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Abstract 
Transmission of dengue fever depends on a complex interplay of human, climate, and mosquito 
dynamics, which often change in time and space. It is well known that disease dynamics are 
highly influenced by a population’s susceptibility to infection and microclimates, small-area 
climatic conditions which create environments favorable for the breeding and survival of the 
mosquito vector. Here, we present a novel machine learning dengue forecasting approach, 
which, dynamically in time and adaptively in space, identifies local patterns in weather and 
population susceptibility to make epidemic predictions at the city-level in Brazil, months ahead 
of the occurrence of disease outbreaks. Weather-based predictions are improved when 
information on population susceptibility is incorporated, indicating that immunity is an important 
predictor neglected by most dengue forecast models. Given the generalizability of our 
methodology, it may prove valuable for public-health decision making aimed at mitigating the 
effects of seasonal dengue outbreaks in locations globally. 
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Introduction 
Due to emerging sensor technologies and computational advances, the last decade has seen 
significant strides in the way data is generated and collected, resulting in large volumes of 
complex information known as “Big Data.” The recent availability of these data has opened up 
the possibility of new and complementary avenues for epidemic monitoring that leverage 
satellite imagery1,2, Internet search engine activity3,4, social media5, mobile phones6,7, 
genomics8,9, and disease surveillance databases10,11. This has opened up opportunities to posit 
and explore more hypotheses for characterizing the causes and outcomes of disease 
transmission, population behavior, environmental conditions, and other potential indicators of 
population health. Exploiting these relationships to generate reliable prospective forecasts 
would benefit health systems by allowing early mobilization of resources for the prevention of 
morbidities and deaths in the face of public health threats. A major challenge in disease 
forecasting is developing algorithms that can autonomously and continuously learn from these 
complex and ever changing dynamical systems, uncovering patterns and signals with little 
human effort.  Machine learning algorithms are ideally suited for such unsupervised or semi-
supervised tasks.  Indeed, they are having profound impact across a wide range of application 
fields due their ability to aid in learning and discovery. 
  
One such complex system is the interplay of human, climate, and mosquito dynamics that give 
rise to the transmission of mosquito-borne diseases like Dengue. Dengue fever, a viral 
mosquito-borne disease transmitted predominately by the Aedes aegypti and Aedes albopictus 
mosquitoes, infects an estimated 390 million people per year, with nearly half the world’s 
population living at risk of infection12. The global burden of dengue has doubled every 10 years 
over the last 3 decades13, and the disease is projected to expand its latitude range as global 
temperatures increase and create new suitable habitats for the Aedes mosquitoes among 
previously-unexposed human populations14. Short-term climate conditions, particularly 
temperature and precipitation, can create favorable conditions for the breeding and survival of 
Aedes mosquitoes that may increase the transmission of the dengue fever virus in humans. 
Distinct ranges of temperature and precipitation have been observed to have an influence on 
the extrinsic incubation period15,16, mosquito maturation rate17, length of larval hatch time18, 
survival rate19, and biting rate20. However, the relationships that govern these parameters and 
give rise to dengue transmission are complex and dynamic, changing over time and across 
geographies. Moreover, multi-year cycles of dengue fever outbreaks, caused by one or more 
circulating dengue fever serotypes (DENV I, II, III, IV) and short-term immunity conferred after 
infection, add an important layer of complexity to prediction21. 
  
The dengue forecasting literature lacks a systematic, self-adaptive, and generalizable 
framework capable of identifying weather and population susceptibility patterns that may be 
predictive of dengue fever outbreaks, particularly at the city-level. Vector-borne diseases 
commonly exhibit spatial heterogeneity, a result of spatial variation in vector habitat, weather 
patterns, and human control actions22–25. For developing forecast systems, this feature implies a 
trade-off between model consistency and spatial resolution. As a consequence, most studies to 
date focus on producing ad-hoc predictions for a single location, ranging from the national- to 
the city-level26–28, while others build and evaluate multiple modeling strategies per study site in 
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efforts to manually identify relationships between weather patterns and dengue incidence over 
different geographies and temporal windows29,30. Both approaches highlight the difficulty in 
producing forecast models that are viable in diverse settings. In contrast, data-driven techniques 
demonstrate promise by learning from multi-scale, complex systems and automatically adapting 
to new information, i.e. they provide an unsupervised or semi-supervised machine learning 
infrastructure. A recent descriptive study showed the promise of a data-driven approach in 
identifying weather patterns with meaningful signals for dengue fever outbreaks31. Specifically, 
their data-driven strategy identified temperature and frequency of precipitation as key features in 
forecasting dengue outbreaks by extracting windowed time intervals for different cities that were 
highly predictive. Motivated by such unsupervised learning algorithms, we build upon this data-
driven strategy to build a richer forecasting algorithm. 
  
