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Abstract	

	

RNA	modifications	affect	the	stability	and	function	of	RNA	species,	regulating	important	

downstream	processes.	Modification	levels	are	often	dynamic,	varying	between	tissues	

and	individuals,	although	it	is	not	always	clear	what	modulates	this	variation	or	what	

impact	 it	 has	 on	 biological	 systems.	Here,	we	 quantify	 variation	 in	RNA	modification	

levels	at	 functionally	 important	positions	 in	 the	mitochondrial	genome	across	11,552	

samples	 from	 39	 tissue/cell	 types	 and	 find	 evidence	 that	modification	 levels	 impact	

mitochondrial	 transcript	 processing.	We	 identify	 novel	 links	 between	mitochondrial	

RNA	modification	 levels	 in	whole	 blood	 and	 genetic	 variants	 in	 the	 nuclear	 genome,	

including	missense	mutations	 in	LONP1	 and	PNPT1,	 as	well	as	missense	mutations	 in	

MRPP3,	 SLC25A26	 and	 MTPAP	 that	 associate	 with	 RNA	 modification	 levels	 across	

multiple	tissue	types.	Genetic	variants	linked	to	modification	levels	are	associated	with	

multiple	disease	phenotypes,	 including	blood	pressure,	breast	 cancer	and	Moyamoya	

disease,	suggesting	a	role	for	these	processes	in	complex	disease.	
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Introduction	

	

RNA	modifications	 are	 post-transcriptional	 changes	 to	 the	 chemical	 composition	 of	 nucleic	

acids	and	represent	a	means	by	which	RNA	function	can	be	fine-tuned	(Li	and	Mason	2014).	

Sites	 of	 RNA	 modification	 are	 often	 highly	 evolutionarily	 conserved	 and	 are	 crucial	 for	

processes	 such	 as	 development,	 cell	 signalling	 and	 maintenance	 of	 the	 circadian	 rhythm,	

pointing	 to	 a	 major	 role	 for	 RNA	 modification	 in	 fundamental	 cellular	 processes	 (Li	 and	

Mason	 2014).	 To	 date,	 over	 160	 different	 types	 of	 RNA	modification	 have	 been	 identified	

(Boccaletto	et	al.	2018),	occurring	on	several	 types	of	RNA	molecule,	 though	they	are	 found	

most	abundantly	on	ribosomal	and	transfer	RNAs	(Machnicka	et	al.	2013).	The	exact	role	of	an	

RNA	modification	depends	on	the	type,	location	and	target	of	the	modification.	Within	tRNAs	

for	example,	modifications	 in	 the	anticodon	 region	 can	 increase	a	 tRNAs	decoding	 capacity,	

and	improve	translational	fidelity	(Yarian	et	al.	2002),	whereas	modifications	to	the	core	of	a	

tRNA	 molecule	 can	 promote	 correct	 folding	 and	 structural	 stability	 (Helm	 2006).	

Modifications	 to	 rRNA	 molecules	 are	 largely	 involved	 in	 the	 stabilisation	 of	 the	 ribosome	

structure,	 but	 can	 also	 facilitate	 protein	 synthesis	 (Sloan	 et	 al.	 2017),	 and	modifications	 to	

mRNA	molecules	can	affect	the	maturation,	translation	and	degradation	of	an	mRNA	molecule	

by	either	recruiting	additional	proteins	or	by	altering	 the	secondary	structure	of	 the	mRNA	

(Zhao	 et	 al.	 2017).	 Importantly,	 not	 all	 modifications	 are	 fixed;	 instead,	 some	 display	 a	

dynamic	range	of	modification	(Hauenschild	et	al.	2015),	which	may	in	turn	reflect	a	dynamic	

mode	of	RNA	regulation.		

	

Interest	 in	RNA	modifications	 has	 recently	 been	 renewed,	 due	 to	 the	 development	 of	 high-

throughput	 technologies	 that	 can	 detect	 modifications	 on	 a	 transcriptome-wide	 scale.	

However,	these	studies	are	often	small	in	scale	and	limited	to	specific	cell	lines,	and	frequently	

focus	on	the	detection	of	novel	modification	sites	rather	than	attempt	to	survey	the	dynamic	
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range	 of	 modification	 level	 across	 a	 large	 number	 of	 sites	 and	 samples	 (Clark	 et	 al.	 2016;	

Dominissini	 et	 al.	 2016;	 Li	 et	 al.	 2017;	 Safra	 et	 al.	 2017).	 	 Here,	 we	 utilise	 computational	

methods	(Sanchez	et	al.	2011;	Hodgkinson	et	al.	2014;	Hauenschild	et	al.	2015;	Idaghdour	and	

Hodgkinson	2017)	 to	quantify	RNA	modification	 levels	across	a	 total	of	11,552	human	RNA	

sequencing	 (RNAseq)	 libraries	 in	 39	 tissue/cell	 types.	 Within	 this,	 we	 focus	 on	 data	 from	

mitochondrial-encoded	 RNA,	 where	 due	 to	 its	 abundance	 across	 all	 tissues,	 we	 can	 detect	

RNA	 modifications	 at	 multiple	 functionally	 important	 positions	 along	 the	 mitochondrial	

transcriptome.	

	

Mitochondria	have	essential	roles	in	multiple	cellular	processes,	including	energy	production,	

signalling,	ion	metabolism	and	apoptosis.	The	mitochondrial	genome	encodes	2	rRNA	genes,	

22	 tRNA	 genes,	 and	 13	 mRNA	 genes	 (Anderson	 et	 al.	 1981),	 and	 is	 transcribed	 poly-

cistronically,	after	which	it	is	processed	according	to	the	‘tRNA	punctuation	model’	to	release	

individual	RNA	components	(Ojala	et	al.	1981),	whereby	tRNAs	 interspersed	between	rRNA	

and	mRNA	genes	are	cleaved	by	nuclear-encoded	proteins	(Holzmann	et	al.	2008;	Brzezniak	

et	al.	2011;	Sanchez	et	al.	2011;	Powell	et	al.	2015).	Intermediate	and	mature	RNA	transcripts	

harbour	extensive	RNA	modifications,	which	impact	features	such	as	transcript	structure	and	

stability	that	can	be	important	for	both	processing	and	function	(Rorbach	and	Minczuk	2012).	

Interestingly,	steady	state	levels	of	mature	mitochondrial	transcripts	vary	substantially	from	

the	 1:1	 ratio	 that	might	 be	 expected	 from	 polycistronic	 transcription	 (Mercer	 et	 al.	 2011),	

indicating	 the	 importance	 of	 post-transcriptional	 processes	 in	 the	 maintenance	 of	

mitochondrial	homeostasis.	

	

In	illustration	of	this,	knock-down	of	nuclear	encoded	mitochondrial	RNA	processing	enzymes	

in	 mice	 leads	 to	 the	 accumulation	 of	 unprocessed	 mitochondrial	 encoded	 transcripts,	

decreased	levels	of	protein	synthesis	and	altered	mitochondrial	respiration	rates	(Sanchez	et	
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al.	2011;	Sen	et	al.	2016).	Likewise,	altered	modification	of	mitochondrial-encoded	RNA	can	

have	 similar	 consequences;	 1)	 methylation	 of	 bases	 on	 the	 ninth	 position	 of	 certain	

mitochondrial	tRNAs	is	understood	to	have	an	impact	on	tRNA	structure	and	stability	(Helm	

et	 al.	 1999;	Helm	2006)	which	 in	 turn	may	 influence	post-transcriptional	 tRNA	 recognition	

and	cleavage	dynamics	and	therefore	downstream	protein	translation;	2)	methylation	of	mt-

RNR2	 transcripts	 at	mtDNA	 position	 2617	 is	 believed	 to	 provide	 stabilising	 interactions	 to	

mature	mitoribosomes,	and	 lack	of	methylation	at	 this	position	has	been	 linked	to	 impaired	

mitochondrial	 protein	 synthesis	 (Bar-Yaacov	 et	 al.	 2016);	 3)	 methylation	 of	 mt-ND5	

transcripts	at	mtDNA	position	13710	varies	according	to	tissue	type	(Safra	et	al.	2017),	and	

interferes	 with	 translation	 through	 mitoribosome	 stalling	 and	 leads	 to	 decreased	 protein	

levels	 (Li	 et	 al.	 2017).	 In	 this	 study,	 we	 focus	 on	 quantifying	 variation	 in	 mitochondrial	

encoded	RNA	modification	 levels	 at	 these	 three	 classes	 of	 site	 on	 a	 population	 level	 across	

multiple	 tissue	 types.	We	 perform	 quantitative	 trait	mapping	 using	mitochondrial-encoded	

RNA	 modification	 rates	 in	 order	 to	 identify	 nuclear	 genetic	 variants	 and	 genes	 that	 are	

involved	in	the	regulation	of	these	processes	across	tissues,	and	to	unravel	their	downstream	

functional	consequences.	

