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Abstract 

Blood transcriptional signatures may predict risk of tuberculosis (TB). We compared the performance of 17 

mRNA signatures in a pooled dataset comprising 1,026 samples, including 183 samples from 127 incipient 

TB cases, from four studies conducted in South Africa, Ethiopia, The Gambia and the UK. We show that 

eight signatures (comprising 1-25 transcripts) that predominantly reflect interferon inducible gene expression, 

have equivalent diagnostic accuracy for incipient TB over a two-year period with areas under the receiver 

operating characteristic curves ranging from 0.70 (95% confidence interval 0.64-0.76) to 0.77 (0.71-0.82). 

The sensitivity of all eight signatures declined with increasing disease-free time interval. Using a threshold 

derived from two standard deviations above the mean of uninfected controls giving specificities of >90%, the 

eight signatures achieved sensitivities ranging 24.7-39.9% over a 24 month interval, rising to 47.1-81.0% 

over 3 months. Based on pre-test probability of 2%, the eight signatures achieved positive predictive value 

ranging from 6.8-9.4% over 24 months, rising to 11.1-14.3% over 3 months. When using biomarker 

thresholds maximising sensitivity and specificity with equal weighting to both, no signature met the minimum 

World Health Organization (WHO) Target Product Profile parameters for incipient TB biomarkers over a two-

year period. Blood transcriptional biomarkers reflect short-term risk of TB and only exceed WHO benchmarks 

if applied to 3-6 month intervals.  
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Introduction 

Identification of people at high risk of developing tuberculosis (TB) enables the delivery of preventative 

treatment for a disease that accounts for more deaths than any other infectious disease worldwide, with 10 

million incident cases and 1.6 million deaths estimated in 20171. This approach represents a fundamental 

component of the World Health Organization (WHO) End TB strategy, aiming for a 95% reduction in TB 

mortality and 90% reduction in TB incidence by 20352.  However, these efforts are undermined by the poor 

predictive value (PPV) of current prognostic tests for development of TB, which focus on the identification of 

a T cell mediated response to mycobacterial antigen stimulation, as a surrogate for latent TB infection 

(LTBI)3,4. Poor prognostication of current diagnostics precludes precise delivery of preventative therapy, thus 

increasing costs and potential adverse effects, and attenuating the effectiveness of prevention programmes, 

while also limiting roll-out of preventative treatment to the limited-resource settings where the majority of TB 

cases occur. 

Increasing recognition of the continuum of TB infection and disease has led to renewed interest in the 

‘incipient’ phase of TB5–7. This has been defined by the WHO as the prolonged asymptomatic phase of early 

disease during which pathology evolves, prior to clinical presentation as active disease8. This definition 

encompasses the incipient and subclinical phases described by others9. This phase in the natural history of 

TB, between latent infection and active disease, is highly attractive as a target for novel prognostic TB 

diagnostic tests in the hope of improving PPV for incident TB, while still offering an opportunity to prevent 

TB-related morbidity and mortality and interrupt onward transmission9. This has led to the WHO producing a 

target product profile (TPP) for incipient TB diagnostics, stipulating minimum sensitivity and specificity of 

75% and optimal sensitivity and specificity of 90%, over a two-year time period8. These minimum criteria are 

based on achieving PPV of 5.8%, when assuming 2% pre-test probability.  

Multiple studies have discovered changes in the host transcriptome in association with TB disease, 

compared to healthy controls, individuals with LTBI or other diseases10–15. Signatures have become 

increasingly concise over time, making their translation to near-patient diagnostic tests more achievable. 

More recently, perturbation in the transcriptome has been found to predate the diagnosis of TB14,16–18, 

suggesting that transcriptional signatures may offer an opportunity to diagnose incipient TB and potentially 

fulfil the WHO TPP. However, independent validation of each signature is still limited. It remains unclear 

which of the multiple candidate transcriptional signatures performs best for the identification of incipient TB, 

or whether any signatures meet the WHO diagnostic accuracy benchmarks.  
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To address these critical knowledge gaps, we performed a comprehensive literature search to identify 

concise whole blood transcriptional signatures for incipient TB, along with whole blood transcriptomic 

datasets, with sampling prior to TB diagnosis. We then performed a patient-level pooled analysis to compare 

the diagnostic accuracy of the identified candidate transcriptional signatures for diagnosis of incipient TB 

among people at risk of disease over a two-year horizon. Finally, we evaluated the diagnostic accuracy of 

the best performing transcriptional signatures, stratified by pre-defined time intervals to TB, in order to 

critically assess their potential value as biomarkers in practice.  
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Methods 

Systematic review 

We performed a systematic review, in accordance with PRISMA standards19, to identify candidate concise 

whole blood transcriptional signatures for incipient or active TB, along with published whole blood 

transcriptomic datasets, with sampling prior to TB diagnosis. We searched Medline and Embase on 

15/04/2019, with no language or date restrictions, using comprehensive MeSH and keyword terms 

(Supplementary Methods), and hand-searched reference lists of review articles. The pre-specified protocol 

for the review and analysis plan is available (PROSPERO CRD42019135618).  

