended in 400 μ L
513	lysis buffer. As quality controls for the fractionation assays, PEPC protein and
514	H2B-RFP were used as a cytoplasmic and a nuclear marker, respectively.
515	Leptomycin B Treatment Assays
516	Leptomycin B (LMB) Treatment Assays were performed as previously described
517	[19] with minor modifications. LMB (Fisher Scientific, USA) was dissolved in
518	ethanol to prepare 10 mM stock solutions. For in vivo treatment of N. benthamiana
519	leaves, stock solutions were diluted in water to prepare solutions of 10 nM LMB.
520	Agroinfiltrated N. benthamiana leaves expressing the protein of interest at 40 hpi

- 220 Agronninduced IV. Commandance reaves expressing the protein of interest at 10 hpr
- 521 were infiltrated with 10 nM LMB. 2 h after LMB treatment, the leaves were cut and

mounted on a glass slide for confocal imaging. When needed, DMSO was further

523 infiltrated into LMB-treated leaves and tissues were harvested at the specified time 524 points, namely 1, 1.5, and 2 h. 525 TYLCV constructs for Agrobacterium-mediated inoculation 526 For the construction of infectious clones of TYLCV containing V2^{C85S}, a full 527 length TYLCV mutant, TYLCV-C85S (the cysteine residue on V2 at amino acid 85 528 was changed to serine), was synthesized (Invitrogen, China). Then the full DNA-A of 529 TYLCV-C85S was amplified using the primers listed in S1 Table and inserted into 530 the pGEM-T Easy (Promega, USA) vector to produce pGEM-1A-C85S. After 531 sequence confirmation, a 2183 nucleotide (nt) fragment was excised from pGEM-1A 532 with BamHI and SacI, then subcloned into the BamHI-SacI sites of the binary vector 533 pBinPLUS to produce pBinPLUS-0.8A. The full-length of TYLCV-C85S was 534 digested from pGEMT-1A with BamHI and inserted into pBinPLUS-0.8A at its 535 unique BamHI site to get pBinPLUS-1.8A, the infectious clone of TYLCV-C85S. The 536 wt TYLCV infectious clone was constructed as previously described [38]. 537 Agrobacterium cultures harboring TYLCV constructs were injected into the stem 538 of S. lycopersicum and N. benthamiana with a syringe. Inoculated plants were grown in an insect-free cabinet with supplementary lighting corresponding to a 16-h day 539 540 length.

541 RNA extraction and qRT-PCR analysis

542	Total RNA was extracted from mock (Agrobacterium-carrying empty vector)-,			
543	wt TYLCV- or TYLCV-C85S-infiltrated S. lycopersicum or N. benthamiana leaves at			
544	different time periods using the Trizol Reagents (Life technologies, USA) and treated			
545	with DNase I following the manufacturer's instructions (PrimeScript RT reagent Kit			
546	with gDNA Erase, Takara, Japan). cDNA synthesized from reverse transcription of			
547	RNA samples was used to determine the mRNA expression levels of target genes as			
548	well as for quantifying TYLCV accumulation levels at the date indicated. SlActin or			
549	NbActin was used as an internal control for tomato or N. benthamiana, respectively.			
550				
551	Acknowledgements			
552	We thank Dr. Sue Tolin (Virginia Tech, USA) and Dr. Janet Webster (Virginia			
553	Tech, USA) for critical reading of the manuscript. We are grateful to Xiaorong Tao			
554	(Nanjing Agricultural University, China) for kindly providing the H2B-RFP			
555	transgenic N. benthamiana.			
556				
557	References			
558	1. Gafni Y. Tomato yellow leaf curl virus, the intracellular dynamics of a plant DNA virus.			
559	Mol. Plant Pathol. 2003; 4: 9-15.			
560	2. Moriones E, Navas-Castillo J. Tomato yellow leaf curl virus, an emerging virus complex			
561	causing epidemics worldwide. Virus Res. 2000; 71: 123-134.			
562	3. Nakhla MK, Maxwell DP. Epidemiology and management of tomato yellow leaf curl			

563		disease. Plant Virus Dis. Control 1997; 43: 565-583.
564	4.	Glick E, Levy Y, Gafni Y. The viral etiology of Tomato yellow leaf curl disease-a review.
565		Plant Prot. Sci. 2009; 45: 81-97.
566	5.	Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S. Geminiviruses: masters at
567		redirecting and reprogramming plant processes. Nat. Rev. Microbiol. 2013; 11: 777-788.
568	6.	Brough CL, Hayes RJ, Morgan AJ, Coutts RHA, Buck KW. Effects of mutagenesis in
569		vitro on the ability of cloned tomato golden mosaic virus DNA to infect Nicotiana
570		benthamiana plants. J. Gen. Virol. 1988; 69: 503-514.
571	7.	Etessami P, Callis R, Ellwood S, Stanley J. Delimitation of essential genes of cassava
572		latent virus DNA 2. Nucleic Acids Res. 1988; 16: 4811-4829.
573	8.	Jeffrey JL, Pooma W, Petty ITD. Genetic requirements for local and systemic movement
574		of tomato golden mosaic virus in infected plants. Virology 1996; 223: 208-218.
575	9.	Sudarshana MR, Wang HL, Lucas WJ, Gilbertson RL. Dynamics of bean dwarf mosaic
576		geminivirus cell-to-cell and long-distance movement in Phaseolus vulgaris revealed,
577		using the green fluorescent protein. Mol. Plant Microbe Interact. 1998; 11: 277-291.
578	10	Padidam M, Beachy RN, Fauquet CM. Tomato leaf curl geminivirus from India has a
579		bipartite genome and coat protein is not essential for infectivity. J. Gen. Virol. 1995; 76:
580		25-35.
581	11.	Lazarowitz SG, Beachy RN. Viral movement proteins as probes for intracellular and
582		intercellular trafficking in plants. Plant Cell 1999; 11: 535-548.
583	12	Liu H, Boulton MI, Oparka KJ, Davies JW. Interaction of the movement and coat proteins

584		of Maize streak virus: implications for the transport of viral DNA. J. general
585		<i>virology</i> 2001; 82(1): 35-44.
586	13.	Rojas MR, Jiang H, Salati R, Xoconostle-Cazares B, Sudarshana MR, Lucas WJ, et al.
587		Functional analysis of proteins involved in movement of the monopartite begomovirus,
588		Tomato yellow leaf curl virus. Virology 2001; 291(1): 110-125.
589	14.	Gafni Y, Epel BL. The role of host and viral proteins in intra- and inter-cellular trafficking
590		of geminiviruses. Mol. Plant Pathol. 2002; 60(5): 231-241.
591	15.	Boulton MI, Pallaghy CK, Chatani M, MacFarlane S, Davies JW. Replication of Maize
592		streak virus mutants in maize protoplasts: evidence for a movement protein. Virology
593		1993; 192(1): 85-93.
594	16.	Boulton MI, Steinkellner J, Donson J, Markham PG, King DI, Davies JW. Mutational
595		analysis of virion-sense genes of maize streak virus. J. Gen. Virol. 1989; 70: 2309-2323.
596	17.	Kunik T, Mizrachy L, Citovsky V, Gafni Y. Characterization of a tomato karyopherin that
597		interacts with the Tomato yellow leaf curl virus (TYLCV) capsid protein. J. Exp. Bot.
598		1999; 50: 731-732.
599	18.	Yaakov N, Levy Y, Belausov E, Gaba V, Lapidot M, Gafni Y. Effect of a single amino
600		acid substitution in the NLS domain of Tomato yellow leaf curl virus-Israel (TYLCV-IL)
601		capsid protein (CP) on its activity and on the virus life cycle. Virus Res. 2011; 158(1-2):
602		8-11.
603	19.	Mei Y, Wang Y, Hu T, Yang X, Lozano-Duran R, Sunter G, et al. Nucleocytoplasmic
604		shuttling of geminivirus C4 protein Mediated by phosphorylation and myristoylation is