	

	

Results	

	

Overview		

	

In	 order	 to	 study	 variation	 in	 modification	 levels	 of	 mitochondrial-encoded	 RNA	 across	

multiple	 tissue	 types,	we	mapped	 and	 filtered	 13,857	 RNAseq	 samples	 from	 39	 tissue/cell	

types,	across	5	independent	datasets	(see	Methods	and	Materials,	Supplementary	Table	1),	to	

the	 human	 reference	 genome	 using	 a	 stringent	 pipeline	 optimised	 for	 the	 analysis	 of	
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mitochondrial	data.	Previous	work	has	demonstrated	 that	 the	 levels	of	 a	particular	 form	of	

mitochondrial	RNA	modification	(RNA	methylation)	can	be	inferred	at	particular	nucleotides	

using	the	proportion	of	mismatching	bases	in	RNAseq	data	(Mercer	et	al.	2011;	Sanchez	et	al.	

2011;	Hauenschild	et	al.	2015)	(see	Methods	and	Materials	for	details).	As	such,	we	use	this	

proportion	to	quantify	the	level	of	RNA	methylation	at	three	categories	of	modified	site	where	

RNA	 methylation	 is	 known	 to	 be	 functionally	 important;	 1a)	 methylation	 at	 position	 9	

(henceforth	referred	to	as	P9	sites)	of	13	different	mt-tRNAs	along	the	mitochondrial	genome,	

1b)	 an	 averaged	 estimate	 of	 methylation	 level	 across	 11	 different	 mt-tRNA	 P9	 sites	 that	

consistently	 show	variation	 in	whole	blood	 (Hodgkinson	et	al.	2014),	2)	methylation	at	mt-

DNA	positon	2617	within	mt-RNR2	and	3)	methylation	at	mt-DNA	position	13170	within	mt-

ND5.		

	

RNA	Methylation	Patterns	Across	Tissues	

	

Across	 the	 39	 different	 tissue/cell	 types	 examined,	 blood,	 brain,	 muscle	 and	 nerve	 tissues	

show	the	highest	levels	of	RNA	methylation	across	all	tRNA	P9	sites	combined,	with	average	

levels	of	11-25%,	7-12%,	11%,	and	10%	respectively	(ranges	shown	where	multiple	dataset-

tissue	 type	 pairs	 are	 available).	 In	 contrast,	 the	 lowest	 levels	 of	 tRNA	 methylation	 are	

observed	in	cell	 lines,	with	average	levels	across	P9	sites	ranging	between	0.3-0.5%	in	LCLs	

and	 at	 0.7%	 in	 transformed	 fibroblasts	 (Fig.	 1a,	 Supplementary	 Fig.	 1).	 RNA	 methylation	

levels	also	vary	between	individual	tRNA	P9	positions	along	the	mitochondrial	genome.		For	

example,	across	all	datasets	methylation	levels	at	tRNA	position	3238	have	an	average	value	

of	0.9%,	whereas	the	average	methylation	levels	at	position	8303	is	12%.	To	test	whether	mt-

tRNA	 P9	methylation	 levels	 are	 similar	 between	 different	 P9	 sites	 along	 the	mitochondrial	

transcriptome	within	an	individual,	we	measured	correlations	between	methylation	levels	at	

each	pair	of	mt-tRNA	P9	sites	within	each	dataset-tissue	type	pair.	Across	all	individuals	and	
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dataset-tissue	types,	all	correlation	coefficients	were	significant	after	correction	for	multiple	

testing,	 and	 centred	 around	 0.75,	 ranging	 between	 0.18-0.95	 (Fig.	 1b),	 suggesting	 that	

methylation	 levels	 at	 different	 P9	 sites	 are	 broadly	 consistent	 along	 the	 mitochondrial	

transcriptome	within	each	individual.	

	

Outside	 of	 tRNAs,	 the	 average	methylation	 level	 at	mt-rRNR2	 (position	 2617)	 and	mt-ND5	

(position	 13710)	 transcripts	 are	 generally	 high	 across	 all	 tissues	 examined	 (Fig.	 1a),	 with	

sample	wide	average	values	of	55%	and	10%	respectively.	 Considering	mt-RNR2	 transcript	

methylation	levels	across	tissues,	average	levels	range	between	38%	in	GTEx	Testis	and	67%	

in	GTEx	Heart	(Atrial	Appendage).	Across	tissues,	average	levels	of	transcript	methylation	at	

mt-ND5,	 a	 protein	 coding	 gene,	 show	 more	 variation,	 ranging	 between	 1%	 in	 TwinsUK	

subcutaneous	 adipose	 and	 23%	 in	 NIMH	 whole	 blood.	 Within	 dataset-tissue	 pairs,	 we	

additionally	 see	 considerable	 variation	 in	 transcript	 methylation	 levels	 across	 individuals	

(Supplementary	 Fig.	 2).	 For	 example,	 at	 position	 2617	 in	 the	 CARTaGENE	 whole	 blood	

dataset,	methylation	 levels	 vary	between	0.48-0.72,	 and	between	0.11-0.76	 in	 the	Geuvadis	

lymphoblastoid	cell	line	(LCL)	data.		

	

To	test	 if	mitochondrial	RNA	methylation	levels	(at	tRNA	P9	sites,	within	the	mt-rRNR2	site	

and	 within	 the	 mt-ND5	 site)	 are	 correlated	 across	 tissue	 types	 within	 an	 individual,	 we	

selected	 individuals	 from	the	GTEx	dataset,	where	RNAseq	data	 from	the	 largest	number	of	

alternative	 tissue	 types	 were	 available,	 and	 measured	 pairwise	 correlations.	 For	 tRNA	 P9	

sites,	 11%	 of	 pairwise	 comparisons	 were	 significant	 after	 correction	 for	 multiple	 testing	

(median	 r=0.42,	 range	 0.28-0.7,	 Fig.	 1c).	 At	 the	 mt-RNR2	 (position	 2617)	 and	 mt-ND5	

(position	13710)	sites,	76%	(median	r=0.49,	range	0.24-0.81)	and	95%	(median	r=0.59,	range	

0.3-0.88)	 of	 correlation	 coefficients	 are	 significant	 after	 correction	 for	 multiple	 testing	

respectively	 (Fig.	 1c).	 Collectively,	 these	 results	 demonstrate	 detectable	 variation	 in	
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mitochondrial	encoded	RNA	methylation	levels	at	the	individual	and	population	level,	as	well	

as	 consistency	 in	 the	 levels	 observed	 along	 the	 mitochondrial	 transcriptome	 and	 across	

tissues,	suggesting	the	presence	of	shared	underlying	regulatory	mechanisms.	

	

	