Our contribution 

Focusing on the important but complex relationship between dengue incidence and (a) weather 
patterns and (b) the empirically observed 3-4 year disease burden cycles, we present a data-
driven, machine learning approach capable of autonomously and continuously identifying 
weather patterns and cycles in population susceptibility to predict dengue fever outbreak years. 
Specifically, our approach is dynamic, since it automatically identifies emerging predictive 
patterns as new information becomes available; it is adaptable to multiple and heterogeneous 
study areas with high spatial resolution, as it leverages a publicly and globally available 
meteorological dataset. We show the predictive potential of this framework in 20 Brazilian 
municipalities by producing annual retrospective, out-of-sample epidemic forecasts at the city-
level, months ahead of the historically-observed seasonal onset of dengue epidemics. We 
assess the feasibility of this autonomous learning approach using two simple weather inputs 
(temperature, rainfall) in 20 Brazilian cities with diverse microclimates and diverse Dengue 
incidence seasonal patterns, and, to give transparency to our framework, attempt to 
characterize the conditions under which predictions are unsuccessful. 

  
Results 
  
Exploiting weather signals to create a data-driven forecast system 

We obtained data on both annual dengue fever cases (Brazilian Ministry of Health) for 2001-
2017 and on daily temperature and precipitation (GMAO-NASA) for 2000-2016, for 20 dengue-
endemic municipalities (Fig. 1, Table S1) in Brazil. Weather patterns were extracted and 
analyzed across hundreds of partially-overlapping time intervals collectively spanning the last 7 
months of a given year, a time period that typically precedes the onset of epidemic outbreaks in 
Brazil. Each of these patterns were then assessed for their ability to predict an outbreak year 
(defined as a year in which the number of cases exceeds 100 per 100,000 persons) for the 
subsequent year. Retrospective and fully out-of-sample forecasts, trained on a yearly-expanding 
window, were produced for 10 years (2008-2017) and for each time interval using support 
vector machines, a binary classifier. Every year, the time intervals with high historical predictive 
power were automatically selected and evaluated in the upcoming year to produce out-of-
sample predictions for the subsequent dengue season (Fig. 1). An ensemble approach was 
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then implemented to determine, in an completely out-of-sample fashion (using the first 4 years 
of out-of-sample predictions to inform ensemble model selection), whether a year would be 
epidemic or not for the next 6 years (2012-2017). 
  
Figure 1. Ensemble forecast workflow. (A) To predict next year’s epidemic status, we extract 
features from a daily time series of temperature (K) and precipitation (mm) over a defined (t0, p) 
time interval and for each year in the training period. (B) We produce an array of features 
corresponding to the mean value of temperature and precipitation over the (t0, p) interval, and 
(C) train a support vector machine to classify next year’s epidemic status. (D) This process is 
repeated for all 432 (t0, p) intervals, and the top 11 models are automatically selected to (E) 
contribute to a majority voting system based on historic out-of-sample accuracy. 
  

  
This system, which autonomously identifies and exploits the predictions of multiple time 
windows during the calendar year, makes it possible to identify temporally similar regions of 
highly predictive periods of the year preceding dengue outbreaks, here referred to as “weather 
signatures.” Weather signatures represent time windows across years that show strong 
influence (predictive power) on the incidence of dengue in a subsequent year. We observed that 
cities where our methodology lead to higher prediction accuracy tended to have clear and 
robust weather signatures over the years, while cities where our approach was not strongly 
predictive did not exhibit consistent and robust weather patterns (Figs. 2, 3A). Further, we 
observed that strong weather signatures in our sample of cities often corresponded with or 
preceded important alternating tropical seasons, such as rainy and dry seasons. 
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Figure 2. The 10-year (2008-2017) out-of-sample forecast accuracy (%) for each time 
window of temperature and precipitation, by municipality. The x-axis (t0) indicates the start 
date of the time interval, and the y-axis (p) indicates the length of the time interval from which 
weather data were gathered (10-95 days). Models achieving at least 7/10 correct out-of- sample 
forecasts are shown in shades of yellow. Municipalities are ordered by decreasing ensemble 
prediction accuracy; that is, the proportion of years correctly forecasted by the ensemble 
method over the years 2012-2017. 
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Figure 3. Weather-based prediction results for 120 municipality-years. 
A) Annual out-of-sample forecasts of outbreak status (epidemic/non-epidemic) for 20 Brazilian 
municipalities from 2012-2017, shaded by mean posterior probability (MPP) of the true outbreak 
status. Correct forecasts are indicated by a plus (+) sign, and cells with light shading indicate 
that the model predicted the correct class with low probability. Municipalities are ordered by 
decreasing ensemble prediction accuracy; that is, the proportion of years correctly forecasted by
the ensemble method over the years 2012-2017. 
B) The number of total epidemic and non-epidemic years correctly forecasted across 20 
municipalities, by year. The dashed white line indicates the number correctly forecasted after 
incorporation of empirically-observed dengue cycles. 
C) The mean posterior class probability across municipalities, by year and epidemic status. 
 