605		critical for viral pathogenicity. Mol. plant 2018; 11(12): 1466-1481.
606	20.	Rojas MR, Hagen C, Lucas WJ, Gilbertson RL. Exploiting chinks in the plant's armor:
607		evolution and emergence of Geminiviruses. Annu. Rev. Phytopathol. 2005; 43(1):
608		361-394.
609	21.	Navot N, Pichersky E, Zeidan M, Zamir D, Czosnek H. Tomato yellow leaf curl virus: A
610		whitefly-transmitted geminivirus with a single genomic component. Virology 1991; 185:
611		151-161.
612	22.	Diazpendon JA, Canizares MC, Moriones E, Bejarano ER, Czosnek H, Navas-castillo J.
613		Tomato yellow leaf curl viruses: ménage a trois between the virus complex, the plant and
614		the whitefly vector. Mol. Plant Pathol. 2010; 11(4): 441-450.
615	23.	Scholthof KBG, Scott A, Henryk C, Palukaitis P, Jacquot E, Hohn T, et al. Top 10 plant
616		viruses in molecular plant pathology. Mol. Plant Pathol. 2011; 12(9): 938-944.
617	24.	Zrachya A, Glick E, Levy Y, Arazi T, Citovsky V, Gafni Y. Suppressor of RNA silencing
618		encoded by Tomato yellow leaf curl virus-Israel. Virology 2007; 358(1): 159-165.
619	25.	Wang B, Li F, Huang C, Yang X, Qian Y, Xie Y, et al. V2 of tomato yellow leaf curl virus
620		can suppress methylation-mediated transcriptional gene silencing in plants. J. Gen. Virol.
621		2014; 95(1): 225-230.
622	26.	Barziv A, Levy Y, Hak H, Mett A, Belausov E, Citovsky V, et al. The (TYLCV) V2
623		protein interacts with the host papain-like cysteine protease CYP1. Plant Signal. Behav.
624		2012; 7(8): 983-989.
625	27.	Wartig L, Kheyr PA, Noris E, Kouchkovsky FD, Jouanneau F, Gronenborn B, et al.

626		Genetic analysis of the monopartite tomato yellow leaf curl geminivirus: roles of V1, V2,
627		and C2 ORFs in viral pathogenesis. Virology 1997; 228(2): 132-140.
628	28.	Kunik T, Palanichelvam K, Czosnek H, Citovsky V, Gafni Y. Nuclear import of the capsid
629		protein of Tomato yellow leaf curl virus (TYLCV) in plant cells. <i>Plant J.</i> 1998;13:
630		393-399.
631	29.	Palanichelvam K, Kunik T, Citovsky V, Gafni Y. The capsid protein of tomato yellow leaf
632		curl virus binds cooperatively to single-stranded DNA. J. Gen. Virol. 1998; 79 (11):
633		2829-2833.
634	30.	Fondong VN. Geminivirus protein structure and function. Mol. Plant Pathol. 2013; 14:
635		635-649.
636	31.	Jeske H. Geminiviruses. Curr. Top. Microbiol. Immunol. 2009; 331: 185-226.
637	32.	Sahu PP, Sharma N, Puranik S, Muthamilarasan M, Prasad M. Involvement of host
638		regulatory pathways during geminivirus infection: a novel platform for generating durable
639		resistance. Funct. Integr. Genomics 2014; 14: 47-58.
640	33.	Mathew C, Ghildyal R. CRM1 inhibitors for antiviral therapy. Frontiers in
641		microbiology 2017; 8: 1171.
642	34.	Glick E, Levy Y, Gafni Y. The viral etiology of Tomato yellow leaf curl disease-a review.
643		Plant Prot. Sci. 2009; 45: 81-97.
644	35.	Ye J, Yang J, Sun Y, Zhao P, Gao S, Jung C, et al. Geminivirus activates ASYMMETRIC
645		LEAVES 2 to accelerate cytoplasmic DCP2-mediated mRNA turnover and weakens RNA
646		silencing in Arabidopsis. PLoS Pathog. 2015; 11(10): e1005196.

647	36. Martin K, Kopperud K, Chakrabarty R, Banerjee R, Brooks R, Goodin MM. Transient
648	expression in Nicotiana benthamiana fluorescent marker lines provides enhanced
649	definition of protein localization, movement and interactions in planta. Plant J. 2009; 59:
650	150–162.
651	37. Ji Y, Xiong R, Cheng Z, Zhou T, Zhao T, Yu W, et al. Molecular diagnosis of Tomato
652	yellow leaf curl disease in Jiangsu province. Acta Hortic. 2008; 35(12): 1815-1818.
653	38. Zhao W, Ji Y, Wu S, Ma X, Li S, Sun F, et al. Single amino acid in V2 encoded by
654	TYLCV is responsible for its self-interaction, aggregates and pathogenicity. Sci. Rep.
655	2018, 8(1).
656	39. Shen Q, Liu Z, Song F, Xie Q, Hanley-Bowdoin L, Zhou X. Tomato SlSnRK1 protein
657	interacts with and phosphorylates β C1, a pathogenesis protein encoded by a geminivirus
658	β-satellite. <i>Plant Physiol</i> . 2012; 157(7): 1394-406.
659	40. Wang W, Ye R, Xin Y, Fang X, Li C, Shi H, et al. An importin ß protein negatively
660	regulates microRNA activity in Arabidopsis. Plant Cell 2011; 23(10): 3565-3576.
661	
662	Additional Information
663	
664	Funding
665	This study was financially supported by grants from the National Key R&D
666	Program of China (No. 2018YFD0201208), Jiangsu Agriculture Science and
667	Technology Innovation Fund [No. CX(18)2005], China Agriculture Research System

668	(No. CARS-24-C-01), National Natural Science Foundation of China (No. 31572074,
669	31770168) and Jiangsu Academy of Agricultural Sciences Fund (No. 6111614).
670	
671	Author contributions
672	Y.Z., Y.J., X.W. and W.Z. designed the project. W.Z., S.W. and E.B. conducted
673	experiments. All authors analyzed the data and reviewed the manuscript. W.Z., Y.J.
674	and X.W. wrote the paper.
675	
676	Competing financial interests
677	The authors declare no competing financial interests.
678	
679	Supporting Information

680

681 S1 Table Primers used in this study

	Designation	Sequence(5' to 3')	Assay
1	V1-bF	CGGGATCCATGTCGAAGCGACCAGGCG	V1-YFP,
		А	nYFP-V1
2	V1-bR	CGGGATCCATTTGATATTGAATCATAG	V1-YFP,
		AAATAG	nYFP-V1,
			FLAG-V1
3	FLAG-V1-F	CGGGATCCATGGATTACAAGGATGATG	FLAG-V1

		ATGATAAGTCGAAGCGACCAGGCGA	
4	V2-bgF	GAAGATCTATGTGGGATCCACTTCTAA	V2-YFP,
		AT	cYFP-V2,
			V2 ^{C85A} -YFP
5	V2-bgR	GAAGATCTGGGCTTCGATACATTCTGTA	V2-YFP,
		Т	cYFP-V2,
			V2 ^{C85A} -YFP,
			FLAG-V2,
			FLAG-V2 ^{C85A}
6	FLAG-V2-F	GAAGATCTATGGATTACAAGGATGATG	FLAG-V2,
		ATGATAAGTGGGATCCACTTCTAAATG	FLAG-V2 ^{C85A}
7	TY-V2-F	CGCCATATGATGTGGGGATCCACTTCTAA	AD-V2,
		АТ	AD-V2 ^{C85A} ,
			AD-V2 ^{C85S} ,
			AD-V2 ^{C84AC86A}
8	TY-V2-R	CGGAATTCTCAGGGCTTCGATACATTCT	AD-V2,
			AD-V2 ^{C85A} ,
			AD-V2 ^{C85S} ,
			AD-V2 ^{C84AC86A}
9	TY-1A-KF	GGGGTACCACTTCTAAATGAATTTCCTG	TYLCV-C85S