Eligibility criteria for candidate signatures 

We included whole blood mRNA signatures discovered with a primary objective of diagnosis of active or 

incipient TB, compared to asymptomatic controls. We included only signatures that used a defined approach 

to feature selection within genome wide data to reduce multidimensionality and lead to ‘concise’ signatures 

that may be more amenable to clinical translation. The availability of gene names that comprise the 

signature, along with the corresponding equation or modelling approach was required. We also specified that 

the signature (including component genes, and modelling approach) was validated in at least one 

independent test or validation set, in order to enable reliable signature reconstruction. We only included 

signatures discovered from training sets that included controls who were either deemed healthy, or had 

latent TB infection, since discriminating incipient TB from healthy or latently infected people is the primary 

aim of incipient TB diagnostics. Where multiple signatures were discovered for the same intended purpose 

and from the same training dataset, we included the signature with greatest accuracy, as defined by the area 

under the receiver operating characteristic curve (AUROC) in the validation data. Where accuracy was 

equivalent, we included the most parsimonious signature. 

Eligibility criteria for transcriptomic datasets 

We included published whole blood transcriptomic datasets (RNAseq or microarray) where sampling prior to 

TB diagnosis was performed and interval time to disease was available. We specified a minimum median 

duration of follow-up of one year to reduce the risk of outcome misclassification. For studies where 

preventative TB therapy was offered, individual level data was required to identify the treated cases. 

Screening and data extraction 

Two independent reviewers (RKG and CTT) screened titles and abstracts identified in the search, and 

determined eligibility for final inclusion following full-text review. Gene lists and corresponding equations or 

modelling approaches were extracted for each eligible candidate signature and validated by a second 

reviewer. Disagreements regarding study inclusion or signature calculations were resolved by a third 
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reviewer (MN). Quality assessment and risk of bias were assessed for the studies corresponding to included 

RNA datasets, using modified versions of the Newcastle-Ottowa scale (using the cohort or case-control 

version as appropriate to each contributing study)20. 

Extension of UK cohort of TB case contacts 

In preparation for this meta-analysis, we extended the follow-up of a previously published cohort of London 

TB contacts18, by relinking the full cohort to national TB surveillance records (until 31/12/2017) held at Public 

Health England, which includes all statutory national TB notifications (median follow up increased from 0.9 to 

1.9 years). An additional 27 samples and individuals were also available for inclusion in the present analysis. 

The full updated data set for this study is available in ArrayExpress (Accession number awaited). 

RNA data processing 

Individual level RNAseq data was downloaded for eligible studies, and mapped to the reference 

transcriptome (Ensembl Human GRCh38 release 95) using Kallisto21. The transcript-level output counts and 

transcripts per million (TPM) values were summed on gene level and annotated with gene symbols using 

tximport and BioMart22,23. Only protein-coding genes were selected for downstream processing, and TPM 

and counts per million (CPM) values <0.001 were set to 0.001 prior to log2 transformation. TPM data were 

compared for participants from different studies using principal component analysis (PCA) to test for 

heterogeneity and determine the need for batch correction. This included (a) the entire transcriptome; (b) 

selected genes comprising only the candidate signatures included in the analysis; and (c) invariant genes 

that were in the lowest quartile of genes ranked by variance within each of the contributing datasets. Batch 

correction was performed using the COmbat CO-Normalization Using conTrols (COCONUT) package in R24. 

This approach facilitated correction based on the disease-free controls, which was then applied to those with 

disease, thus reducing risk of bias during correction due to differing prevalence of disease among the study 

populations included.  

Definitions and sample inclusion 

Only samples obtained prior to the diagnosis of TB were included. ‘Prevalent’ TB was defined as a TB 

diagnosis within 21 days of sample collection, as previously4. ‘Incipient TB’ cases were defined as individuals 

diagnosed with TB >21 days from blood RNA sample collection. Culture-confirmed and clinically or 

radiologically diagnosed pulmonary or extrapulmonary TB cases were included in the main analysis. ‘Non-

progressors’ were defined as those who remain TB disease free during follow-up. Non-progressor samples 

with less than 6 months’ follow-up from the date of sample collection were excluded due to risk of outcome 

misclassification. Participants with prevalent TB and those who received preventative therapy were 

excluded. For studies with serial samples from the same individuals, serial samples were included provided 
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that they met these criteria, and that they were collected at least 6 months apart, since they were treated as 

independent samples in the primary analysis. 

Calculation of signature scores 

Scores were calculated for candidate signatures (using the authors’ described methods) for each participant 

in the pooled dataset. For signatures that required model reconstruction, we validated the reconstructed 

model against the original authors’ model, by comparing receiver operating characteristic (ROC) curves in 

their original test dataset when possible. Using a pre-defined ‘control’ population (including only participants 

with negative LTBI tests among the pooled dataset), batch-corrected signature scores were transformed to Z 

scores (by subtracting the control mean, and dividing by standard deviation), in order to standardise scaling 

across signatures18. 