  
Weather-based forecasting performance 
Using weather data (temperature and frequency of precipitation) alone to predict annual dengue 
outbreaks, our approach correctly forecasted 81% of all epidemic years across 20 municipalities 
in Brazil between 2012-2017 (Table 1, Fig. 3). For reference and as a baseline, the frequency of 
epidemic and non-epidemic years was 60% and 40%, thus, a naive approach that predicts that 
all years are epidemic (the class majority) would achieve an overall accuracy of 60%. Our 
approach only identified 58% of non-epidemic years correctly. This resulted in an overall 
accuracy of approximately 72%. Our approach significantly exceeded (p=0.005) the predictive 
power of a naive predictor. 
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Table 1. Performance of weather-based out-of-sample forecasts across 120 municipality-
years in Brazil, with and without consideration for DENV susceptibility cycles. 
 

 
  
Incorporating empirically observed dengue susceptibility cycles 
The previously described weather-based ensemble approach ignores important factors that may 
influence the emergence of epidemic outbreaks from year to year, such as the population 
susceptibility to being infected with the virus. Specifically, endemic transmission of dengue fever 
is typically distinguished by periodic outbreak cycles of around 3-4 years. These outbreak cycles
are thought to occur as a result of 1) an exhaustion of the susceptible population after an 
outbreak, and 2) and short-term cross-immunity to other circulating DENV serotypes after 
infection21, although can also be complicated by increased severity of a second infection32. Both 
factors result in a depletion of the population vulnerable to infection, and act as barriers to 
subsequent outbreaks. Independent of climate variability over the years, we expect some 
preservation of these susceptibility cycles. 
  
Inspired by this phenomenon, we implemented a data-driven hidden Markov model by 
empirically computing the frequency of transitioning between multiple sequences of epidemic 
and non-epidemic years. If the weather-based approach led to a very unlikely prediction, given 
the previously-observed sequence of outbreaks (for example, predicting an outbreak year when 
the susceptible population may be depleted as a consequence of multiple prior years of high 
Dengue activity), a decision rule was implemented to automatically override the weather-based 
prediction with a more likely prediction produced using the hidden Markov model (described in 
detail in Supplementary Material). 
  
Combining dengue cycles with weather patterns improve forecasts 

Compared to the exclusively weather-based approach, incorporating these empirically-observed 
dengue cycles into our system improved our ability to predict non-epidemic years by 
approximately 20% (specificity=69%) and increased overall accuracy to 74.2% (Table 1). 
Specifically, the additional decision rule replaced 7 epidemic forecasts with non-epidemic 
forecasts, of which 5 were correct (Fig. 3B). A majority of these cases belonged to cities which 
had experienced 3 consecutive epidemic years leading up to the prediction. 
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Overall, the combined approach (weather-based plus dengue cycles) was dominantly driven by 
weather patterns, and informed by the decision rule only in a few cases when historical data 
showed a very strong likelihood of either an epidemic or not epidemic year to happen. Thus, the 
decision rule to favor the Markov model acts as an “expert opinion” for situations in which there 
is clear evidence that a given predicted scenario (even if suggested by the weather patterns) is 
unlikely. Our specific finding - that the dengue cycles were used exclusively to overturn 
epidemic forecasts - suggests that while the weather conditions in those locations and years 
were identified to be conducive to an outbreak, there was stronger evidence that the population 
may have had low susceptibility to infection (thus avoiding an outbreak), based on multiple 
consecutive preceding years of high disease incidence. 
  