Figure	1.	(a)	Average	RNA	methylation	levels	calculated	across	datasets	and	tissue/cell	types	
at	three	categories	of	methylated	site:	averaged	values	across	11	mt-tRNA	P9	sites,	mt-RNR2	
(position	2617)	and	mt-ND5	(position	13170).	(b)	Correlation	coefficients	between	tRNA	P9	
methylation	levels	within	an	individual,	measured	across	individuals	in	all	datasets	and	tissue	
types.	 (c)	 Correlation	 coefficients	 between	 samples	 with	 methylation	 levels	 measured	 in	
multiple	 tissues,	 measured	 at	 tRNA	 P9	 sites,	 mt-RNR2	 and	 mt-ND5.	 WBL:Whole	 Blood,		
ASU:Adipose	 Subcutaneous,	 	 SNE:Skin	 Not	 sun	 Exposed,	 LCL:Lymphoblastoid	 Cell	 Line,	
AVO:Adipose	Visceral	Omentum,	AGL:Adrenal	Gland,	AAO:Artery	Aorta,	ACO:Artery	Coronary,	
ATI:Artery	 Tibial,	 BAM:Brain	 Amygdala,	 BAC:Brain	 Anterior	 cingulate	 cortex,	 	 BCB:Brain	
Caudate	 basal	 ganglia,	 BCH:Brain	 Cerebellar	Hemisphere,	 BCE:Brain	 Cerebellum,	 BCO:Brain	
Cortex,	BFC:Brain	Frontal	Cortex,	BSC:Brain	Spinal	cord	cervical,	BSN:Brain	Substantia	nigra,	
BHI:Brain	 Hippocampus,	 BHY:Brain	 Hypothalamus,	 BNA:Brain	 Nucleus	 accumbens	 basal	
ganglia,	 BPB:Brain	 Putamen	 basal	 ganglia,	 BMT:Breast	 Mammary	 Tissue,	 CTF:Cells	
Transformed	 Fibroblasts,	 CSI:Colon	 Sigmoid,	 CTR:Colon	 Transverse,	 EGJ:Esophagus	
Gastroesophageal	 Junction,	 EMUC:Esophagus	 Mucosa,	 EMUS:Esophagus	 Muscularis,	
HAA:Heart	 Atrial	 Appendage,	 HLV:Heart	 Left	 Ventricle,	 LUN:Lung,	 MSK:Muscle	 Skeletal,	
NTI:Nerve	 Tibial,	 PAN:Pancreas,	 SSE:Skin	 Sun	 Exposed,	 STO:Stomach,	 TES:Testis,	
THY:Thyroid		
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Nuclear	Genetic	Associations	

	

To	identify	nuclear	genetic	variation	associated	with	mitochondrial-encoded	RNA	methylation	

levels,	we	obtained	genome-wide	genotyping	data	for	the	same	samples	that	we	had	RNA	data	

for,	and	carried	out	association	analyses	within	each	of	the	39	tissue/cell	types	for	the	level	of	

methylation	 at	 functionally	 important	 positions	 within	 the	 mitochondrial	 genome.	 This	

included	 methylation	 levels	 at:	 1a)	 13	 different	 tRNA	 P9	 sites	 along	 the	 mitochondrial	

genome,	1b)	a	 combined	measure	across	multiple	 tRNA	P9	 sites	 (see	methods),	2)	position	

2617	within	mt-rRNR2	 and	3)	 at	 position	13710	within	mt-ND5.	 For	 tissues	where	we	had	

multiple	independent	datasets,	which	includes	whole	blood,	adipose,	skin	(non-sun	exposed)	

and	LCLs,	we	then	carried	out	meta-analyses.	Across	all	association	studies,	we	corrected	for	

multiple	 testing	 by	 accounting	 for	 genome-wide	 testing,	 the	 number	 of	 methylation	 sites	

examined	 and	 the	 number	 of	 tissues	 included	 in	 the	 analysis,	 resulting	 in	 a	 significance	

threshold	of	P	<	6.79	x	10-11.	

	

Across	 all	 tissue	 types	 and	 mitochondrial	 RNA	 positions	 where	 we	 quantify	 methylation	

levels,	 we	 find	 a	 total	 of	 47	 significant	 associations	 (peak	 nuclear	 genetic	 variant	 and	

mitochondria	 encoded	 RNA	methylation	 level	 pairs).	Most	 associations	 occur	 in	 tissues	 for	

which	we	have	multiple	independent	datasets,	and	thus	larger	sample	sizes	(Table	1,	Figure	2	

for	associations	observed	in	whole	blood);	25	nuclear	genetic	loci	are	significantly	associated	

with	 mitochondrial-encoded	 RNA	 methylation	 levels	 in	 whole	 blood,	 4	 are	 detected	 in	

subcutaneous	adipose,	2	in	non-sun	exposed	skin	and	1	in	LCLs.	In	single	dataset	tissues,	we	

identify	15	significantly	associated	loci	across	four	different	tissue	types:	artery	(aorta),	nerve	

(tibial),	 oesophagus	 (muscularis	 and	 gastroesophageal	 junction)	 and	 heart	 (left	 ventricle)	

(Supplementary	Table	2).	Across	all	associated	loci,	many	regions	are	overlapping	in	different		
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Table	1:	Significant	associations	between	nuclear	genetic	variation	and	mitochondrial	RNA	
methylation	level	for	meta-analysed	tissues.	Alleles	presented	in	the	‘A1’	column	represent	
the	minor	allele,	and	the	values	in	column	‘N’	represent	the	number	of	studies	contributing	
the	meta-analysis,	for	that	row.		
	

	

	 	

Tissue	
Mito	

Position	 rsID	 CHR	 BP	 A1	 N	 BETA	 P	
SNP	
Type	

SNP	
Location	

Mediator	
Genes	

Whole	Blood	 585	 rs13874	 3	 66419956	 T	 3	 0.0204	 3.36E-51	 Missense	 SLC25A26	 SLC25A26	

Whole	Blood	 585	 rs11156878	 14	 35735967	 G	 4	 0.0136	 1.63E-20	 Missense	 MRPP3	 -	

Whole	Blood	 1610	 rs13874	 3	 66419956	 T	 3	 0.0453	 1.50E-65	 Missense	 SLC25A26	 SLC25A26	

Whole	Blood	 1610	 rs11156878	 14	 35735967	 G	 4	 0.042	 4.64E-35	 Missense	 MRPP3	 -	

Whole	Blood	 3238	 rs13874	 3	 66419956	 T	 3	 0.002	 8.77E-15	 Missense	 SLC25A26	 -	

Whole	Blood	 3238	 rs11156878	 14	 35735967	 G	 4	 0.003	 5.09E-20	 Missense	 MRPP3	 -	

Whole	Blood	 4271	 rs11156878	 14	 35735967	 G	 4	 0.0082	 1.16E-13	 Missense	 MRPP3	 -	

Whole	Blood	 5520	 rs11156878	 14	 35735967	 G	 4	 0.0477	 3.23E-37	 Missense	 MRPP3	 -	

Whole	Blood	 7526	 rs13874	 3	 66419956	 T	 2	 0.0244	 5.61E-18	 Missense	 SLC25A26	 SLC25A26	

Whole	Blood	 7526	 rs11156878	 14	 35735967	 G	 3	 0.0327	 8.46E-21	 Missense	 MRPP3	 -	

Whole	Blood	 8303	 rs11156878	 14	 35735967	 G	 3	 0.0498	 7.90E-29	 Missense	 MRPP3	 -	

Whole	Blood	 9999	 rs11156878	 14	 35735967	 G	 4	 0.0757	 1.69E-87	 Missense	 MRPP3	 -	

Whole	Blood	 9999	 rs11085147	 19	 5711930	 T	 4	
-

0.0431	 4.68E-15	 Missense	 LONP1	 -	

Whole	Blood	 10413	 rs3820190	 1	 12033120	 C	 3	
-

0.0241	 3.11E-12	 Intronic	 PLOD1	 PLOD1	

Whole	Blood	 10413	 rs11156878	 14	 35735967	 G	 4	 0.082	 1.10E-87	 Missense	 MRPP3	 -	

Whole	Blood	 12146	 rs11156878	 14	 35735967	 G	 4	 0.0659	 8.94E-81	 Missense	 MRPP3	 -	

Whole	Blood	 12146	 rs11085147	 19	 5711930	 T	 4	
-

0.0335	 1.27E-11	 Missense	 LONP1	 -	

Whole	Blood	 12274	 rs11156878	 14	 35735967	 G	 4	 0.044	 4.32E-69	 Missense	 MRPP3	 -	

Whole	Blood	 14734	 rs11156878	 14	 35735967	 G	 4	 0.0085	 1.03E-22	 Missense	 MRPP3	 -	

Whole	Blood	 15896	 rs11156878	 14	 35735967	 G	 4	 0.0115	 1.45E-55	 Missense	 MRPP3	
PPP2R3C,	
MRPP3	

Whole	Blood	
Averaged	
tRNA	P9	 rs11156878	 14	 35735967	 G	 4	 0.0459	

1.58E-
116	 Missense	 MRPP3	 -	

Whole	Blood	 2617	 rs11684695	 2	 29088450	 T	 4	 0.0233	 5.50E-99	 Intronic	 TRMT61B	

PPP1CB,	
TRMT61B,	
CLIP4	

Whole	Blood	 2617	 rs782572	 2	 55912120	 T	 3	
-

0.0081	 5.27E-11	 Missense	 PNPT1	 PNPT1	

Whole	Blood	 2617	 rs13874	 3	 66419956	 T	 3	 0.0093	 2.22E-14	 Missense	 SLC25A26	 -	