Statistical analysis 

ROC curves for each signature for the identification of incipient TB were first plotted, for a two-year time 

horizon. Any data that was originally used to derive specific signatures were excluded from the pooled 

dataset used to test the performance of the relevant signature. ROC curves and AUROCs for separate study 

datasets were initially examined visually to assess the between study heterogeneity. Since little 

heterogeneity was observed for all signatures, a simple pooled data analysis was performed thereafter. 

AUROCs were directly compared in a pairwise approach, using the DeLong method25. The best performing 

signature available from all samples in the pooled dataset was used as the reference for comparison with all 

other signatures. Correlation between signature scores was assessed using Spearman rank correlation. 

Pairwise Jaccard similarity indices between signatures were calculated using lists of their constituent genes. 

Clustered co-correlation and Jaccard index matrices were generated in Morpheus26 using average Euclidean 

distance. Upstream analysis of transcriptional regulation was performed using Ingenuity Pathway Analysis 

(Qiagen, Venlo, The Netherlands) and visualized as network diagrams in Gephi v0.9.2, depicting all 

statistically overrepresented molecules predicted to be upstream >2 target genes.  

ROC curves and AUROCs were then assessed for the best performing signatures, using pre-specified 

intervals to TB of <3 months; <6 months; <1 year; and <2 years from sample collection. Sensitivity and 

specificity for each of these time intervals were determined at pre-defined cut-offs for each signature, defined 

as a standardised score of two (Z2), representing the 97.7th percentile of the IGRA-negative control 

population assuming a Normal distribution, as in previous work18. These estimates were used to model the 

estimated predictive values for incident TB across a range of pre-test probabilities. 
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We performed four sensitivity analyses. First, we restricted inclusion of TB cases to those with 

microbiological confirmation. Second, we included only one blood RNA sample per participant by randomly 

sampling one blood sample per individual, in studies which included serial sampling. We also examined 

sensitivity and specificity for the best performing signatures using the maximal Youden Index27 to achieve the 

highest accuracy within each time interval. Finally, we recomputed the ROC curves using mutually exclusive 

time intervals to TB of 0-3, 3-6, 6-12 and 12-24 months, for each curve excluding participants who had 

developed TB in an earlier interval.   
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Results 

Systematic review process and summaries of included datasets and signatures 

A total of 643 unique articles were identified in the systematic review (Supplementary Figure 1). Four RNA 

datasets (Table 1) and 17 signatures (Table 2) met the criteria for inclusion.  

The RNA datasets included the Adolescent Cohort Study (ACS) of South African adolescents with LTBI16, 

the Bill and Melinda Gates Foundation Grand Challenges 6-74 (GC6-74) household TB contacts study in 

South Africa, the Gambia and Ethiopia17, a London TB contacts study18, and a Leicester TB contacts study14. 

The ACS and GC6-74 studies were nested case-control designs within larger prospective cohort studies, 

while the London and Leicester TB contacts studies were prospective cohort studies. All four studies were 

done in HIV-negative participants. The London TB contacts study included only baseline samples, while the 

ACS, GC6-74 and Leicester TB contacts studies included serial sampling. All four studies achieved maximal 

quality assessment scores.  

A total of 1,126 samples from 905 patients met our criteria for inclusion (Supplementary Figure 2). These 

included 183 samples from 127 incipient TB cases, of which 117 (92.1%) were microbiologically confirmed. 

Baseline characteristics of the study participants are shown in Supplementary Table 1. Principal component 

analyses (PCA) revealed clear separation of samples by dataset when including (a) the entire transcriptome; 

(b) selected genes comprising only the candidate signatures included in the analysis; and (c) invariant 

genes, indicative of batch effects in the data that were eliminated after batch correction (Supplementary 

Figure 3). 

Of the 17 identified signatures (Table 2), two were discovered from paediatric populations28,29. Four signature 

discovery datasets included HIV-infected and –uninfected participants11,13,29,30, one was discovered in an 

exclusively HIV-infected population for the purpose of active case finding31, while the remainder were 

discovered in HIV-negative populations. Four signatures were discovered with the intention of diagnosis of 

incipient TB16–18, with the remaining 13 discovered for diagnosis of active TB disease. Of these, 

five11,14,28,32,33 targeted discrimination of TB from other diseases in addition to discriminating people who were 

healthy or with LTBI. Of the 17 included signatures, only three were not discovered through a genome-wide 

approach15,28,33. Four signatures required reconstruction of support vector machine (SVM) models16,18,32,34, 

and one required reconstruction of a random forest model15. Our reconstructed models were validated 

against the authors’ original descriptions by comparing AUROCs in common datasets (Supplementary Table 

2). The distribution of signature scores, stratified by study, pre- and post-COCONUT batch correction is 

shown in Supplementary Figure 4.  
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Eight signatures perform equivalently for identification of incipient TB over two-year horizon 

We first examined ROC curves and corresponding AUROCs for the identification of incipient TB by all 17 

signatures over a two-year period in the separate contributing study datasets (Supplementary Table 3). This 

analysis initially suggested overall lower AUROCs in the GC6-74, compared to the ACS dataset. However, 

the distribution of TB events during follow-up differed between these studies (Supplementary Table 1). 