		AATCTG	
10	TY-1A-BR	CGGGATCCCACATAGTGCAAGACAAAC	TYLCV-C85S
		Т	
11	SISGS3-F	CGCCATATGAGTTTCAGCAAATGGGGT	BD-SISGS3
		GGG	
12	SISGS3-R	CGGGATCTCACATGGTGCCACTGCTATT	BD-SISGS3
		GAC	

682

S1 Fig (a) Co-IP assay showing that $V2^{C85S}$ does not interact with V1 protein. The 683 684 Co-IP assay was performed as in Fig 2a. (b) Analysis of the interaction between 685 SISGS3 and wt V2 or the V2^{C85S} mutant in the yeast two-hybrid assay. The Y2H 686 assay was performed as in Fig 4c. (c) Subcellular localization of V1 protein that was co-expressed with FLAG-V2^{C85S} in *N. benthamiana* cells. DAPI stains DNA in the 687 688 nucleus. Bars: 20 µm. Both V1-YFP and FLAG-V2^{C85S} are expressed well as shown 689 by Western blot analysis. 690 **Figures** 691 692 Fig 1 The effect of V2 protein on the nuclear distribution of V1 protein. (a) The 693 localization of V1 protein in the absence or presence of V2 protein in N. benthamiana 694 cells. V1-YFP was expressed in the absence or presence of FLAG-V2 and was

detected either by confocal microscopy (left panel) or by Western blotting using an

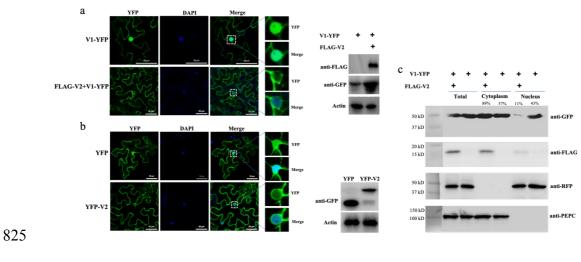
696	anti-GFP polyclonal antibody (right panel). DAPI stains DNA in the nucleus. Actin
697	serves as a control for equal loading of total lysates. Bars: 50 μ m. (b) The localization
698	of V2 in <i>N. benthamiana</i> cells. The expressed YFP or YFP-V2 in epidermal cells of <i>N</i> .
699	benthamiana leaves was detected either by confocal microscopy (left panel) or by
700	Western blotting using an anti-GFP polyclonal antibody (right panel). DAPI stains
701	DNA in the nucleus. Bars: 50 μ m. (c) Nuclear-cytoplasmic fractionation assay of the
702	distribution of V1 protein in the absence or presence of FLAG-V2 in H2B-RFP
703	transgenic N. benthamiana plants. Nuclei were purified from plant tissues expressing
704	V1-YFP in the absence or presence of FLAG-V2 using percoll density gradient
705	centrifugation. Western blot analysis was conducted with antibodies specific to the
706	indicated proteins using an anti-GFP polyclonal antibody or an anti-FLAG
707	monoclonal antibody. PEPC was used as a marker for the cytoplasmic fraction and
708	H2B-RFP was used as a marker for the nuclear fraction. Protein signal intensity was
709	measured by using Adobe Photoshop CS6, with the cytoplasm plus the nucleus levels
710	totaling as 100%.
711	
712	Fig 2 Identification of the interaction between V2 and V1 proteins. (a)
713	Co-immunoprecipitation (Co-IP) analysis of the interaction between FLAG-V2 and
714	V1-YFP. N. benthamiana leaves were co-infiltrated with A. tumefaciens cells
715	harbouring expression vectors to express FLAG-V2 and V1-YFP (Lane 1), FLAG-V2

and YFP (Lane 2), or V1-YFP alone (Lane 3). Cell lysates were incubated with

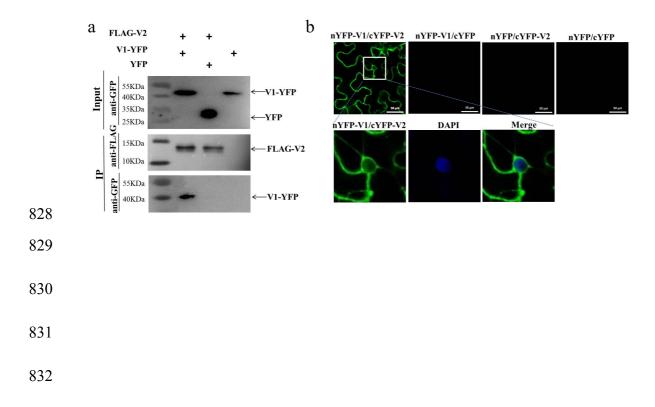
717	FLAG-trap beads (Sigma, USA). Samples before (Input) and after (IP)
718	immunoprecipitation were analyzed by immunoblotting using anti-GFP or -FLAG
719	antibody. (b) BiFC assays between V1 and V2 proteins in the leaves of N .
720	benthamiana. Confocal imaging was performed at 48 hpi. V1 and V2 were fused to
721	the N (nYFP) and C-terminal (cYFP) fragments of YFP, respectively. The V1-V2
722	interaction will lead to a reconstituted fluorescence signal. DAPI stains DNA in the
723	nucleus. Bars: 50 µm.
724	
725	Fig 3 The V2-mediated nuclear export of V1 protein is dependent on exportin- α . (a)
726	Subcellular distribution of V2-YFP without or with the LMB treatment in H2B-RFP
727	transgenic N. benthamiana plants. Leaf tissues were first agroinfiltrated with V2-YFP
728	for 40 hours and followed by 10 nM LMB for 2 hours. H2B-RFP signal represents the
729	nucleus. Bars: 50 μ m. (b) Nuclear-cytoplasmic fractionation analysis of the
730	distribution of V2 with or without LMB treatment in H2B-RFP transgenic N.
731	benthamiana cells. Western blot analysis was conducted with antibodies specific to
732	the indicated proteins. PEPC was used as a marker for the cytoplasmic fraction and
733	H2B-RFP as a marker for the nuclear fraction. Protein signal intensity was measured
734	by using Adobe Photoshop CS6, the sum of cytoplasm plus the nucleus as 100%. (c)
735	Subcellular distribution of V1-YFP co-expressed with FLAG-V2 upon the treatment
736	of LMB and DMSO in H2B-RFP transgenic N. benthamiana plants. Leaf tissues
737	expressing V2-YFP and FLAG-V2 were first infiltrated with 10 nM LMB for 2 hours