Model performance by year 

The success of our combined epidemic forecasts varied by year, reflecting the difficulty of 
forecasting disease activity relying only on weather patterns and the empirically extracted 
susceptibility cycles. During the last three years of the time series (2015-2017), epidemics were 
predicted by the weather-only models with at least 80% accuracy, with 100% of the 13 
outbreaks in 2016 correctly forecasted (Fig. 3B,C). Conversely, non-epidemic years during 
2013-2014 were particularly difficult to predict, with only one-third and one-half of cities correctly 
forecasting non-epidemics for these years, respectively. The most successful non-epidemic 
predictions occurred in 2012, for which 6 out of 8 non-epidemics (75%) were predicted correctly. 
Overall, 2015 and 2016 were the most successfully classified years, with 80% and 85% of 
municipalities correctly classified as epidemics or non-epidemics, respectively, while 2014 and 
2017 were the most difficult years to predict, with 45% and 35% of municipalities misclassified, 
respectively. 

Incorporating information on the dengue cycles helped detect an additional non-epidemic in 
2012 and 2015, and an additional 3 non-epidemics in 2017 (Fig. 3B). 

  
Quantifying the strength of predictions 

Because our forecast system produces deterministic binary predictions (epidemic/non-epidemic 
year) using local-in-time support vector machine classifiers, a natural question is how to quantify 
the conviction (or confidence) of each prediction. It is important to note that the number of 
observations per city is small (n=17), and thus, a rigorous probabilistic approach to quantify 
conditional probabilities of success is not feasible. However, in the interest of better 
communicating to public health officials the reliability of our predictions in a given location and 
time period, as well as to identify the determinants of success of our prediction system if one 
were to extend our predictive approach to new locations, we explored simple ways to 
characterize the accuracy and conviction of predictions. We did this based on both the historic 
performance of the selected ensemble generating the prediction, as well as the performance of 
the weather-based classifiers themselves. 
  
Our prediction system combines the output of a collection of local-in-time binary classifiers that 
use different time periods (characterized by an initial point in time, t0, and a window length, p), 
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prior to the typical date of the onset of dengue outbreaks, as predictors. For each city and each 
year, the combination of these outputs is calculated using a voting system that only considers 
time windows that have consistently exhibited the highest historical out-of-sample prediction 
performance among all other time windows of the calendar year. In our framework, time 
windows are automatically selected into the forecasting ensemble if (a) their own historic out-of-
sample performance is high and (b) the historical performance of their calendar neighbors, that 
is, models using temporally nearby time windows as predictors, is high as well. 
  
Consequently, we computed metrics of ensemble accuracy and strength (or confidence) by 
quantifying both of these elements. We found that in cities where the predictive performance of 
our approach is highest (Fig. S2), the successful individual classifiers that contribute to our final 
prediction use as input temporal regions that are clustered around one another (as shown in 
Fig. 4), suggesting that the presence of temporally consistent weather patterns can be thought 
of as an indicator of success of our methodology. 
  
Figure 4. Periods of the year selected into the ensemble forecast model for 2012-2017, by 
municipality. The x-axis (t0) indicates the start date of the time interval, and the y-axis (p) 
indicates the length of the time interval from which weather data were gathered (10-95 days). 
Municipalities with smaller and brighter yellow centers are those which exhibit the highest 
consistency in the predictive performance of weather patterns. Municipalities are ordered by 
decreasing ensemble prediction accuracy; that is, the proportion of years correctly forecasted by
the ensemble method over the years 2012-2017. 
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It is important to note that models with high historic prediction performance may still lead to poor 
outcomes if the weather data for the year of (out-of-sample) forecast does not clearly belong to 
an epidemic or non-epidemic class, as learned by the individual classifiers, and/or if its weather 
patterns happen to “look like” those appearing historically in the opposite class. 
  
In order to further assess the individual strength or conviction of each individual classifier, we 
estimated whether the separability or difference between the two classes (epidemic vs non-
epidemic) was well captured by the classifier by extracting calibrated posterior probabilities of 
each SVM model using Platt’s scaling33. The posterior probability reflects the distance to the 
separation boundary distinguishing epidemic and non-epidemic years on the basis of weather. 
Thus, a higher probability represents how strongly the weather patterns of the prediction year 
aligned with those experienced by prior outbreak or non-outbreak years. We observed that in 
general, the probabilities were moderately calibrated, i.e. roughly 80% of predictions made with 
0.8 probability were epidemics (Fig. S3); however, the small sample size (i.e. six out-of-sample 
years for each of the 20 cities) limits the ability to interpret this feature appropriately. We found 
that this measure of separability was not a particularly good indicator of accuracy; that is, our 
approach failed even in scenarios with high separability. Several factors may be driving this 
finding, including insufficient training data and the influence of factors beyond weather (e.g. 
sociodemographic characteristics, land use) on outbreaks; we elaborate further in 
Supplementary Material. 
  