Following stratification by interval to disease, similar AUROCs were observed between studies, suggesting 

that interval to disease confounded the association between source study and AUROC. Since little residual 

between study heterogeneity was observed and PCA post-batch correction showed no clustering by study 

(Supplementary Figure 3), we proceeded to perform a pooled data analysis without further adjustment for 

source study. 

We omitted scores for the Suliman2, Suliman4 and Zak16 signatures for their corresponding training sets 

within the GC6-74 and ACS datasets. The signature with highest AUROC for the identification of incipient TB 

over a two-year period tested in pooled data from all 1,126 samples was BATF2 (AUROC 0.74; 95% 

confidence interval 0.69-0.78). BATF2 was therefore used as the reference standard for paired comparisons 

of the other 16 candidate signatures. We found that eight signatures had equivalent AUROCs. These were 

Suliman2 (AUROC 0.77; 95% CI 0.71-0.82), BATF2 (0.74; 0.69-0.78), Kaforou25 (0.73; 0.69-0.78), Gliddon3 

(0.73; 0.68-0.77), Sweeney3 (0.72; 0.68-0.77), Roe3 (0.72; 0.67-0.77), Zak16 (0.7; 0.64-0.76) and Suliman4 

(0.7; 0.64-0.76) (Supplementary Table 4). The remaining nine signatures had significantly inferior AUROCs.  

The best performing RNA signatures are highly correlated 

Next, we examined the correlation between the 17 candidate signature scores in the pooled dataset, as 

defined by Spearman rank correlation. The eight signatures identified with equivalent performance 

demonstrated moderate to high correlation (Supplementary Figure 5; correlation coefficients 0.44-0.84). In 

contrast, Singhania20, Anderson38, Huang11 and Walter45 showed little correlation with any other 

signature. The correlation matrix dendrogram showed closest relationships between signatures identified by 

the same research group. 

To assess whether correlation was driven by overlapping constituent genes, we calculated pairwise Jaccard 

Indices (Supplementary Figure 5). There was a weak positive association between Spearman rank 

correlation and Jaccard Index, suggesting that overlapping constituent genes may partially account for their 

correlation. Genes comprising the eight signatures with equivalent AUROCs are demonstrated in Figure 1. 

Upstream analysis predicted that interferon-gamma, STAT1, interferon-alpha and tumour necrosis factor 

were the strongest predicted transcriptional regulators of these constituent genes. 
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Diagnostic accuracies of candidate signatures decline with interval to disease 

Scores of the eight best performing signatures, stratified by interval to disease, are shown in Figure 2. 

AUROCs of these signatures declined with increasing interval to disease (Figure 3), ranging 0.82-0.91 for 0-

3 months vs. 0.73-0.82 for 0-12 months.  

Figure 4 demonstrates diagnostic accuracy of the eight best performing candidates using pre-specified Z2 

cut-offs based on the 97.7th percentile of the IGRA-negative control population, stratified by interval to 

disease and benchmarked against positive predictive value (PPV) estimates based on a pre-test probability 

of 2%. At this threshold, test sensitivities over 0-24 months of the eight best performing signatures ranged 

from 24.7% (16.6-35.1) to 39.9% (33.0-47.2) for the Suliman2 and Sweeney3 signatures, respectively, while 

corresponding specificities ranged from 92.3% (89.8-94.2) to 95.3% (92.3-96.9). In contrast, over a 0-3 

month interval, sensitivities ranged from 47.1% (26.2-69.0) for the Suliman4 signature to 81.0% (60.0-92.3) 

for the Sweeney3 signature, with corresponding specificities of 90.9% (88.9-92.6) to 94.8% (93.0-96.2). For 

each of the time points, each of the eight signatures fell in the same PPV plane (5-10% over 0-24 months vs. 

10-15% over 0-3 months). 

Predictive values for incipient TB 

Positive- and negative-predictive values, modelled across a range of pre-test probabilities, are shown in 

Supplementary Figure 6. Based on pre-test probability of 2% all eight top performing signatures achieved a 

PPV marginally above the WHO benchmark of 5.8% for a 0-24 month period, ranging from 6.8% for 

Suliman2 to 9.4% for Kaforou25, with corresponding NPVs of 98.4% and 98.6%, respectively. For the 0-3 

month time period, PPVs ranged from 11.1% for Gliddon3 to 14.3% for Zak16, with corresponding NPVs of 

99.0% and 99.3%, respectively. 