738	followed by infiltration of 0.5% DMSO to degrade LMB. YFP signal was observed at
739	specific time points as indicated. Arrows indicate the V1-YFP signal in or around the
740	nucleus at different time points after the treatment with LMB and DMSO. H2B-RFP
741	signal represents the nucleus. Bars: 50 μ m. (d) Effects of the LMB treatment on the
742	V1-V2 interaction as shown by BiFC in epidermal cells of H2B-RFP transgenic <i>N</i> .
743	benthamiana plants. Plant tissues co-expressing nYFP-V1 with cYFP-V2 were treated
744	with LMB for 2 h to inactivate exportin- α and then infiltrated with 0.5% DMSO to
745	degrade LMB. Confocal micrographs were taken at different time points after DMSO
746	treatment, as indicated. Arrow indicates localizations of the V1-V2 complex export
747	from the nucleus. Nuclei of <i>N. benthamiana</i> leaf epidermal cells are indicated by the
748	expression of the H2B-RFP transgene (red). Bars: 50 µm.
749	
750	Fig 4 Identification of the critical sites in V2 protein that are responsible for the
751	V1-V2 interaction. (a) Schematic illustration of the V2 protein. Nucleic acid and
752	amino acids sequences of V2 mutants, V2 ^{G70A} , V2 ^{S71A} , V2 ^{K73A} , V2 ^{C85A} , V2 ^{C84AC86A} ,
753	and $V2^{T96A}$ are shown. (b) Co-IP assay to demonstrate the interaction between V1 and
754	wt V2 or V2 ^{C85A} . The Co-IP assay was performed as in Fig 2a. (c) Yeast-two hybrid
755	(Y2H) detecting possible interactions between SISGS3 and V2 ^{$C85A$} or V2 ^{$C84AC86A$} .
756	
	$V2^{C85A}$ and $V2^{C84AC86A}$ were fused with a GAL4 activation domain (AD-V2 ^{C85A} and
757	V2 ^{C85A} and V2 ^{C84AC86A} were fused with a GAL4 activation domain (AD-V2 ^{C85A} and AD-V2 ^{C84AC86A}), and SISGS3 was fused to a GAL4-binding domain (BD-SISGS3),

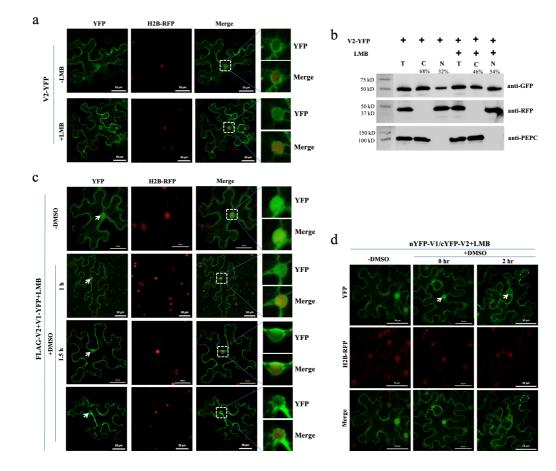
respectively. AH109 cells co-transformed with the indicated plasmids were subjected


759	to 10-fold serial dilutions and plated on synthetic defined medium SD/-His/-Leu/-Trp
760	medium to screen for positive interactions at 3 days after transformation. Yeast cells
761	co-transformed with AD-T+BD-53 serves as a positive control; yeast cells
762	co-transformed with AD-T+BD-Lam as a negative controls. (d) Co-IP assay to show
763	the interaction between V1 and V2 or V2 ^{C84AC86A} . The Co-IP assay was performed as
764	in Fig 2a.
765	
766	Fig 5 Characterization of the V2 C85A mutant. (a) Subcellular localization of V2 and
767	$V2^{C85A}$. DAPI stains DNA in the nucleus. Bars: 50 μ m. (b) Quantification of
768	perinuclear distribution of V2 and V2 ^{C85A} . The number of cells with perinuclear
769	distribution in different samples as in a. Experiments were repeated three times and 30
770	cells were observed in each trepeat. Values represent percentages of cells with a
771	perinuclear distribution of YFP signal \pm SD (standard deviation). Data were analyzed
772	using Student's t-test and asterisks denote significant differences between V2-YFP-
773	and V2 ^{C85A} -YFP-infiltrated leaves (*P < 0.05). (c) Western blot analysis showing
774	accumulated V2 and V2 ^{C85A} using anti-GFP polyclonal antibody. Actin serves as a
775	control for equal loading. (d) The localization of V1-YFP expressed alone or
776	co-expressed with V2 ^{C85A} in <i>N. benthamiana</i> leaves. Bars: 20 μ m. (e) Comparison of
777	the nucleus-localized V1-YFP in the absence or presence of $V2^{C85A}$. At least 150 cells
778	were analyzed from three independent repeats (at least 50 cells from each experiment.
779	Values represent mean \pm SD relative to plants infiltrated with V1-YFP in the absence

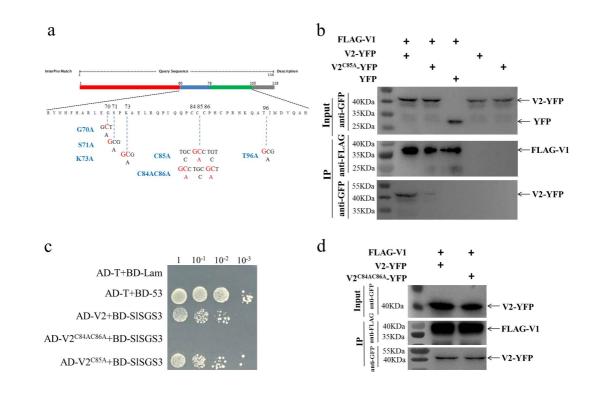
780	or presence of V2 ^{C85A} . The data were analyzed using Student's t-test and no
781	significant difference was found for V1-YFP distribution between V1-YFP and
782	V1-YFP+ FLAG- V2 ^{C85A} . (f) The accumulated V1-YFP and FLAG- V2 ^{C85A} as shown
783	by Western blot analysis.
784	
785	Fig 6 Effects of the C85S mutation on viral infection and viral accumulation in
786	TYLCV-inoculated tomato plants. (a) Symptoms in plants that were agro-inoculated
787	with wt TYLCV or TYLCV-C85S at 16 dpai. CK represents mock-inoculated plants.
788	Arrows point to the yellowing and curly leaves. (b) The infection time course of wt
789	TYLCV or TYLCV-C85S infection. Values represent percentages of systemically
790	infected plants at different DPAI and are given as mean ± SD of triplicate experiments.
791	In each experiment, 15 plants were inoculated and three independent repeats were
792	performed to confirm the results. (c) Viral DNA levels in plants as measured by
793	RT-PCR. Plants were inoculated with a wt TYLCV infectious clone or the
794	TYLCV-C85S, or mock-inoculated (CK). Accumulated levels of V1 (CP) were tested
795	at 3, 13, 23, and 33 dpai. Tomato leaves were agroinfiltrated with CK, TYLCV, or
796	TYLCV-C85S. Total RNAs were extracted from newly emerged leaves. Values
797	represent the mean relative to the CK-treated plants (n=3 biological replicates) and
798	were normalized with SlActin as an internal reference. (d) Western blot analyses of
799	accumulated V1 (CP), which represents viral particles, in CK, TYLCV and
800	TYLCV-C85S inoculated plants at 16 dpai.