Both approaches to characterize the confidence of our predictions – quantifying ensemble 
strength and quantifying the separability of the data – highlight separate limitations of our 
modeling framework. First, we expect that both a greater variety of environmental variables (e.g. 
humidity, vegetation, standing water) and non-environmental variables (e.g. human activity and 
public health interventions) will contribute to more accurate predictions by considering broader 
factors that contribute to dengue fever activity in a given location. Second, the robustness of our 
predictions was limited by a short time series of annual information, which may not be sufficient 
to detect clear differences in epidemic and non-epidemic years on the basis of weather alone. 
Nonetheless, our reproducible modeling framework can easily be extended to accommodate 
additional predictors and longer time series, and thus we highlight these as limitations of only 
the present case study, with potential for improved performance in other data settings. 
  
Discussion 
Here we have presented a novel approach to forecast dengue fever outbreak years in Brazil at 
its smallest administrative unit, the city level, using a single, dynamic and flexible modeling 
framework that uses only two weather variables and historical information on yearly dengue 
activity. Our approach automatically learns from weather and population susceptibility patterns 
of any inputted yearly time series of dengue incidence and leverages the best historic 
predictions to generate an ensemble forecast. We find that complementing our weather-based 
statistical approach with observed 3-4 year cycles of dengue fever outbreaks (as a proxy for 
population susceptibility) is key for our models to achieve higher accuracy and improve 
substantially in predicting non-epidemic years. These forecasts may provide timely information 
on dengue fever activity to policymakers months ahead of outbreak seasons. Further, our 
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entirely data-driven models show an ability to learn from complex relationships between dengue 
epidemics and climatic conditions and identify, in vastly different locations, potentially relevant 
weather patterns with likely biological significance. Importantly, these models can be 
immediately extended to other locations, requiring no location-specific manipulation or inputs 
aside from a globally-available time series of daily temperature and precipitation as well as a 
complete yearly record of Dengue incidence. 
  
Using weather information only, our models seek to characterize and exploit the predictive 
ability of distinct weather patterns preceding outbreak years. Because our framework 
automatically identifies the time periods for which weather patterns produce strong signals, it 
was possible to identify temporal weather signatures in multiple locations with vastly different 
ecosystems and geographic locations. For this, we observed that cities with better overall 
prediction accuracy had stronger weather signatures, suggesting perhaps some biological 
consistency. For example, the southeastern municipality of Barra Mansa (5 of 6 ensemble years 
predicted correctly) exhibited strong signals from time windows spanning the first half of the 
city’s rainy season, in October through December of each year. Farther north, the hot, wet, and 
humid municipality of Manaus (5 of 6 ensemble years predicted correctly), situated at the mouth 
of the Amazon, appeared to show two distinct weather signatures straddling the driest month of 
the year, August. These patterns, generated from 10 years of out-of-sample model predictions, 
suggest that in different regions of Brazil, weather may affect dengue transmission differently 
and at different times of the year. However, in locations where weather-based predictions were 
less successful, these signatures were not distinct; for instance, Rio de Janeiro (3 out of 6 
ensemble years predicted correctly) showed no clear temporal trend. In cities such as these, we 
might expect to see a lower influence of weather patterns on transmission compared to other 
predictors (e.g. policy, population behavior, human land use). We did not find clear patterns by 
geography, population density, or municipality size. We believe this work should catalyze 
important research both on the local influence of weather patterns on dengue outbreaks as well 
as the extent to which other factors drive outbreaks in these locations. Moreover, this data-
driven approach may help generate hypotheses on the relevance of multiple factors that may 
influence the dynamics of seasonal dengue outbreaks. 
  
Even weather conditions that appear highly suitable for an outbreak (or none), based on 
historical information, may be challenged by other factors that limit (or encourage) transmission 
of dengue. A key strength of our approach is the incorporation of empirically-observed 
information on dengue fever susceptibility cycles, to correct for potential short-term immunity 
that results from previous exposure to the dengue virus. We found that these susceptibility 
cycles were critical to the performance of models, particularly those which identified weather 
patterns suitable for a dengue outbreak in a year with potentially low population susceptibility to 
infection. For instance, this approach correctly identified 3 additional non-epidemics in 2017 
compared to weather patterns alone, supporting the discourse on the unusually low dengue 
activity seen in Brazil in 201734. Still, our models missed half (6/12) of non-epidemics in 2014, 
which was predicted by experts to be a low transmission year due to immunity provided by a 
large 2013 outbreak with no changes in circulating DENV serotypes35,36. Thus, incorporating 
information on specific circulating serotypes could be used to better detect changes in 
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population immunity and enhance our approach. Empirical and modeling-based seroprevalence 
studies may aid with this component, though this surveillance information is more challenging to 
routinely acquire37. Regardless, here we highlight the importance of incorporating mechanistic 
processes of disease transmission into data-driven approaches that may be otherwise blinded 
to them. 
  