Sensitivity analyses 

Restricting inclusion of incipient TB cases to those with documented microbiological confirmation and 

including only one blood RNA sample per participant (by randomly sampling) produced no significant change 

to the main results (Supplementary Figures 7 and 8). Sensitivities and specificities of the top eight equivalent 

signatures using cut-offs defined by the maximal Youden index for each time interval fell below the minimum 

WHO TPP criteria for a 0-24 month period, but met or approximated the minimum criteria over 0-3 months 

(Supplementary Figure 9). Finally, reanalysis of the ROC curves using mutually exclusive time periods of 0-

3, 3-6, 6-12 and 12-24 months magnified the difference in performance between the intervals, with 

performance declining more markedly with increasing interval to disease (Supplementary Figure 10).  
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Discussion 

In the largest analysis to date of the performance of whole blood transcriptional signatures for incipient TB, 

we demonstrate that eight candidate transcriptional signatures performed with equivalent diagnostic 

accuracy for incipient TB over a two-year period. These signatures ranged from a single transcript (BATF2) 

to 25 genes (Kaforou25). The accuracy of all eight signatures declined markedly with increasing intervals to 

disease, suggesting that they represent biomarkers of short-term risk of disease. When benchmarked 

against the WHO TPP for incipient TB biomarkers over a two-year period, these signatures only marginally 

surpassed the target PPV of 5.8%, when assuming 2% pre-test probability and using a cut-off of two 

standard scores (Z2). However, sensitivity at this Z2 cut-off was only 24.7-39.9%, with the majority of cases 

being missed. Moreover, no signature achieved the target sensitivity and specificity of ≥75% over two years, 

even when using the cut-off with maximal accuracy (as defined by the Youden Index) for this time period for 

each signature individually. In contrast, the eight best performing signatures achieved PPVs of 11.1-14.3%, 

NPVs >98.9% and sensitivities of 47.1-81.0% over a 0-3 month period, assuming the same pre-test 

probability, suggesting that exceeding performance of the WHO benchmarks is likely more achievable over a 

shorter time frame. 

Eight signatures have equivalent diagnostic accuracy for incipient TB  

In light of increasing industry interest in translation to clinically implementable platforms, our findings have 

important commercial implications. The cost of transcriptional signatures is highly unlikely to match the 

minimal target price of <$2 specified by WHO TPP for a non-sputum triage test for TB disease35. The most 

likely application of this technology is therefore likely to be diagnosis of incipient TB, where the WHO TPP 

pricing parameters are more lenient, aiming for an initial price of <$100, with the price of IGRAs as an initial 

benchmark8. The application of these biomarkers for incipient TB diagnosis also mitigates the major 

limitation of the imperfect specificity of predominantly interferon-inducible gene signatures when trying to 

discriminate TB from other infectious diseases, by applying them to a predominantly healthy and 

asymptomatic population36. The equivalence of diagnostic accuracy of eight signatures for incipient TB in this 

analysis suggests that parsimony of genes, stability of cross-platform transcript measurements, and 

simplicity of modelling calculations may be key to informing selection of signatures from these candidates for 

further validation. 

The eight signatures that achieved equivalent performance were discovered with the primary intention of 

diagnosis of incipient TB16–18, or differentiating active TB from people who are healthy or with LTBI 12,13,30,37. 

Discovery populations for these eight signatures included adults or adolescents from the UK or Southern 
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Africa12,13,16–18,30, or a meta-analysis of microarray data from multiple studies11, including a minimum of 37 

incipient or active TB cases. All eight signatures were discovered using genome-wide approaches. 

Correlation analysis revealed moderate to high correlation between all eight of these signatures, while the 40 

genes comprising these signatures were predominantly driven by interferon-gamma, STAT1, interferon-

alpha and TNF. This evidence suggests that these signatures reflect a common host immune response, 

which explains their equivalent performance. Signatures identified by the same research group clustered 

together within the correlation dendrogram, which likely reflects common modelling approaches and study 

populations used during discovery within the same research group.  

In contrast, the nine signatures with inferior performance included two discovered from children28,29, one 

study that prioritised discrimination of active TB from other bacterial and viral infections14, and one study that 

conducted active case-finding for TB among people living with HIV31. The differences in primary intended 

applications, which are reflected in the study populations used for biomarker discovery, may account for their 

inferior performance when evaluated solely for identification of incipient TB in a predominantly healthy, HIV-

negative adult population. The signatures with inferior performance also included three discovered from 

panels of pre-selected candidate genes, rather than a genome-wide approach15,28,33, and four with only 6-24 

TB cases in the discovery sets32–34,38. This suggests that using a genome-wide approach and including 

adequate numbers of diseased cases are important considerations during signature discovery.  

Diagnostic accuracy is time-dependent  

The time-dependent performance of the signatures is likely explained by their expression being a reflection 

of an underlying disease process of incipiency. If true, this suggests that the duration of the incipient phase 

of TB is typically less than three months. Lower sensitivity at longer intervals to disease may be explained by 

commencement of the incipient phase and/or re-exposure to TB between sampling and diagnosis. However, 

even for a 0-3 month interval, sensitivity ranged from 47.1-81.0% for the eight best performing signatures, 

with some cases missed. This observation may be explained by truly imperfect signature sensitivity for the 

incipient phase, or very rapid disease progression among a subset of cases.  