802	Fig 7 Effects of the C85S mutation on viral infection and viral accumulation in
803	TYLCV-inoculated N. benthamiana. (a) Symptoms in plants that were
804	agro-inoculated with wt TYLCV or TYLCV-C85S at 16 dpai. CK represents
805	mock-inoculated plants. Arrows point to the curly leaves. (b) The infection time
806	course of wt TYLCV or TYLCV-C85S infection. Values represent percentages of
807	systemically infected plants at different DPAI and are given as the mean \pm SD of
808	triplicate experiments. In each experiment, 15 plants were inoculated and three
809	independent experiments were performed to confirm the results. (c) Viral DNA levels
810	in plants inoculated with wt TYLCV infectious clone or TYLCV-C85S. Accumulated
811	levels of V1 (CP) were tested at 3, 13, 23, and 33 dpai. N. benthamiana leaves were
812	agroinfiltrated with CK, TYLCV, or TYLCV-C85S. Total RNAs was extracted from
813	newly emerged leaves. Values represent the mean relative to the CK-treated plants
814	(n=3 biological replicates) and were normalized with <i>NbActin</i> as an internal reference.
815	(d) Western blot analyses of accumulated V1 (CP), which represents viral particles, in
816	CK, TYLCV and TYLCV-C85S inoculated plants at 16 dpai.
817	
818	Fig 8 A working model proposed for V2-mediated nucleocytoplasmic trafficking of

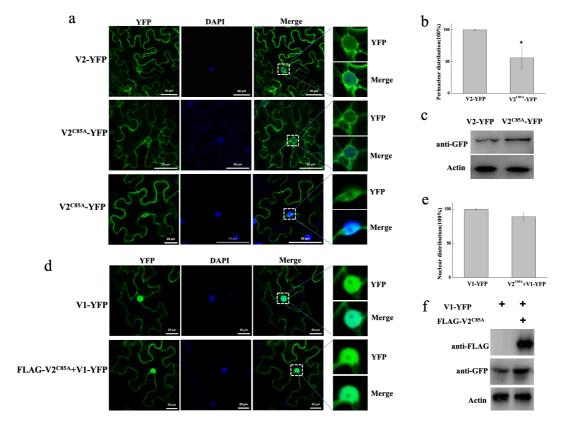
- 819 V1 protein. Viral genomic DNAs are bound by V1 and import into the nucleus with
- 820 the help of KAP α 1 [17,18]. Via the specific interaction between V1 and V2, a


- 821 V2-V1-ssDNA complex is formed. With the help of exportin- α , V2 facilitates the
- 822 V1-ssDNA complexes to exit the nucleus to the perinucleus and the cytoplasm.
- 823
- 824 Fig 1