Because dengue transmission is driven by multiple complex socioecological and biological 
factors, we expect our models to capture only a portion of the epidemiologic triangle. Here we 
show the performance of two simple and relevant weather indicators of dengue fever, but the 
incorporation of additional weather features (i.e. humidity, vegetation, soil water absorption) 
combined with a feature selection step may lead to improved accuracy of forecasts, by 
considering more complex weather conditions preceding dengue outbreaks. Still, we 
demonstrate robustness of our approach by replicating the study using an alternative feature 
extraction method, singular value decomposition, with similar results (Fig. S4, Supplementary 
Materials & Methods). Further, weather- and susceptibility-based models can contribute 
valuable information to larger ensemble approaches leveraging a collection of mobility, 
sociodemographic, epidemiologic, climatic, and biological information. 
  
Our approach also demonstrates the feasibility (and limitations) of predicting in a “small data” 
setting, wherein only 17 outcome data points were available in total for training and out-of-
sample predictions (each representing annual outbreak status between 2001-2017). We chose 
a short training period (initial 7 years) to maximize the number of out-of-sample predictions, but 
ultimately it is difficult to establish strong climatic distinctions between outbreak and non-
outbreak years in the data with so few samples. Thus, we anticipate improvement in 
performance for settings that have multiple decades of data, which would allow for longer 
training periods, improved separability in the data, and more stable identification of dengue 
susceptibility cycles, all improving the quality and robustness of predictions. 
  
Ultimately, this framework provides a simple, reproducible method of predicting dengue fever 
outbreak years in a wide range of locations. Given that the global and economic burden of 
dengue is placed at an estimated 390 million infections and $8.9 billion per year12,38, optimizing 
resource allocation for the disease prevention is critical. However, control of the Aedes 
mosquito requires weeks or months before effects are seen on the vector population, so 
predicting dengue outbreaks up to several months of their onset is ideal. Our reproducible 
approach, which uses of globally-available data with daily resolution, is intended to serve as an 
unsupervised learning framework to produce early outbreak warnings in any desired context, 
resulting in more efficient resource mobilization, budgeting, and prevention campaigns. 
Developing transparent early warning systems at the local level is emerging as a top global 
health priority, making our contribution both timely and impactful. 
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Materials and Methods 
We developed a single, flexible modeling framework capable of identifying potentially useful 
weather patterns to predict dengue fever, and used this to forecast annual outbreak status 
(epidemic / non-epidemic). 
  
Our workflow, outlined in Fig. 1, combines elements from signal processing/spectral analysis, 
machine learning, and ensemble modeling to achieve robust, data-driven epidemic forecasts 
that do not require any prior knowledge of the system (i.e. climatic influences on dengue 
transmission). Our research question is inherently one of time series classification, to forecast 
epidemic vs. non-epidemic years of dengue fever. The workflow begins with a time series of 
hourly and daily weather information, which serve as inputs to a collection of classifiers that 
contribute to ensemble-based epidemic predictions. Our approach can be described in 5 steps: 

1. Signal preprocessing: for a time series of weather data, define time intervals of varying 
sizes (10-95 days across the last 7 months of the calendar year), and use a windowing 
technique31 to include information within several days of the interval.  In contrast to31, 
there are no deleterious effects due to missing temperature data since it is acquired via 
satellite instead of ground measurements. 

2. Time series feature extraction: extract a simple summary measure for 2 weather 
variables with known influence on mosquito-borne disease dynamics, temperature and 
frequency of precipitation.  Although more variables can be considered, they have little 
influence on the predictive power in comparison with the two selected31. 

3. Independent model training and prediction: train a collection of independent support 
vector machine (SVM) classifiers on historical information from each unique time 
interval, and generate an out-of-sample epidemic prediction for the following year.  
Although SVM was used in31, we provide here a richer out-of-sample prediction scheme 
for forecasting. 

4. Model selection: choose the best 11 models, representing strongly predictive periods of 
the year preceding outbreaks, based on a) historical out-of-sample prediction accuracy 
and b) out-of-sample performance of neighboring time intervals 

5. Ensemble prediction: determine a final out-of-sample epidemic forecast by majority vote 
of the selected top models 

  
To potentially enhance the performance of this exclusively weather-based approach, we 
implemented a post-hoc step incorporating empirical information on 3- and 4-year dengue fever 
cycles as a proxy for population susceptibility to infection. 