In order to achieve the WHO TPP, a screening strategy that incorporates serial testing on a 3-6 monthly 

basis may therefore be required for transcriptional signatures. Such a strategy, however, is unlikely to be 

feasible at a population level. Instead, high-risk groups such as household contacts could be targeted, 

though even this is still unlikely to be scalable in high transmission settings, given the limited global coverage 

of contact-tracing programmes. In lower transmission, higher resource settings, serial blood transcriptional 

testing for risk-stratification over a defined 1-2 year period may be more achievable, particularly among 
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recent contacts or new entry migrants from high transmission countries, for whom risk of disease is highest 

within an initial two-year interval4,18,39. 

Strengths and weaknesses 

Strengths of this study include the size of the pooled dataset, including 1,126 samples from 905 patients, 

and 183 samples from 127 incipient TB cases. All four contributing studies achieved maximal quality 

assessment scores and were performed in relevant target populations of either recent TB contacts, or people 

with LTBI. This facilitated a robust analysis of diagnostic accuracy of the candidate signatures, stratified by 

interval to disease. Second, we performed a comprehensive systematic review, and identified 17 candidate 

signatures. For each of these signatures, gene lists and modelling approaches were extracted and validated 

by independent reviewers. Moreover, for signatures that required model reconstruction, our models were 

cross-validated against original models by comparing AUROCs using the same dataset wherever possible. 

This allowed us to perform a comprehensive, head-to-head analysis of candidate signatures for incipient TB 

for the first time, ensuring that each head-to-head comparison was performed on paired data. This contrasts 

with a recent head-to-head systematic evaluation that included only two of the eight best-performing 

signatures in our analysis, and compared performance for incipient TB in only one dataset over a 0-6 month 

time period40. Finally, our meta-analytic methods ensured a standardised approach to RNAseq data. This 

included an unbiased approach to batch correction, with unchanged distributions of signature scores within 

each dataset following correction.  

A weakness of our analysis is that we were unable to perform subgroup analyses by age, ethnicity or 

country, since the contributing studies largely defined these strata. Reassuringly, there were no clear 

differences in performance by study, supporting the generalisability of the results. Secondly, having 

observed little heterogeneity between studies, we conducted a simple pooled analysis. The precision of our 

estimates therefore may be slightly overstated and statistical tests may be anti-conservative. Likewise, 

treating serial samples as independent was anti-conservative, but findings were similar in our sensitivity 

analysis taking only one sample per individual at random.  

All included datasets were from the UK or sub-Saharan Africa, while no data were available for people living 

with HIV or children under 10, among whom different blood transcriptional perturbations may occur in TB5,29. 

Prospective validation studies in other world regions and among these specific target populations are 

needed. In addition, the majority of incipient TB cases were contributed from the African datasets, with 12 

cases from the UK studies. Nevertheless, the UK studies were done in appropriate target populations of 

close contacts of TB index cases and were performed as cohort studies, as opposed to the African case-
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control designs. High specificity for correctly identifying non-progressors among contacts is a key attribute in 

improving PPV, compared to existing tests. Hence, these UK datasets were extremely valuable additions to 

the pooled meta-analysis. 

Finally, while every effort was made to reconstruct signature models according to authors’ descriptions, small 

differences in our reconstructions may have led to under- or over-estimation of performance. However, 

validation of our reconstructed models against the authors’ original models showed reassuringly minimal 

difference in AUROCs using common datasets, suggesting the impact of this bias is likely very small.   

Future directions 

Future studies addressing transcriptional biomarkers for incipient TB may address diagnostic accuracy and 

predictive value, or the impact of these biomarkers on health system and patient outcomes, as previously 

outlined41. Studies further assessing accuracy and predictive value should continue to be performed among 

relevant target populations, with sufficient follow-up for disease progression, and should ensure that TB 

diagnosis is ascertained blind to biomarker results. These may include further head-to-head analyses of 

candidate signatures, particularly addressing population subgroups and world regions beyond the UK and 

sub-Saharan Africa. In contrast, prospective impact studies may incorporate delivery of preventative 

treatment based on transcriptional biomarker results to further assess the feasibility, effectiveness and cost-

effectiveness of transcriptional biomarker-stratified preventative therapy. Approaches may include a two-step 

algorithm, where serial testing is only performed among patients with LTBI, in order to rationalise the burden 

and costs of follow-up. Such prospective studies, with real time delivery of biomarker results, would also 

allow prospective clarification of the clinical significance of transcriptional signature expression, by ensuring 

the absence of clinical, radiological or microbiological evidence of TB disease among participants with a 

positive test. However, clinical evaluations to assess for such evidence should not surpass those performed 

under routine programmatic conditions41. Moreover, integral to both diagnostic accuracy and impact studies 

is the translation of transcriptional measurements from un-scalable genome-wide approaches such RNAseq 

to the reproducible quantification of selected signature genes, with appropriately defined cut-offs. While this 

has been performed for some signatures using PCR-based platforms16,17,30,42, no signature platforms have 

yet been validated for implementation in a near-patient or commercial assay. 