Whole	Blood	 13710	 rs1047991	 10	 30629226	 A	 4	 0.0284	 2.87E-26	 Missense	 MTPAP	 -	

Adipose	 10413	 rs11156878	 14	 35735967	 G	 2	 0.0044	 9.25E-12	 Missense	 MRPP3	 -	

Adipose	 tRNA	P9	 rs11156878	 14	 35735967	 G	 2	 0.005	 4.32E-13	 Missense	 MRPP3	 -	

Adipose	 2617	 rs10166861	 2	 29061111	 A	 2	 0.0471	 3.58E-80	 Intronic	 SPDYA	 TRMT61B	

Adipose	 13710	 rs1047991	 10	 30629226	 A	 2	 0.003	 1.04E-13	 Missense	 MTPAP	 -	

Skin	 2617	 rs12622122	 2	 29111060	 A	 2	 0.0323	 1.79E-32	
Intergeni

c	
TRMT61B,	
WDR43	 TRMT61B	

Skin	 13710	 rs1047991	 10	 30629226	 A	 2	 0.0106	 2.51E-16	 Missense	 MTPAP	 -	

LCLs	 2617	 rs11127189	 2	 28992020	 T	 3	 0.0344	 2.88E-49	 Intronic	 PPP1CB	 TRMT61B	
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tissue	 types	and	methylation	positions;	removing	all	 regions	 that	overlap	 leaves	a	 total	of	5	

unique	 regions	 on	 the	 nuclear	 genome	 associated	with	methylation	 levels	 at	mitochondrial	

tRNA	P9	sites,	2	regions	associated	with	methylation	levels	at	mt-RNR2,	1	region	associated	

with	methylation	 level	at	both	 tRNA	P9	sites	and	 the	mt-RNR2	site	and	1	region	associated	

with	mt-ND5.	Within	 this,	 5	 loci	 represent	 novel	 associations	 detected	 in	 this	 study,	 and	 4	

represent	replication	of	previously	identified	associations	in	whole	blood	(Hodgkinson	et	al.	

2014)	that	we	now	identify	in	multiple	tissue	types	across	the	body.	

	

	

Figure	2.	Relationship	between	genotype	and	methylation	 level	at	multiple	positions	on	 the	
nuclear	 genome	 and	 mitochondrial	 transcriptome	 respectively.	 Methyl	 groups	 are	
represented	by	red	circles	along	the	mitochondrial	transcriptome,	and	methylation	levels	are	
shown	at	three	categories	of	methylated	site:	at	tRNA	P9	sites	(blue),	at	position	2617	within	
mt-RNR2	transcripts	(red)	and	at	position	13170	within	mt-ND5	transcripts	(green).	Averaged	
levels	of	methylation	across	11	mt-tRNA	P9	sites	are	additionally	shown	in	the	grey	shaded	
box	 (bottom	 left).	 Beta	 estimates	 and	 P-values	 displayed	 are	 from	 meta-analysis	 of	 four	
independent	 whole	 blood	 datasets,	 and	 methylation	 levels	 and	 genotypes	 displayed	 in	
boxplots	originate	from	the	CARTaGENE	dataset.	
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Functional	Characterisation	

	

In	 order	 to	 identify	 the	 potential	 genes	 and	 mechanisms	 through	 which	 nuclear	 genetic	

variants	 are	 associated	with	mitochondrial	 encoded	RNA	methylation	 levels,	we	prioritised	

significantly	associated	variants	as	potentially	causal	by	annotating	them	as;	1)	resulting	in	a	

missense	 mutation	 in	 a	 protein,	 2)	 affecting	 expression	 of	 a	 nearby	 gene	 and	 additionally	

showing	evidence	of	having	a	mediating	effect	on	mitochondrial	RNA	methylation	 level	(see	

Methods),	or	3)	having	the	lowest	P-value	within	each	associated	region.	

	

Applying	 this	 approach,	 we	 identify	 a	 number	 of	 novel	 candidate	 causal	 nuclear	 genetic	

variants	 and	 genes	 associated	with	mitochondrial	 tRNA	methylation	 levels.	 First,	we	 find	 a	

missense	mutation	(rs11085147)	in	LONP1	that	 is	associated	with	methylation	levels	at	mt-

tRNA-G	 (position	 9999)	 and	 mt-tRNA-H	 (position	 12146).	 LONP1	 a	 mitochondrial	 matrix	

protein	and	 is	 involved	 in	degradation	of	damaged	or	unfolded	polypeptides,	 in	addition	 to	

the	 maturation	 of	 certain	 mitochondrial	 proteins(Zurita	 Rendón	 and	 Shoubridge	 2018).	

Second,	 an	 intronic	 SNP	 (rs3820190)	 in	 PLOD1	 shows	 evidence	 of	 association	 with	

mitochondrial	 RNA	 methylation	 levels	 at	 mt-tRNA-R	 (position	 10413)	 through	 altered	

expression	 of	 the	 gene	 (Table	 1).	 PLOD1	 is	 not	 currently	 thought	 to	 be	 involved	 in	

mitochondrial	 function,	 however	MFN2	 (a	 gene	 involved	 in	mitochondrial	 fusion)	was	 also	

identified	 as	 an	 eQTL	 gene	 for	 rs3820190.	 Athough	 it	 was	 not	 significant	 in	 mediation	

analysis,	it	remains	a	viable	candidate	for	the	causal	gene	in	this	case	due	to	its	involvement	in	

mitochondrial	processes.	Third,	within	heart	tissue	(left	ventricle),	we	additionally	identify	an	

association	 between	 rs10513664,	 an	 intronic	 SNP	 in	 the	 MECOM	 gene,	 (which	 has	 not	

previously	been	linked	to	mitochondria)	and	methylation	level	at	mt-tRNA-G	(position	9999,	

Supplementary	 Table	 2).	MECOM	 is	 a	 transcription	 factor	 involved	 in	 the	 proliferation	 and	
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maintenance	of	haematopoietic	stem	cells,	and	its	dysregulated	expression	has	been	linked	to	

worsened	prognoses	in	patients	with	haematological	cancers	(Shimabe	et	al.	2009).	

	

Aside	 from	 these	 novel	 associations,	 we	 also	 replicate	 previously	 identified	 links	 between	

missense	 mutations	 rs13874	 and	 rs11156878	 (within	 SLC25A26	 and	MRPP3	 respectively)	

and	mitochondrial-encoded	tRNA	methylation	levels	in	whole	blood	(Hodgkinson	et	al.	2014).	

However,	we	 additionally	 find	 significant	 associations	between	 these	 variants	 and	 tRNA	P9	

methylation	 levels	 in	 adipose,	 skin,	 LCLs,	 artery,	 oesophagus	 and	 nerve	 tissues	 (Table	 1),	

showing	 that	 these	 links	 may	 be	 important	 across	 the	 body.	 SLC25A26	 is	 a	 mitochondrial	

carrier	 protein,	 involved	 in	 transporting	 S-adenosylmethionine	 (a	 substrate	 involved	 with	

RNA	methylation)	 into	mitochondria,	and	MRPP3	 is	part	of	a	complex	responsible	for	5’	mt-

tRNA	 processing,	 and	 thus	 are	 directly	 involved	 in	 processes	 that	 may	 impact	 RNA	

methylation.		

	

Outside	of	mitochondrial	tRNAs,	we	identify	a	novel	association	between	a	missense	mutation	

(rs782572)	in	PNPT1,	and	methylation	level	at	position	2617	within	mt-RNR2,	 in	addition	to	

an	intronic	variant	(rs11684695)	that	 is	significantly	associated	with	transcript	methylation	

levels	 in	 whole	 blood,	 and	 mediates	 mitochondrial	 RNA	 methylation	 levels	 through	 the	

expression	 of	 genes	 including	 TRMT61B,	 a	 mitochondrial	 methyltransferase.	 At	 position	

13710	within	mt-ND5,	we	 replicate	 the	association	with	 rs1047991	 that	was	 identified	 in	a	

previous	 study	 (Hodgkinson	 et	 al.	 2014),	 which	 is	 a	 missense	 mutation	 in	 MTPAP,	 a	

mitochondrial	 poly-A	 polymerase.	 The	 latter	 two	 associations	 did	 not	 replicate	 in	 previous	

work	(Hodgkinson	et	al.	2014),	however	do	replicate	across	multiple	tissue	types	in	this	study	

(Table	1,	Supplementary	Table	3),	and	therefore	suggest	 that	 these	genes	may	play	a	global	

role	in	the	regulation	of	RNA	modification.		