1. Dengue cycles: implement a decision rule governed by the second- and third-order 
Markov transition probabilities, reflecting the transition between consecutive sequences 
of epidemic and non-epidemic states 

  
We applied our approach to 20 cities in Brazil spanning large geographic and population ranges 
(Fig. S1, Table S1). We used as input a historical time series spanning 17 years and consisting 
of information on dengue case reports (number, annual) and 2 weather variables: 2-meter air 
temperature (Kelvin, daily) and precipitation (kg/m2, hourly). We describe data sources, 
acquisition, and processing in the Supplementary Materials. After an initial training period of 7 
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years, we generated 10 years of out-of-sample epidemic predictions for each of the independent 
models using a one-year expanding training window (Step 2). We used the first 4 years of out-
of-sample predictions to inform ensemble model selection (Step 4), and produced ensemble-
based predictions for the remaining 6 years (Step 5). 
  
Signal preprocessing 
  
Using a daily time series of weather data to forecast dengue fever epidemic status requires 
identifying the most predictive period(s) of the calendar year during which weather information 
contains a strong signal for subsequent dengue fever outbreaks. In order to construct a single 
framework that can automatically identify important weather signals in multiple different 
locations with vastly different ecosystems and weather patterns, we allow the data to inform the 
choice of time intervals. Our algorithm achieves this by scanning over multiple, partially-
overlapping time intervals across the calendar year, and building hundreds of models on these 
different intervals in order to select those with the strongest signals. 
  
Each time interval is defined by a start date, t0, between early June and late September, and a 
period length, p, of between 10 and 95 days. The combination of each (t0, p) produces multiple, 
partially-overlapping intervals spanning the last 7 months of the calendar year. 
  
Borrowing from spectral analysis and wavelet decomposition, we use a windowing-inspired 
approach to better capture signals within the time intervals. Windowing is typically used to 
improve signal clarity, and here we apply a rectangular “range” as described in31 to incorporate 
information in the days both within and around each time interval. We define a rectangle of 5 x 
6, indicating that, for every defined (t0, p) time interval, the algorithm collects information from 5 
consecutive start dates, t0, t0+1, … , t0+4, spanning 6 consecutive period lengths, p, p+1, … , 
p+5. Each time interval and weather variable, then, is summarized by 30 data points, each 
capturing slightly different temporal slices from the time series. This process effectively adds a 
bit of redundant information to the model building process - to which our learning algorithm, the 
support vector machine, is in general robust - in order to pick up signals in the data that may not 
be captured by applying an arbitrary “start” and “end” cutoff to the data. 
  
Time series feature extraction 
  
Time series data must be transformed into appropriate inputs in order to be used in supervised 
learning models. This process, called time series feature extraction, involves computing 
summary features of the time series, which can range from simple means to complex wavelet 
transforms. To test the feasibility of our approach using only simple summary features, we 
extracted the following features within each (t0, p) time interval based on the findings of31: 1) the 
arithmetic mean of daily temperature, and 2) mean precipitation frequency, with frequency 
defined as the time interval (in days) between peaks (local maxima) of daily precipitation. In the 
Supplementary Materials, we present an alternative method of feature extraction using singular 
value decomposition. 
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Independent model training and prediction 
  
The goal of our independent model building step is to identify dynamically, through the 
continually-updating performance of a collection of models, the periods of the year that are most 
predictive of annual dengue outbreaks, in order to exploit a small number of them to generate 
forecasts. 
  
To forecast outbreak years, we trained a collection of support vector machine (SVM) classifiers 
on an initial 7 year training period, and produced annual forecasts incorporating the most 
recently available weather information using a dynamic, one-year expanding training window. A 
unique SVM was trained for each of the (t0, p) time intervals, resulting in a total of 432 
independent models trained per year. Each model generated out-of-sample predictions for the 
remaining 10 years of data. Predictions were made by classifying the 30 out-of-sample data 
points corresponding to the weather information preceding the target year, and taking a majority 
vote. In order to handle highly nonlinear relationships between weather variables, both radial 
basis function (RBF) and sigmoid kernels were used and evaluated for performance, and show 
results for the best respective kernel in each city. We tuned model parameters (gamma, soft 
margin cost function, and coefficient) using 10-fold cross-validation. 
  