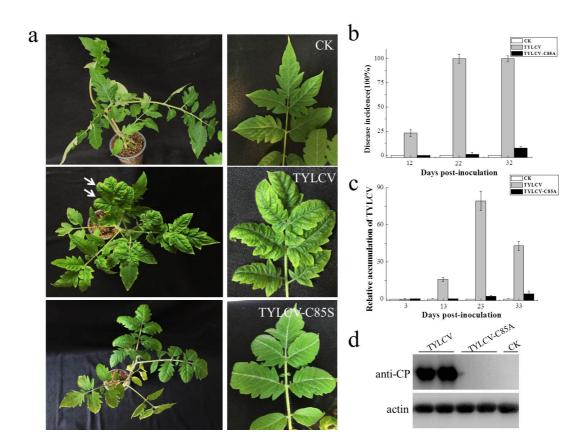
- 826
- 827 Fig 2



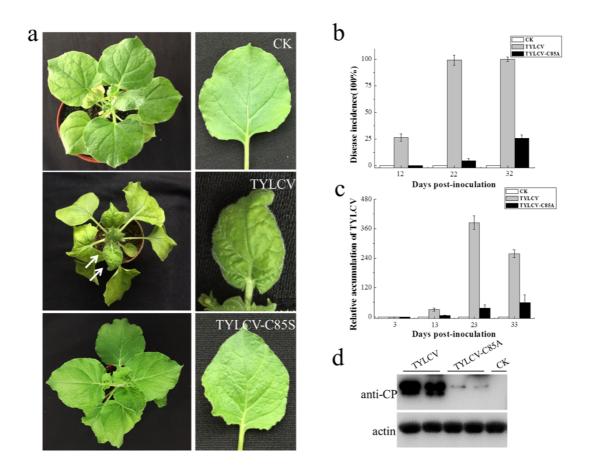
833 Fig 3



834

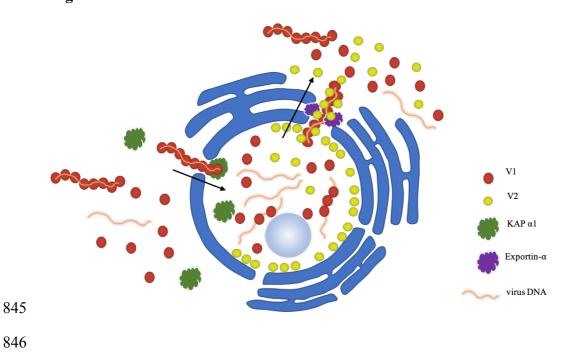


837 Fig 5

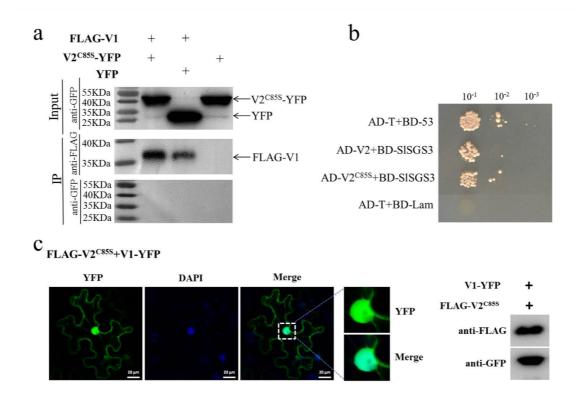


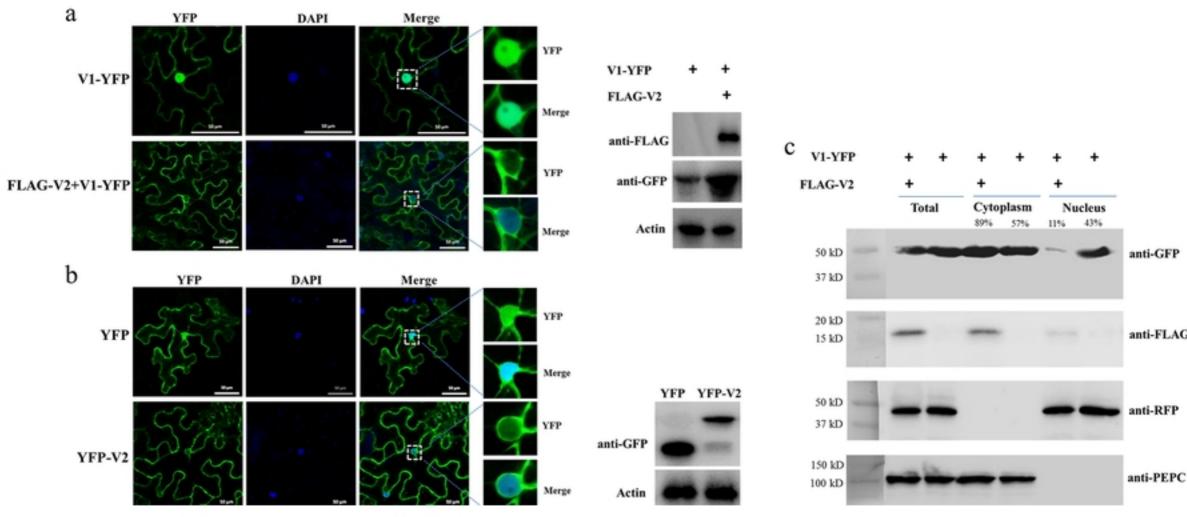
839 Fig 6

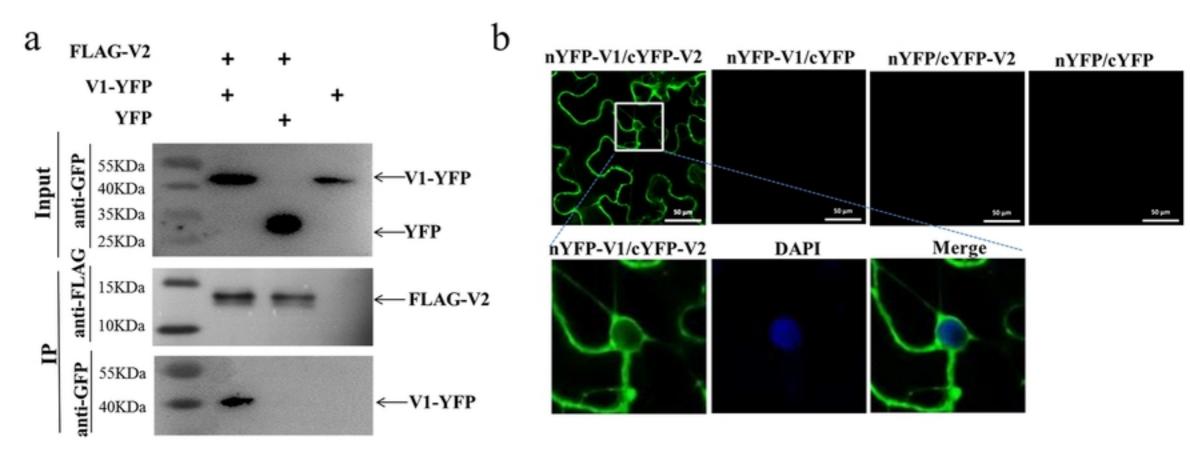