	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 11, 2019. ; https://doi.org/10.1101/666339doi: bioRxiv preprint 

https://doi.org/10.1101/666339


	 14	

Cross-Tissue	Analysis	

	

As	whole	blood	made	up	our	largest	dataset	(2,424	RNAseq	libraries	across	four	datasets),	we	

tested	 whether	 nuclear	 genetic	 variants	 associated	 with	 mitochondrial	 RNA	 methylation	

levels	 in	whole	blood	operate	 in	a	 tissue	specific	or	 tissue-wide	manner.	For	each	of	 the	25	

significant	 mitochondrial	 methylation	 site-variant	 pairs	 in	 whole	 blood,	 we	 tested	 for	

evidence	 of	 replication,	 with	 the	 same	 direction	 of	 effect,	 at	matched	methylation	 site	 and	

variant	pairs	in	all	other	tissues.	We	correct	for	the	number	of	methylation	site-variant	pairs	

we	test,	and	in	total	12/25	position-SNP	pair	associations	replicate	in	at	least	one	other	tissue	

type	(Supplementary	Table	3).	rs11156878,	which	is	associated	with	the	average	level	of	RNA	

methylation	at	tRNA	P9	sites,	replicates	in	22	additional	tissues.	rs11684695,	associated	with	

RNA	 methylation	 level	 of	 position	 2617,	 showed	 replication	 in	 25	 other	 tissues,	 and	

rs1047991,	associated	with	RNA	methylation	at	position	13170,	is	replicated	in	15	additional	

tissues	 (Supplementary	 Table	 3).	 This	 suggests	 that	 certain	 genetic	 loci	 associated	 with	

mitochondrial	RNA	methylation	levels	in	whole	blood	are	active	in	multiple	other	tissues,	and	

potentially	 in	 a	 system-wide	 manner.	 Other	 variants	 however,	 such	 as	 rs13874,	 which	

associated	 with	 methylation	 level	 at	 multiple	 individual	 mt-tRNA	 P9	 sites	 in	 whole	 blood,	

does	 not	 show	 evidence	 of	 association	 in	 other	 tissues,	 suggesting	 that	 it	 may	 be	 tissue	

specific.		

	

Consequences	of	Variation	in	Mitochondrial	RNA	Methylation	

	

Methylation	 modifications	 at	 mt-tRNA	 P9	 sites	 are	 thought	 to	 stabilise	 the	 secondary	

structure	 of	 the	 corresponding	mt-tRNA	 sequences	within	 the	mitochondrial	 transcriptome	

(Helm	et	al.	1999),	and	as	tRNA	structure	may	be	important	for	post-transcriptional	substrate	

recognition	and	cleavage,	we	tested	if	methylation	levels	at	tRNA	P9	sites	were	related	to	mt-
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mRNA	 expression.	 Since	 RNA	methylation	 levels	 at	 P9	 sites	 are	 strongly	 associated	with	 a	

missense	mutation	in	MRPP3,	which	is	part	of	an	enzyme	(RNase	P)	that	cleaves	the	5’	end	of	

mitochondrial	tRNAs,	we	specifically	considered	the	9	occurrences	where	an	mRNA	or	rRNA	

gene	 is	 found	 immediately	 upstream	 of	 a	 tRNA.	 Using	 data	 from	 the	 CARTaGENE	 project,	

which	is	our	largest,	 long-read,	paired	end	dataset,	we	find	that	tRNA	methylation	levels	are	

significantly	associated	with	the	expression	levels	of	genes	immediately	upstream	in	6	out	of	

9	 cases	 at	 P<0.05	 (5	 of	which	 show	positive	 correlations)	 and	 3/6	 remain	 significant	 after	

correcting	for	the	number	of	pairs	tested	(Table	2).	This	suggests	that	increased	methylation	

levels	at	these	tRNA	P9	sites	are	associated	with	increased	expression	of	its	nearest	upstream	

gene.	To	test	for	replication,	we	used	the	GTEx	dataset,	which	is	our	second	largest,	long-read,	

paired	end	dataset	of	unrelated	samples.	We	find	that	2/6	nominally	significant	correlations	

show	 evidence	 of	 replication,	 with	 the	 same	 direction	 of	 effect.	 These	 include	 the	 positive	

association	 between	 methylation	 level	 at	mt-tRNA-L1	 and	 expression	 of	mt-RNR2,	 and	 the	

negative	 relationship	 between	 methylation	 level	 at	 mt-tRNA-G	 and	 expression	 of	 mt-CO3	

(Table	2).		

	

Overlap	with	Disease	Associated	Loci	

	

Finally,	 to	 identify	 potential	 links	 between	 genetic	 variants	 associated	 with	 mitochondrial	

RNA	methylation	levels	and	complex-traits	and	phenotypes,	we	looked	for	overlaps	between	

peak	 associated	 variants	 (and	 SNPs	 in	 strong	 LD,	 r2	 ≥	 0.8),	 and	 genome-wide	 significant	

disease	associated	variants	in	the	NHGRI-EBI	GWAS	Catalog	(MacArthur	et	al.	2017).	We	find	

overlaps	 with	 diastolic	 (Ehret	 et	 al.	 2016)	 and	 systolic	 blood	 pressure	 (Kristiansson	 et	 al.	

2012;	Ehret	 et	 al.	 2016),	Moyamoya	disease	 (Duan	 et	 al.	 2018),	 estrogen-receptor	negative	

breast	cancer	(Couch	et	al.	2016;	Milne	et	al.	2017)	and	adolescent	idiopathic	scoliosis	(Liu	et	

al.	2018)	(Supplementary	Table	4).	
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Table	2:	Regression	analyses	between	methylation	 level	at	mitochondrial	 tRNA	P9	sites	and	
expression	of	its	5’	mRNA,	in	whole	blood	datasets.	

	

	

First,	 the	 peak	 genetic	 variant	 (rs3820190)	 associated	 with	 methylation	 at	 mt-tRNA-R	

(position	 10413)	 through	 the	 expression	 of	 PLOD1,	 is	 in	 high	 LD	 with	 a	 genetic	 variant	

(rs2273291)	linked	to	Moyamoya	disease,	a	rare	cerebrovascular	disease	that	is	characterised	

by	progressive	narrowing	of	 the	 lower	brain	vasculature	that	can	 lead	to	transient	 ischemic	

attacks	 and	 stroke	 (Duan	 et	 al.	 2018).	 Duan	 et	 al	 (2018)	 also	 report	 that	 a	 subset	 of	

individuals	with	Moyamoya	disease	(that	also	carry	the	risk	allele	at	rs2273291)	have	slightly	

elevated	 levels	 of	 serum	 homocysteine,	which	 itself	 is	 associated	with	 an	 increased	 risk	 of	

stroke	(Wald	et	al.	2002).	Interestingly,	S-adenosylmethionine	is	an	intermediary	substrate	in	

the	 homocysteine	 biosynthesis	 pathway	 (Hankey	 et	 al.	 2004),	 possibly	 explaining	 the	 link	

observed	in	the	present	study,	as	an	increased	level	of	homocysteine	could	mean	that	there	is	

less	S-adenosylmethionine	available	for	RNA	methylation.		