Support vector machines, a supervised learning method for classification, were used because of 
their flexibility in the face of complex, nonlinear decision boundaries and their robustness to 
overfitting and outliers. The property that underpins these advantages is known as the “large-
margin classifier.” SVMs are also known for their good performance in high-dimensional feature 
space, which is advantageous for the scale-up of the model to include dozens more predictors. 
  
Model selection 
  
From the resulting collection of 432 models, the best-performing models (n=11) were selected 
each year based on a) historical out-of-sample prediction accuracy (% outbreak forecasts 
correct) and b) out-of-sample prediction accuracy of neighboring models (representing similar 
time intervals). These models thus represent strongly predictive periods of the year preceding 
outbreaks, and the algorithm rewards the high performance of similar temporal windows over 
the high performance of a time window whose neighbors exhibit poor prediction tendencies. 
Because the model building process is dynamic, resulting in a new collection of models each 
year with continually-updating performance measures, the selection of the 11 models changes 
from year to year. 
  
In order to get a sense of the out-of-sample performance of the 432 models, we allowed all 
models to generate 4 years of out-of-sample predictions before the top 11 models were selected 
based on this prediction accuracy. As a result, the ensemble approach, which exploited the 
predictions of the top 11 models, was used for the final 6 years of out-of-sample predictions. 
  
Ensemble prediction 
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Ensemble learning helps improve machine learning algorithms by combining the results of 
multiple trained predictors in order to generate a single, robust prediction. In our approach, we 
combine the results from the strongest-performing models, which represent the most highly 
predictive time periods preceding dengue outbreaks. While there are an abundance of 
ensembling methods in machine learning, we use a simple majority vote of the 11 models to 
decide a single forecast. These single forecasts were produced for the last 6 years of the 17-
year dataset, representing the culmination of a prediction process that involves: 7-year initial 
training period, 4-year out-of-sample model calibration period, and 6-year out-of-sample 
ensemble prediction period. Across 20 Brazilian municipalities, this scheme produced 120 
municipality-years of out-of-sample ensemble predictions. 
  
Dengue cycles 
  
Our weather-based ensemble approach remains ignorant to the relationship between weather 
patterns and dengue outbreaks, instead allowing the data to drive model selection and 
predictions. However, endemic transmission of dengue fever is typically distinguished by 
periodic outbreak cycles of around 3-4 years. These outbreak cycles are thought to occur as a 
result of 1) an exhaustion of susceptibles after an outbreak, and 2) and short-term cross-
immunity to other circulating DENV serotypes after infection21. Both factors result in a depletion 
of the population vulnerable to infection, and act as barriers to subsequent outbreaks. 
Independent of climate variability over the years, we expect some preservation of these cycles. 
  
Consequently, we implemented a “decision rule” in the model based on the observed transitions 
between epidemic- and non-epidemic years across 51 Brazilian municipalities meeting endemic 
inclusion criteria (Supplemental Information). Across these municipalities, we computed the 
mean second- and third-order Markov transition probabilities, representing the probability of 
transition from one outbreak state (epidemic/non-epidemic) to the opposite outbreak state (non-
epidemic/epidemic) after 2 and 3 consecutive years, respectively. Thus, we obtained the 
transition probabilities governing the following 3- and 4-year cycles: 001, 110, 0001, and 1110 
(0= non-epidemic year, 1= epidemic year). Transition probabilities were computed based only 
on the first 11 years of data; that is, the years preceding the 6 out-of-sample ensemble 
predictions. 
  
Our decision rule acts as a surrogate “expert opinion,” overturning the ensemble prediction if the 
probability of a specific transition exceeded the percent of model votes (out of 11 votes). For 
example, if the ensemble predicts an epidemic year to succeed 2 epidemic years with 7 votes, 
the corresponding “strength” of that vote is 63% (7/11), which is weaker than the corresponding 
observed second-order transition probability for a non-epidemic year to follow 2 epidemic years 
(0.71). In this case, the model vote would be overridden to predict a non-epidemic year instead 
of an epidemic year. 
  
We compared the performance of predictions based solely on weather patterns to those which 
incorporate additional empirical data from outbreak cycles. 
Data Availability 
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The epidemiologic data used in this study are available from the Brazilian Ministry of Health 
DataSUS: http://www2.datasus.gov.br/DATASUS/index.php?area=0203&id=29878153. 
Meterological data (MERRA-2) are available through the Global Modeling and Assimilation 
Office (GMAO) at NASA Goddard Space Flight Center: 
https://disc.gsfc.nasa.gov/datasets?keywords=%22MERRA-
2%22&page=1&source=Models%2FAnalyses%20MERRA-2. 
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