Conclusions 

In summary, we demonstrate for the first time that eight transcriptional signatures, including a single 

transcript (BATF2), have equivalent diagnostic accuracy for identification of incipient TB. Performance 

appeared similar across studies, including participants from the UK and Southern Africa. Signature 
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performance was highly time-dependent, with lower accuracy at longer intervals to disease. A screening 

strategy that incorporates serial testing on a 3-6 monthly basis among selected high-risk groups may be 

required for these biomarkers to surpass WHO TPP benchmarks.  
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Tables 1 

Table 1: Characteristics of the datasets included in meta-analysis of candidate whole blood transcriptional signatures for incipient tuberculosis (TB).  2 

Study Sample size Study design Population Setting HIV status Sampling Follow-up 
duration 

TB case 
definition 

RNAseq 
methods 

NOS score Baseline TB 
assessment 

London TB 
contacts18 

360 Cohort Adult TB 
contacts 

London Negative Baseline 1.9 years 
(median) 

Culture-
confirmed, or 
clinically-
diagnosed 

15-20 million 
41 base pair 
paired-end 
reads 

7 (/7) Clinical evaluation and 
chest radiograph  

Adolescent 
Cohort 
Study16 

355 Nested case-
control 

Adolescents 
with latent TB 
infection 

South Africa Negative Serial (0, 6, 
12, 24 
months) 

2 years Intrathoracic 
disease with 
2 positive 
smears, or 1 
positive 
culture 

30 million 50 
base pair 
paired-end 
reads 

9 (/9) Clinical evaluation. TB 
<6 months from 
enrolment excluded. 
Chest radiograph not 
specified 

Grand 
Challenges 6-
7417 

434 Nested case-
control 

Adult 
household 
pulmonary TB 
contacts 

South Africa, 
The Gambia, 
Ethiopia 

Negative Serial (0, 6, 
18 months) 

2 years Culture-
confirmed, or 
clinically-
diagnosed 

60 million 50 
base pair 
paired-end 
reads 

9 (/9) Clinical evaluation. TB 
<3 months from 
enrolment excluded. 
Chest radiograph not 
specified 

Leicester TB 
contacts14 

108 Cohort Adult TB 
contacts 

Leicester Negative Baseline + 
serial for a 
subset* 

2 years Culture- or 
Xpert 
MTB/RIF-
confirmed 

25 million 75 
base pair 
paired-end 
reads 

7 (/7) Clinical evaluation and 
chest radiograph 

*Due to the high frequency of serial sampling (<6-monthly), only baseline samples were included. NOS = Newcastle-Ottawa Scale (denominators shown in 3 
brackets).  4 
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Table 2. Characteristics of candidate whole blood transcriptional signatures for incipient tuberculosis (TB) included in systematic review and meta-5 
analysis.  6 

Signature Original no. of 
genes 

Model Discovery 
population 

Discovery HIV 
status 

Discovery 
setting 

Discovery approach Intended application Discovery TB 
cases 

Discovery non-
TB controls 

Anderson3829# 42 Disease risk 
score+ 

Children  HIV positive 
and negative 

South Africa, 
Malawi 

Elastic net using 
genome-wide data 

TB vs LTBI 87 43 

BATF212 1 N/A Adults  HIV negative UK SVM using genome-wide 
data 

TB vs healthy (acute vs 
convalescent samples) 

46 31 

Gjoen728 7 LASSO 
regression* 

Children  HIV negative India LASSO using 198 pre-
selected genes 

TB vs healthy controls 
and other diseases 

47 36 

Gliddon330 3 Disease risk 
score+ 

Adults  HIV positive 
and negative 

South Africa, 
Malawi13 

Forward Selection-
Partial Least Squares 
using genome-wide data 

TB vs LTBI 293 (TB + non-
TB) 

 

Huang1132# 13 SVM (linear 
kernel) 

Adults  HIV negative UK43 Common genes from 
elastic net, L1/2 and 
LASSO models, using 
genome-wide data 

TB vs healthy controls 
and other diseases 

16 69 

Kaforou2513# 27 Disease risk 
score+ 

Adults  HIV positive 
and negative 

South Africa, 
Malawi 

Elastic net using 
genome-wide data 

TB vs LTBI 285 (TB + non-
TB) 

 

Maertzdorf415 4 Random 
forest^ 

Adults  HIV negative India Random forest using 360 
selected target genes 

TB vs healthy 113 76 

NPC238 1 N/A Adults Not stated Brazil Differential expression 
using genome-wide data 

TB vs healthy 6 28 

Qian1733 17 Sum of 
standardised 
expression 

Adults  HIV negative UK43 Differential expression 
of nuclear factor, 
erythroid 2-like 2)-
mediated genes 

TB vs healthy controls 
and other diseases 

16 69 

Rajan531 5 Unsigned 
sums+ 

Adults  HIV positive Uganda Differential expression 
using genome-wide data 

TB vs healthy (case 
finding among PLHIV) 