838

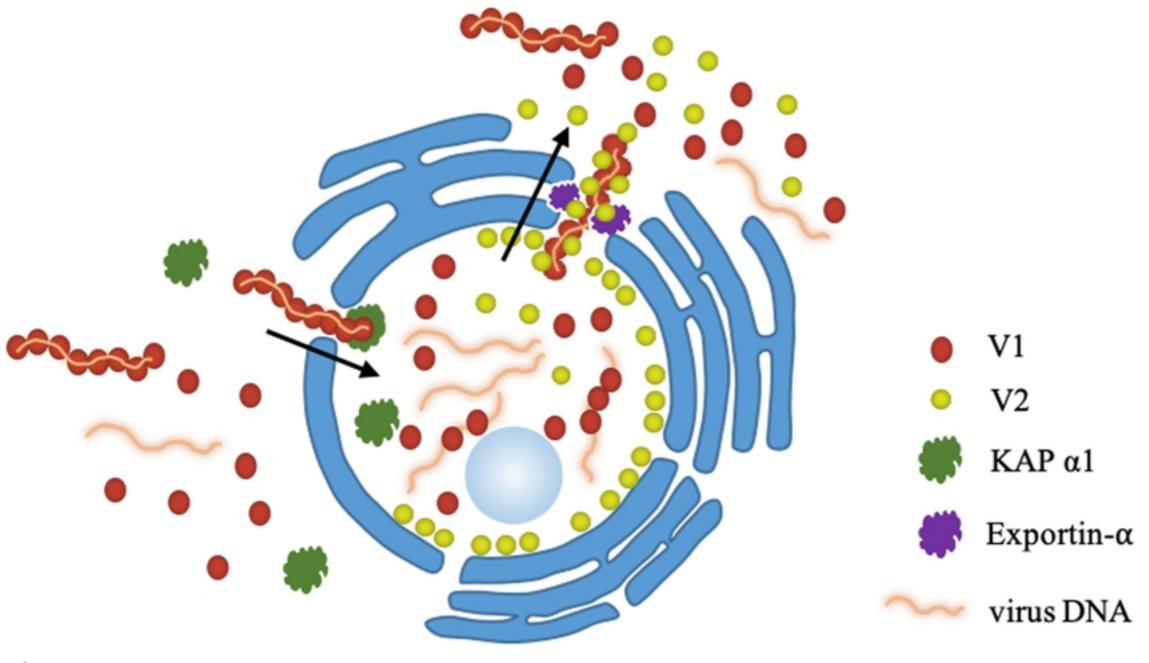


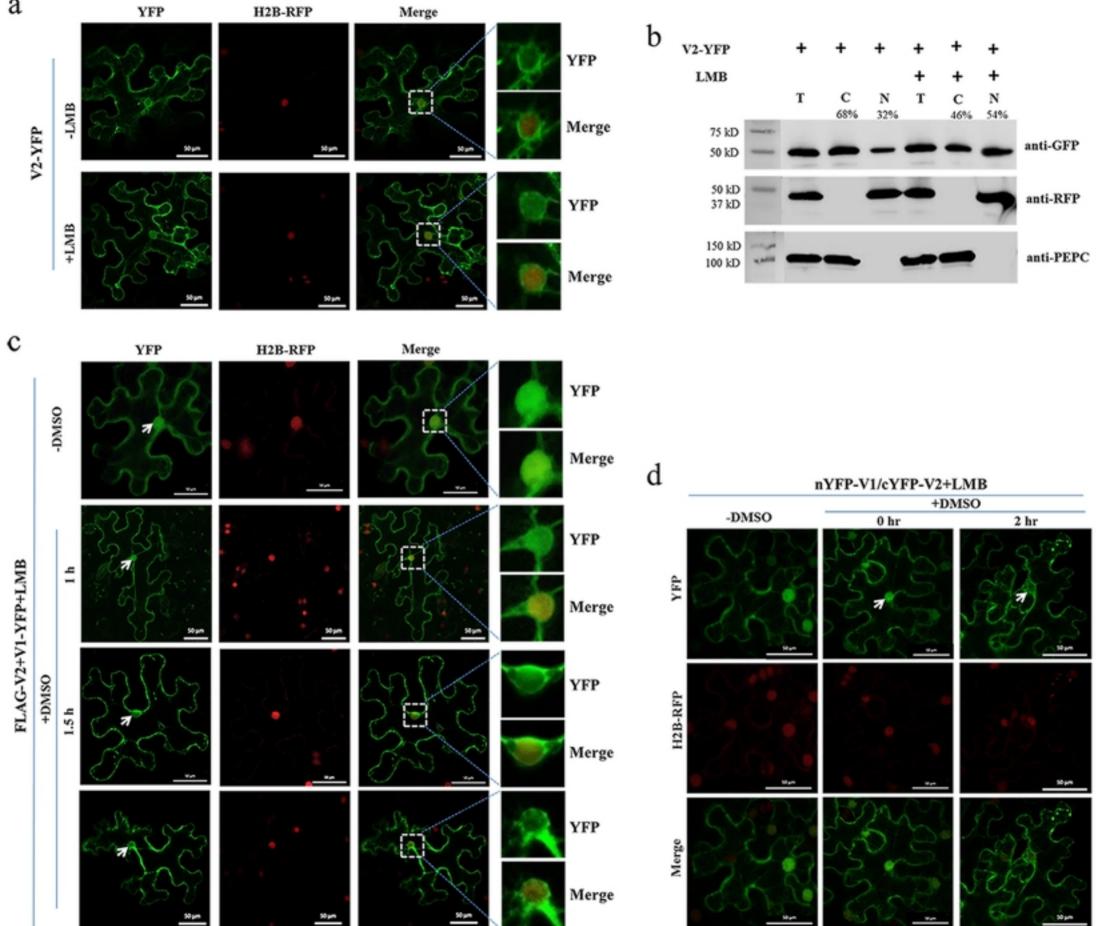
841 Fig 7

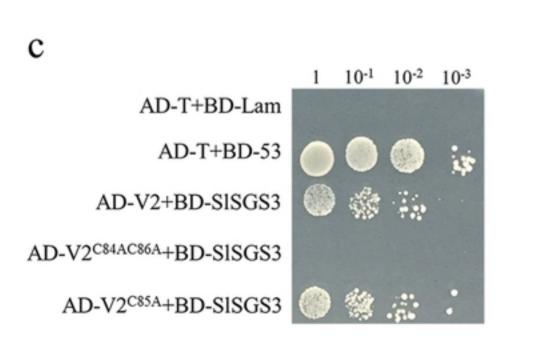


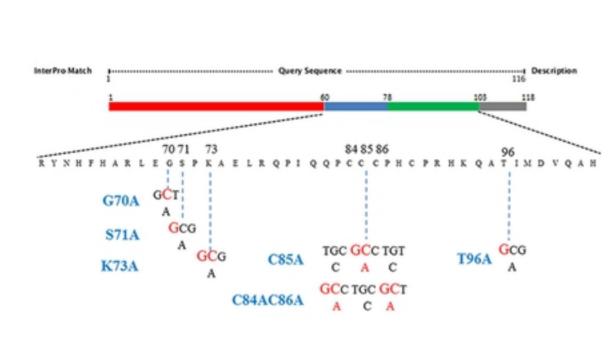

842

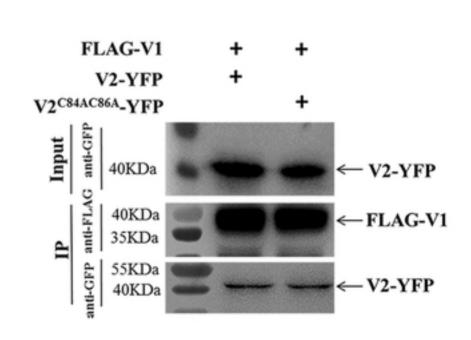

843



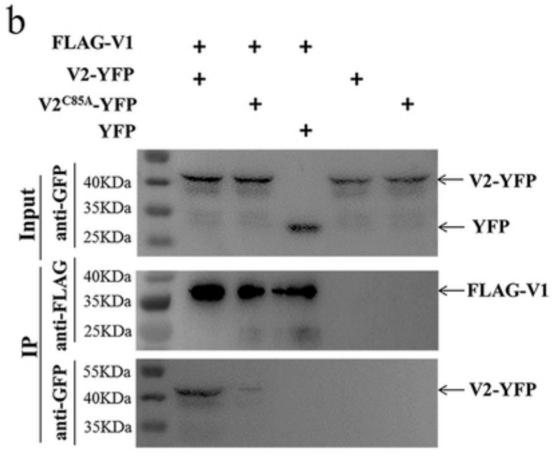

847 S1 Fig