	

Second,	the	missense	mutation	in	PNPT1	(rs782572)	that	is	associated	with	methylation	level	

of	mt-RNR2	 (position	2617),	 is	 in	high	LD	with	 rs197548,	which	 is	 associated	with	 systolic	

	 	 	
CARTaGENE	 CARTaGENE	 GTEx	 GTEx	

Mitochondria	

Position	
5’	mRNA	

Mitochondrial	

tRNA	
Beta	Coefficient	 P	 Beta	Coefficient	 P	

1610	 MT-RNR1	 V	 0.2201271	 3.16E-07	 0.09739377	 0.4027136	

3238	 MT-RNR2	 L1	 2.361507	 1.31E-12	 2.511323	 2.16E-05	

4271	 MT-ND1	 I	 0.1560262	 0.1780689	 0.2212783	 0.1716995	

5520	 MT-ND2	 W	 0.07553068	 0.02423747	 0.03422895	 0.6816734	

8303	 MT-CO2	 K	 0.04620692	 0.01972715	 0.005807783	 0.9465179	

9999	 MT-CO3	 G	 -0.0476643	 0.02866581	 -0.1192088	 0.04399886	

10413	 MT-ND3	 R	 0.09531144	 0.000149767	 0.05458773	 0.31342	

12146	 MT-ND4	 H	 0.01657878	 0.4552959	 0.1370204	 0.05093543	

15896	 MT-CYB	 T	 0.02015266	 0.8987243	 0.2027844	 0.2833017	
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and	diastolic	blood	pressure	(Ehret	et	al.	2016).	Mitochondria	have	previously	been	linked	to	

increased	 blood	 pressure,	 predominantly	 through	 mechanisms	 involving	 mitochondrial	

oxidative	 stress,	 however	 the	 exact	 mechanisms	 by	 which	 this	 is	 the	 case	 remain	 unclear	

(Dikalov	 and	 Dikalova	 2016).	 We	 have	 previously	 observed	 associations	 between	 nuclear	

genetic	variants	influencing	the	expression	of	certain	mitochondrial	genes,	mediated	through	

the	expression	of	PNPT1	(Ali	et	al.	2019),	and	the	identification	of	the	overlap	here	suggests	

that	 RNA	methylation	 level	 may	 also	 be	 playing	 a	 contributory	 role	 in	 the	 process.	 A	 SNP	

within	 an	 intron	 of	 the	 MECOM	 gene	 (rs6779380)	 has	 previously	 been	 associated	 with	

changes	 in	blood	pressure	 (Ehret	et	 al.	 2016),	however	 this	variant	 it	 is	not	 in	LD	with	 the	

variant	 that	 we	 identify	 in	 heart	 (left	 ventricle,	 rs10513664),	 despite	 the	 latter	 also	 being	

located	within	an	intron	of	MECOM.		

	

Finally,	rs11684695,	which	is	associated	with	methylation	level	at	mt-RNR2	(position	2617),	

through	the	expression	of	TRMT61B,	 is	 in	high	LD	with	rs4577244	and	rs67073037,	both	of	

which	have	been	linked	to	breast	cancer.	The	role	of	mitochondria	in	cancer	has	been	debated	

since	 the	 discovery	 of	 the	Warburg	 effect	 (WARBURG	 1956),	 and	 subsequent	 research	 has	

linked	many	 additional	 pathways/features	 of	 the	mitochondria	 to	 tumorigenesis,	 including	

through	 alterations	 in	 its	 roles	 in	 cell	 death,	 metabolism,	 and	 oxidative	 stress	 (Vyas	 et	 al.	

2016).	In	previous	work,	we	observed	an	increase	in	the	level	of	tRNA	P9	methylation	levels	

in	 cancer	 tumours	 vs	 matched	 normal	 tissues	 (Idaghdour	 and	 Hodgkinson	 2017);	 our	

observation	 of	 an	 overlap	 here	 suggests	 that	 methylation	 level	 at	 mt-RNR2	 may	 also	 be	

involved.	 Additionally,	 rs11684695	 is	 also	 in	 high	 LD	 with	 rs6737027,	 which	 has	 been	

associated	with	adolescent	idiopathic	scoliosis	(Liu	et	al.	2018),	and	an	increased	incidence	of	

scoliosis	in	patients	with	mitochondrial	myopathies	has	also	been	reported	(Li	et	al.	2015).	
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Discussion	

	

RNA	 modifications	 represent	 an	 additional	 layer	 of	 control	 in	 the	 regulation	 of	 gene	

expression.	 They	 are	 found	 extensively	 throughout	 both	 the	 nuclear	 and	 mitochondrial	

transcriptome,	 where	 they	 play	 important	 roles	 in	 structural	 stability	 and	 translation	

efficiency.	Using	mitochondria	as	a	model	system,	we	characterise	RNA	methylation	levels	at	

multiple	functionally	important	sites	on	the	mitochondrial	transcriptome,	across	a	total	of	39	

tissues/cell	 types.	 We	 find	 that	 RNA	 methylation	 levels	 are	 correlated	 along	 the	

transcriptome,	 but	 vary	 between	 tissues,	with	 blood	 and	 brain	 tissues	 showing	 the	 highest	

levels	 of	 variation.	 As	 the	 mitochondrial	 and	 nuclear	 genomes	 have	 co-evolved	 over	

evolutionary	time,	we	also	link	variation	in	mitochondrial	RNA	methylation	levels	to	genetic	

variation	in	the	nuclear	genome.		

	

In	 total,	 we	 associate	 8	 nuclear	 genes	 to	 fundamental	 biological	 processes	 taking	 place	 in	

human	mitochondria.	Within	this,	we	identify	novel	associations	between	mitochondrial	RNA	

methylation	 levels	 and	 missense	 mutations	 in	 LONP1	 and	 PNPT1,	 eQTLs	 regulating	 the	

expression	of	PLOD1	and	TRMT61B	and	an	intronic	variant	within	MECOM.	Furthermore,	we	

find	that	previously	identified	associations	(Hodgkinson	et	al.	2014),	which	have	been	linked	

to	MRPP3,	 TRMT61B	 and	MTPAP	 (rs11156878,	 rs11684695	 and	 rs1047991	 respectively),	

occur	in	multiple	tissue	types,	which	may	have	important	implications	for	disease.		

	

MRPP3	 is	 the	 catalytic	 subunit	 of	mitochondrial	 RNase	 P,	 a	 complex	 responsible	 for	 the	 5'	

cleavage	of	mt-tRNAs	(Holzmann	et	al.	2008),	and	 is	active	only	 in	the	presence	of	 its	other	

subunits	 (Reinhard	 et	 al.	 2015),	MRPP1	 and	MRPP2.	 The	MRPP1	 and	MRPP2	 sub-complex	

however,	is	able	to	carry	out	its	methyltransferase	activity	independently	of	MRPP3	(Vilardo	

et	al.	2012),	so	 the	association	between	rs11156878	within	MRPP3	with	methylation	of	mt-
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tRNAs	 is	 likely	 detected	 due	 to	 its	 effect	 on	 cleavage	 capacity.	 TRMT61B	 is	 a	 methyl-

transferase	 that	 is	 responsible	 for	 the	methylation	 of	 position	 58	 on	 certain	mitochondrial	

tRNAs,	in	addition	to	position	2617	in	mt-RNR2	(Bar-Yaacov	et	al.	2016).	In	the	present	study,	

an	intronic	SNP	(rs11684695)	is	associated	with	increased	levels	of	methylation	at	mt-RNR2,	

as	well	as	increased	expression	of	TRMT61B,	likely	explaining	the	relationship	detected	here.	

MTPAP	is	responsible	for	the	polyadenylation	of	the	3’	end	of	mitochondrial	mRNAs,	and	this	

polyadenylation	 is	 important	 for	 the	stability	of	 the	transcripts	(Nagaike	et	al.	2005),	which	

potentially	influences	the	methylation	levels	of	mt-ND5	transcripts.	Of	genes	newly	implicated	

with	 mitochondrial	 RNA	 methylation	 levels	 through	 missense	 mutations,	 LONP1	 has	 been	

shown	to	degrade	MRPP3	as	part	of	the	mitochondrial	unfolded	protein	response	(Münch	and	

Harper	 2016),	 possibly	 explaining	 its	 association	 with	 methylation	 level.	 Finally,	 PNPT1	 is	

involved	in	multiple	metabolic	RNA	processes	in	mitochondria,	and	reduction	of	PNPT1	levels	

results	 in	 impaired	 mitochondrial	 processing	 and	 accumulation	 of	 large	 polycistronic	

transcripts,	possibly	due	to	its	connection	to	the	import	of	RNase	P	RNA	into	the	mitochondria	

(Wang	et	al.	2010a;	von	Ameln	et	al.	2012),	again	likely	explaining	why	it	 is	associated	with	

methylation	level	in	this	study.		