80 total (1:2 
cases:controls) 

 

Roe38 3 SVM (linear 
kernel) 

Adults  HIV negative UK Stability selection, using 
genome-wide data 

Incipient TB vs healthy 46 31 

Singhania2014 20 ‘Modified’ 
disease risk 
score%+ 

Adults  HIV negative UK, South 
Africa 

Random forest using 
modular approach 

TB vs healthy controls 
and other diseases 

Discovery set 
not explicitly 
stated 

 

Suliman27 2 ANKRD22 - 
OSBPL10 

Adults  HIV negative Gambia, South 
Africa, Ethiopia 

Pair ratios algorithm 
using genome-wide data 

Incipient TB vs healthy 79 328 

Suliman47$ 4 (GAS6 + SEPT4) 
- (CD1C + BLK) 

Adults  HIV negative Gambia, South 
Africa 

Pair ratios algorithm 
using genome-wide data 

Incipient TB vs healthy 45 141 

Sweeney311 3 (GBP5 + 
DUSP3) / 2 – 
KLF2 

Adults  HIV positive 
and negative 

Meta-analysis Significance 
thresholding and 
forward search in 
genome-wide data 

TB vs healthy controls 
and other diseases 

266 931 

Walter4534# 51 SVM (linear 
kernel) 

Adults  HIV negative USA Support vector 
machines, using 
genome-wide data 

TB vs LTBI 24 24 
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Zak1616 16 SVM (linear 
kernel) 

Adolescents  HIV negative South Africa SVM-based gene pair 
models using genome-
wide data 

Incipient TB vs healthy 37 77 

Signatures are referred to by combining the first author’s name of the corresponding publication as a prefix, with number of constituent genes as a suffix. For 7 
signatures where not all constituent genes were identifiable in the RNAseq data (e.g. due to records being withdrawn), the suffix indicates the number of identifiable 8 
genes included in the current analysis. Log2-transformed transcripts per million data used to calculate all signatures, unless otherwise specified.  9 

LTBI = latent TB infection; SVM = support vector machine; PLHIV = people living with HIV; LASSO = least absolute shrinkage and selection operator.  10 

#Anderson38, Huang11, Kaforou25 and Walter45 included 42, 13, 27 and 51 genes in the original descriptions, respectively (genes not included in current models 11 
were either duplicates, or not identifiable in RNAseq data).  12 

*Calculated using non-log transformed data using model coefficients from original publication. 13 

%Calculated using non-log transformed counts per million data with trimmed mean of M-values normalization, as per original description. 14 

^Required normalisation of the training and test sets. This was performed for each gene by subtracting the mean expression across all samples in the dataset, and 15 
dividing by the standard deviation. 16 

$Modelling approach was not clear from the original description. We recreated this using two approaches; (1) as a simple equation of gene pairs ((GAS6 + SEPT4) - 17 
(CD1C + BLK)); and (2) as an SVM using the four constituent gene pairs, as previously described40. Since the former approach achieved marginally better 18 
performance that was closer to the authors’ original description in their test set, this was included in the final analysis. 19 

+For disease risk scores, the sum of downregulated genes was subtracted from the sum of upregulated genes. For unsigned sums and ‘modified’ disease risk scores, 20 
genes were summed, irrespective of their direction of regulation. 21 
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Figures 22 

Figure 1. Genes comprising the top 8 blood transcriptomic signatures for incipient tuberculosis (TB) shown as (a) matrix; and (b) network diagram. 23 

Network diagram shows statistically enriched (p<0.05) upstream regulators of the 40 genes, identified by IPA. Coloured nodes represent the predicted upstream 24 

regulators, grouped by function (red= cytokine, blue=transcription factor, green=other). Grey nodes represent the transcriptional biomarkers downstream of these 25 

regulators. The identity of each node is indicated using Human Genome Organisation (HUGO) nomenclature. The size of the nodes is proportional to the number of 26 

downstream biomarkers associated with each regulator and the thickness of the edges is proportional to the -log10 P value for enrichment of each of the upstream 27 

regulators.   28 
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Figure 2. Scatterplots showing scores of eight best performing transcription signatures for incipient 30 
tuberculosis (TB), stratified by interval to disease.  31 

Dashed horizontal lines indicate thresholds set as standardised scores of two (Z2) for each signature. 32 
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Figure 3. Receiver operating characteristic curves showing diagnostic accuracy of eight best performing transcriptional signatures for incipient 34 
tuberculosis (TB), stratified by months from sample collection to disease.  35 

 36 
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28 

Figure 4. Diagnostic accuracy of eight best performing transcriptional signatures for incipient tuberculosis (TB) shown in receiver operating characteristic 38 
space, stratified by months to disease. 39 

Dashed lines represent positive predictive value planes, based on 2% pre-test probability. Grey shaded zones indicate 95% confidence intervals for each signature. 40 

Raw data presented in Supplementary Table 5. 41 
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