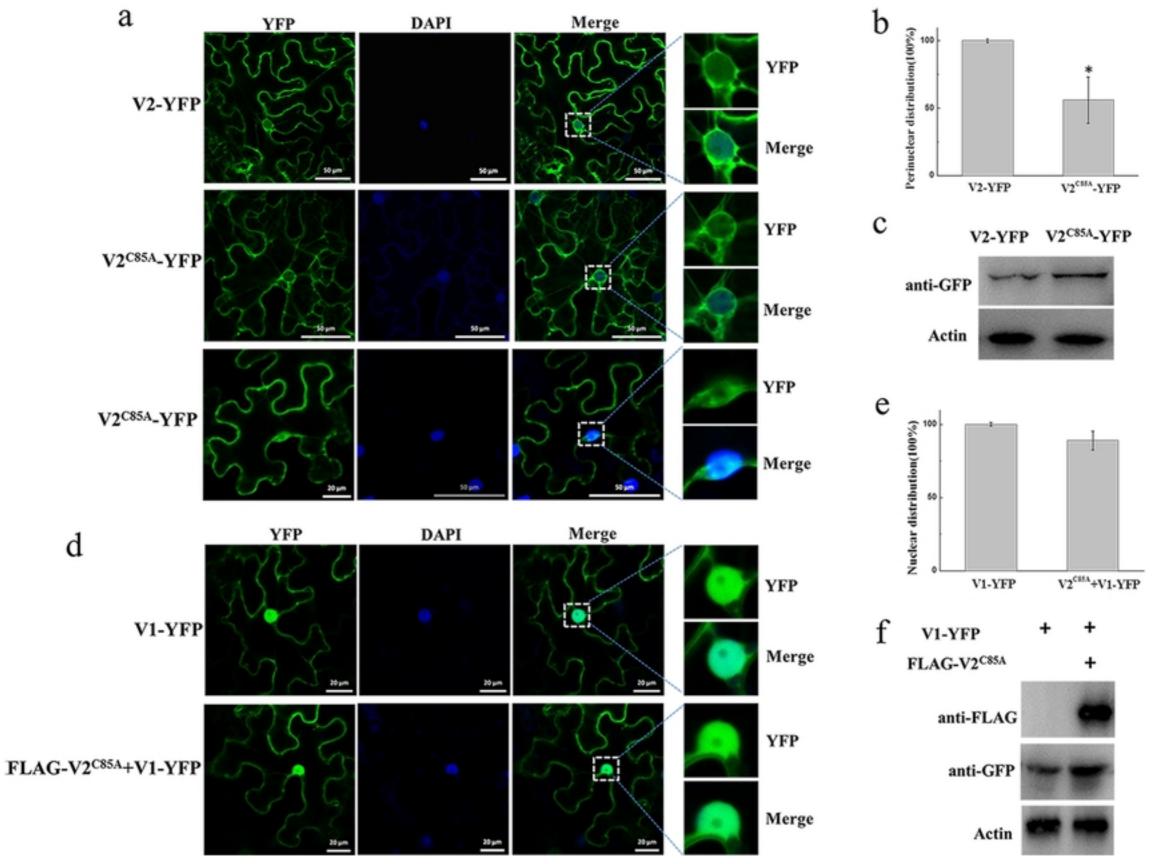


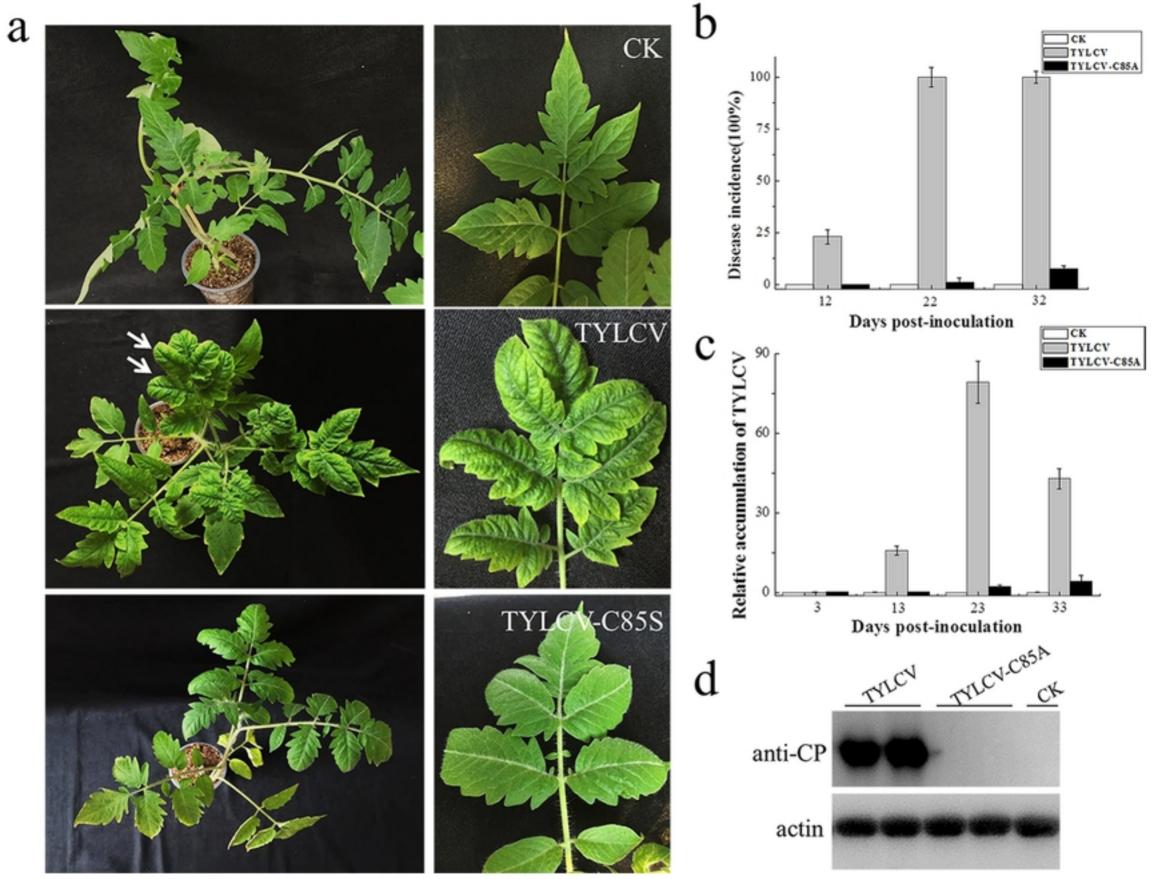


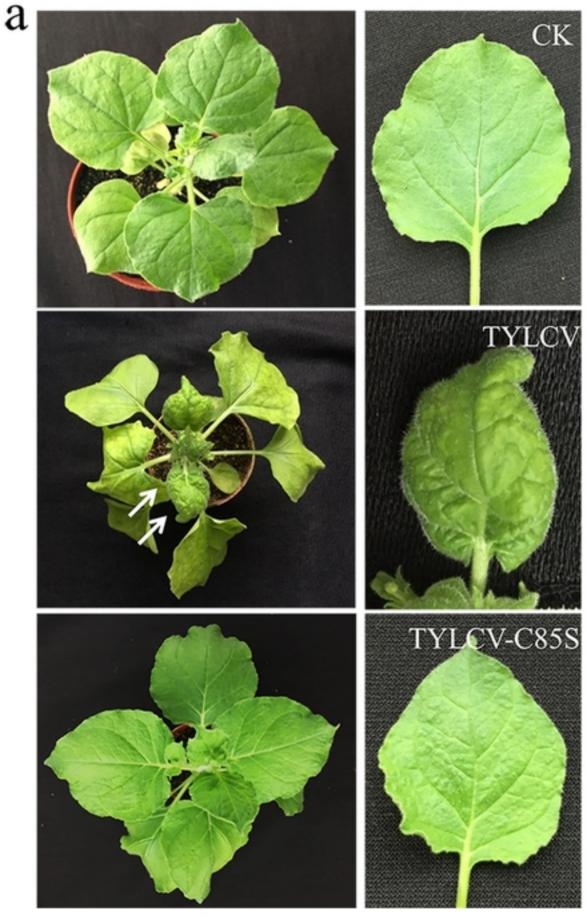


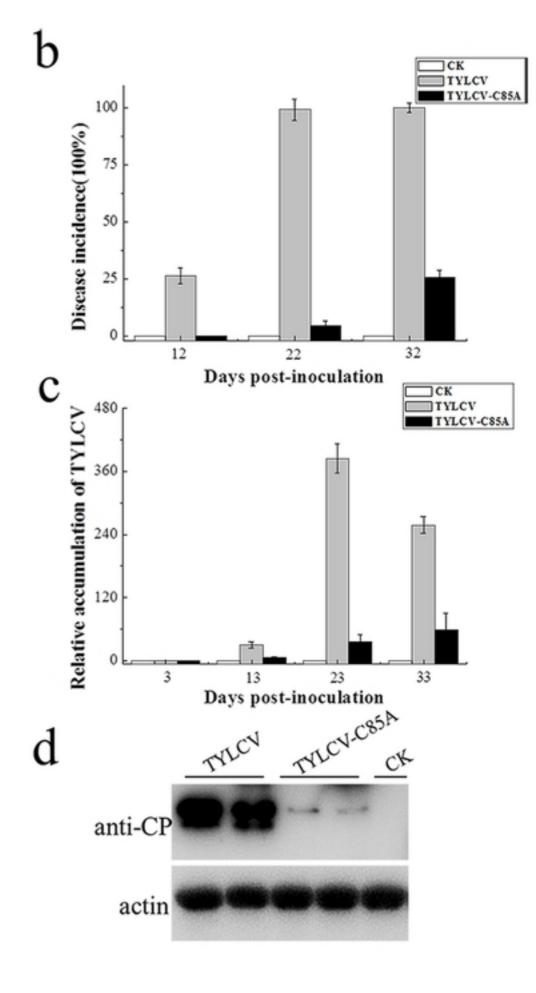
a

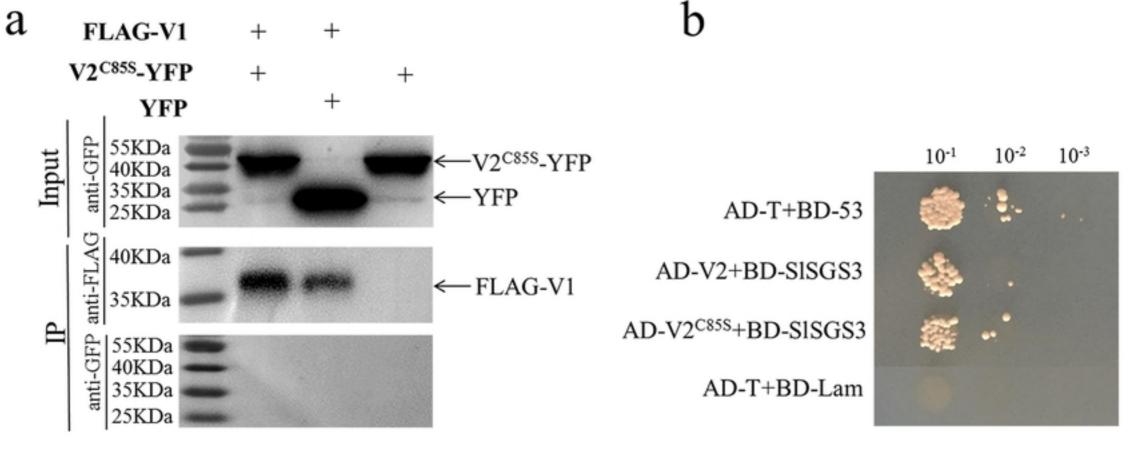

а

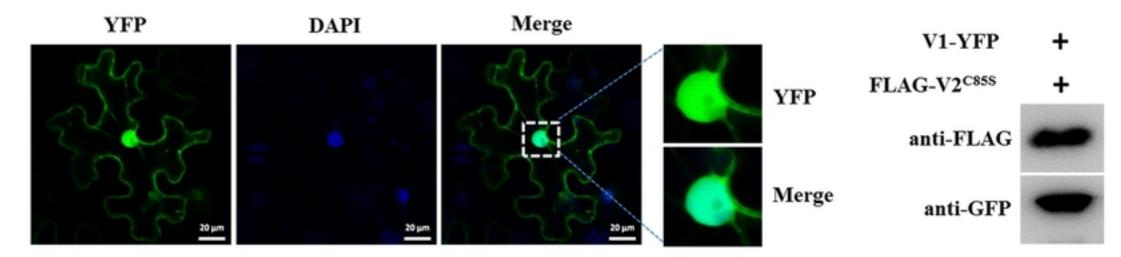







d





C FLAG-V2^{C85S}+V1-YFP