	

Interestingly,	 rs13874,	 a	missense	mutation	 in	 SLC25A26,	 tends	 to	 only	 be	 associated	with	

tRNAs	 towards	 the	 beginning	 of	 the	mitochondrial	 transcript	 in	whole	 blood,	 and	does	 not	

show	evidence	of	replicating	across	tissues.	SLC25A26	is	a	mitochondrial	carrier	protein	that	

is	 responsible	 for	 transporting	 S-adenosylmethionine	 into	 the	 mitochondria,	 which	 is	 a	

methyl	 group	 donor	 in	 methylation	 reactions.	 The	 absence	 of	 rs13874	 replication	 across	

tissues	may	 be	 related	 to	 the	 fact	 that	 the	 highest	 levels	 of	methylation	 are	 seen	 in	whole	

blood,	 in	combination	with	SLC25A26	concurrently	having	the	lowest	 levels	of	expression	in	

whole	 blood	 (https://gtexportal.org/home/gene/SLC25A26).	 Therefore,	 the	 effect	 of	 a	

possible	transportation	deficiency	may	only	be	observed	in	tissues	where	the	requirement	for	
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methylation	is	high.	As	blood	is	the	tissue	in	which	we	detect	the	highest	levels	of	methylation,	

but	 also	 the	 lowest	 levels	 of	 SLC25A26	 expression,	 this	 mutation	 may	 have	 particularly	

important	implications	for	blood-based	processes	and	diseases.				

	

The	downstream	functional	consequences	of	altered	mitochondrial	RNA	processing	are	well	

documented	in	human	cell	lines	and	model	organisms	(Sanchez	et	al.	2011;	Perks	et	al.	2017),	

but	here	using	in	vivo	data	we	show	that	natural	variation	of	mitochondrial	RNA	methylation	

levels	 in	 ‘healthy’	 individuals	 may	 influence	 mitochondrial	 processes	 (namely	 changes	 in	

mitochondrial	gene	expression).		Disruption	or	perturbation	of	the	function	of	nuclear	genes	

that	 we	 have	 implicated	 in	 mitochondrial	 RNA	 methylation	 can	 have	 serious	 phenotypic	

consequences.	 In	 humans	 for	 example,	 a	 mutation	 in	 PNPT1	 has	 also	 been	 linked	 with	

impaired	 import	 of	 RNA	 into	 the	 mitochondria,	 and	 leads	 to	 Combined	 Oxidative	

Phosphorylation	 Deficiency	 (Vedrenne	 et	 al.	 2012)	 and	 also	 Autosomal	 Recessive	 Deafness	

(von	Ameln	et	al.	2012);	missense	mutations	in	LONP1	have	also	been	implicated	with	CODAS	

syndrome,	 which	 is	 a	 developmental	 disorder	 affecting	 multiple	 systems	 (cerebral,	 ocular,	

dental,	auricular	and	skeletal)	(Strauss	et	al.	2015);	mutations	in	SLC25A26	have	been	linked	

to	 Combined	 Oxidative	 Phosphorylation	 Deficiency	 (Kishita	 et	 al.	 2015)	 and	 mutations	 in	

MTPAP	have	been	linked	to	spastic	ataxia	(Crosby	et	al.	2010).	Similarly,	TRMT61B	has	been	

identified	 as	 a	 differentially	 expressed	 gene	 in	 a	 small	 cohort	 of	 Alzheimer’s	 disease	 cases,	

when	 compared	 to	matched	 controls	 (Perks	 et	 al.	 2017),	 and	knockdown	of	 the	drosophila	

homolog	of	MRPP3	leads	to	the	loss	of	locomotive	function	in	Drosophila,	similarly	to	what	is	

seen	in	Parkinson’s	disease	(Sen	et	al.	2016).	

	

These	 examples	 are	 phenotypically	 varied	 and	 are	 the	 result	 of	 extreme	 alterations	 in	 the	

function	of	 the	 corresponding	gene.	The	genetic	 variation	associated	with	RNA	methylation	

levels	in	this	study	have	less	extreme	effects,	however,	they	are	linked	with	changes	in	post-
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transcriptional	 processing	 and	 downstream	 expression	 of	 mitochondrial	 genes.	 While	 this	

variation	 might	 be	 tolerated	 under	 normal	 physiological	 situations,	 the	 introduction	 of	

stressful	situations,	for	example	during	increased	mitochondrial	damage	through	ageing,	may	

be	enough	to	push	a	tissue	that	is	heavily	reliant	on	appropriate	mitochondrial	function	into	

dysfunction.	 Conversely,	 altered	 mitochondrial	 expression	 over	 a	 long	 duration	 may	 be	

enough	 to	 lead	 to	negative	 later	 life	consequences.	 Impaired	mitochondrial	gene	expression	

due	 to	 the	 heterozygous	 knockout	 of	 PTCD1,	 a	 mitochondrial	 RNA	 processing	 enzyme	 for	

example,	has	been	linked	to	later-life	obesity	in	mice	(Perks	et	al.	2017).	In	this	study,	we	find	

overlaps	between	genetic	variants	associated	with	mitochondrial	RNA	methylation	levels	and	

variants	 linked	 to	 blood	 pressure,	 breast	 cancer	 and	 Moyamoya	 disease,	 suggesting	 that	

altered	mitochondrial	RNA	modification	may	play	a	role	in	more	complex	diseases.	Overall,	as	

the	 expression	 of	 mtDNA	 is	 regulated	 primarily	 at	 the	 post-transcriptional	 level,	 it	 is	

important	to	understand	how	variation	in	nuclear	encoded	genes	affects	mitochondrial	RNA	

methylation	 and	 gene	 expression,	 as	 changes	 in	 this	 can	 lead	 to	 changes	 in	 mitochondrial	

metabolism	that	impact	mitochondrial	function.	

	

	

Methods	

	

Data	Description	

	

RNA	sequence	and	genotype	data	were	obtained	 from	five	 independent,	publically	available	

projects,	including:	

	

CARTaGENE	 (Awadalla	 et	 al.	 2013):	 A	 population-based	 cohort	 comprised	 of	 people	 aged	

between	40-69,	from	Quebec,	Canada.	Whole	blood	samples	were	taken	for	RNA	sequencing	
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and	genotyping,	producing	100bp	paired-end	RNAseq	reads	and	genotypes	from	the	Illumina	

Omni2.5M	genotyping	array.	Samples	with	RNAseq	data	from	multiple	sequencing	runs,	that	

passed	quality	control,	were	merged	before	the	alignment	stage.	Data	were	obtained	through	

application	to	the	data	access	committee	(instructions	are	available	at	www.cartagene.qc.ca).	

	

NIMH	 (National	 Institute	 of	Mental	 Health)	 Genomics	 Resource	 (Battle	 et	 al.	 2014):	Whole	

blood	samples	were	collected	for	RNA	sequencing	and	genotyping	from	the	Depression	Genes	

and	Networks	study.	Individuals	were	aged	21-60,	and	are	a	case/control	cohort.	50bp	single-

end	 RNAseq	 reads	 were	 produced,	 along	with	 genotypes	 from	 the	 Illumina	 HumanOmni1-

Quad	BeadChip.	Mapped	RNAseq	reads	for	duplicate	samples	that	passed	quality	control	were	

merged	for	further	analysis,	and	samples	failing	QC	were	discarded.	Data	were	obtained	after	

application	to	the	data	access	committee	(through	www.nimhgenetics.org)	

	

Geuvdais	Project	(Lappalainen	et	al.	2013):	LCL	samples	from	the	1000	Genomes	cohort	were	

RNA	 sequenced	 to	 produce	 75bp	 paired-end	 RNAseq	 reads	 and	 were	 obtained	 from	 the	

European	Nucleotide	Archive	under	submission	number	ERA169774.	Mapped	DNA	sequence	

data	 from	 phase	 1	 of	 the	 project	 were	 downloaded	 from	 the	 1000	 Genomes	 FTP	 site	

(v5a.20130502).	

	

TwinsUK	 Project	 (Grundberg	 et	 al.	 2012):	 Female	 monozygotic	 twin	 pairs,	 dizygotic	 twin	

pairs	and	singletons,	aged	between	38-85	were	recruited	for	RNA	sequencing	and	genotyping.	

Biopsies	 from	 subcutaneous	 adipose	 tissue	 and	 skin	 were	 collected,	 as	 well	 as	 peripheral	

blood	samples	for	additional	generation	of	lymphoblastoid	cell	lines	(LCLs).	50bp	paired-end	

RNAseq	 data	 were	 produced	 from	 these	 tissues	 as	 well	 as	 genotypes	 from	 Illumina	

HumanHap300	and	Illumina	HumanHap610Q	genotyping	arrays.	Data	were	obtained	through	
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application	to	the	TwinsUK	data	access	committee	and	then	downloaded	from	the	European	

Genome-Phenome	archive	(https://ega-archive.org)	through	study	ID	EGAS00001000805.	

	

GTEx	(Genotype-Tissue	Expression)	Project	(Consortium	2013):	Multiple	tissue	samples	were	

collected	 from	deceased	 individuals	 for	RNA	 sequence	 analysis	 and	dense	 genotyping,	with	

sample	age	range	varying	between	20-71.	We	use	a	combination	of	data	 from	the	pilot	and	

midpoint	phases	of	the	GTEx	project,	where	samples	were	genotyped	in	the	Illumina	Omni5M	

and	Illumina	Omni2.5M	genotyping	arrays	respectively.	RNAseq	read	lengths	produced	by	the	

project	 varied,	 and	we	 analyse	 samples	with	 75bp	 long	 reads	 only.	 Data	were	 obtained	 by	

application	to	dbGaP	through	accession	number	phs000424.v6.p1.	

	

Full	 data	 accession	 information,	 sample	 sizes	 and	 tissue	 types	 are	 described	 further	 in	

Supplementary	Table	1.	

	

RNAseq	Mapping		

	

FastQC	[v0.11.3]	(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)	was	run	on	

raw	RNAseq	data,	and	samples	with	drops	in	base	quality	below	phred	20	or	uncalled	bases	in	

the	 middle	 of	 reads	 were	 discarded.	 RNAseq	 reads	 were	 then	 pre-processed	 to	 remove	

adaptor	 sequences	 and	 low	 quality	 trailing	 bases	 (Phred	 <	 20)	 using	 TrimGalore	 [v0.4.0]	

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/).	 Poly-A/T	 sequences	

greater	 than	 4bp	 were	 also	 removed	 from	 read	 termini	 using	 PRINSEQ-lite	 	 [v	 0.20.4]	

(Schmieder	and	Edwards	2011).	Remaining	reads	with	>20	nucleotides	were	then	mapped	to	

the	human	reference	sequence	(1000G	GRCh37	reference,	which	contains	the	mitochondrial	

rCRS	NC_012920.1)	using	STAR	[2.5.2a_modified]	2-Pass	mapping,	allowing	approximately	1	

mismatch	per	18	bases	per	read,	rounded	down	to	the	nearest	integer.	STAR	soft-clipping	was	
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also	allowed.	After	mapping,	FastQC	 [v0.11.3]	was	rerun	on	data,	and	samples	with	median	

sequence	quality	scores	falling	below	Phred	20	were	removed	from	further	analysis.	SAMtools	

[v1.4.1]	 (Li	et	al.	2009)	was	 then	used	 to	 retain	only	properly	paired	and	uniquely	mapped	

reads.	 This	 stringent	 step	 was	 applied	 to	 ensure	 that	 analysed	 reads	 originated	 from	 the	

mitochondria,	 rather	 than	 nuclear	 encoded	 fragments	 of	 mitochondrial	 DNA	 (NUMTs).	

Transcript	 abundances	 were	 calculated	 using	 the	 ‘intersection	 non-empty	 model’	 within	

HTseq	 [v0.6.0]	 (Anders	 et	 al.	 2015),	 and	 gene	 expression	 counts	 were	 then	 quantified	

according	 to	 transcripts	per	million	 (TPM).	Genes	expressed	 in	all	 samples	with	an	average	

TPM	value	>	2	were	used	to	calculate	principal	components	(PCs)	in	R	and	outliers	identified	

from	 visualisation	 of	 PC1,	 PC2	 and	 PC3	were	 excluded.	 Samples	were	 further	 excluded	 for	

having:	fewer	than	5,000,000	remaining	reads,	fewer	than	10,000	mitochondrial	reads,	rRNA	

content	greater	than	30%,	RNAseq	mismatch	percentage	greater	than	1%,	or	intergenic	read	

percentage	greater	than	30%.		

	

Quality	Control,	Phasing	and	Imputation	of	Genotype	Data	

	

QTLtools	[v1.0]	(https://qtltools.github.io/qtltools/)	was	used	to	ensure	sample	labelling	was	

consistent	 between	 genotype	 and	 RNAseq	 data.	 Quality	 control	 (QC)	 of	 genotype	 data	was	

carried	 out	 using	 PLINK	 [v1.90b3.44]	 (Chang	 et	 al.	 2015).	 Duplicate	 samples,	 genetic	 PC	

outliers,	samples	with	unexpected	relatedness	and	samples	with	outlying	heterozygosity	rates	

were	 removed,	 in	 addition	 to	 samples	 with	 discrepant	 reported	 and	 genotypic	 sex	

information,	 or	 ambiguous	 X	 chromosome	 homozygosity	 estimates.	 Samples	 with	 >	 5%	

missing	genotype	data	were	also	excluded.	SNPs	were	removed	for	violating	Hardy-Weinberg	

Equilibrium	 (HWE)	with	 a	P-value	<	0.001,	 for	 having	 a	 genotype	missingness	>	5%	or	 for	

having	 a	minor	 allele	 frequency	 (MAF)	 <	 1%.	 SNPs	 coded	 according	 to	 the	 negative	 strand	

were	flipped	to	the	positive	strand.	SNPs	remaining	on	autosomal	chromosomes	were	phased	
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using	default	settings	within	SHAPEIT	[v2.r837]	(Delaneau	et	al.	2013),	 for	all	datasets	with	

array	 genotype	 data.	 Phased	 chromosomes	 were	 imputed	 in	 2Mb	 intervals	 using	 default	

settings	 within	 IMPUTE2	 [v2.3.2]	 using	 1000	 Genomes	 Phase	 3	 individuals	 as	 a	 reference	

population	(Marchini	and	Howie	2010;	Howie	et	al.	2011).	Imputed	genotypes	were	then	hard	

called	 with	 a	 minimum	 calling	 threshold	 of	 0.9	 using	 GTOOL	 [v0.7.5]	

(http://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool.html)	 and	 filtered	 out	 for	

having	an	IMPUTE2	info	score	<	0.8,	MAF	<	5%,	genotype	missingness	>	5%,	HWE	P	<	0.001	

or	for	being	multi-allelic.	Datasets	genotyped	on	two	different	arrays	were	imputed	separately	

and	then	merged.		

	

Quantification	of	Mismatch	Rate	at	Modified	Sites	

	

Previous	studies	have	shown	that	the	proportion	of	mismatching	bases	at	certain	sites	on	the	

mitochondrial	 transcriptome	 can	 be	 used	 to	 represent	 the	 level	 of	 post-transcriptional	

methylation	 at	 these	 sites.	 During	 library	 preparation	 for	 RNA	 sequencing,	 methylation	

modifications	on	transcripts	can	 interfere	with	the	reverse	transcription	process	by	causing	

the	 reverse	 transcriptase	 to	 randomly	 incorporate	 nucleotide	 bases	 at	 the	 methylated	

position	 (Hauenschild	 et	 al.	 2015).	 Though	 not	 a	 direct	 reflection	 of	 methylation	 level	

(Hauenschild	 et	 al.	 2015),	 this	 mismatch	 signature	 can	 be	 used	 to	 estimate	 the	 level	 of	

methylation	present	on	 transcripts	by	measuring	 the	proportion	of	non-reference	 alleles	 at	

modified	sites	(Mercer	et	al.	2011;	Sanchez	et	al.	2011;	Hodgkinson	et	al.	2014;	Idaghdour	and	

Hodgkinson	2017).	 Previous	work	has	demonstrated	 that	methylation	 levels	 estimated	 this	

way	are	repeatable	across	experiments	(Hodgkinson	et	al.	2014),	and	comparison	of	samples	

treated	 with	 demethylation	 enzymes	 to	 untreated	 controls	 confirms	 the	 presence	 of	

methylation	 at	 the	 ninth	 position	 of	 19/22	 mt-tRNA	 positions,	 at	 similar	 levels	 to	 when	

measured	by	primer	extension	(Clark	et	al.	2016).	Here,	we	consistently	detect	modification	
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levels	 at	 levels	 ≥	 1%	 at	 13/19	 of	 these	 mt-tRNA	 sites,	 which	 correspond	 to	 the	 following	

mitochondrial	genomic	coordinates:	585,	1610,	3238,	4271,	5520,	7526,	8303,	9999,	10413,	

12146,	 12274,	 14734	 and	 15896.	 We	 also	 calculate	 methylation	 level	 at	 mtDNA	 positions	

2617	 and	13710,	which	 correspond	 to	 locations	within	mt-RNR2	and	mt-ND5	 respectively;	

methylation	 levels	 at	 these	 sites	 can	 also	 be	 determined	 using	 RNAseq	 (Hauenschild	 et	 al.	

2015;	Li	et	al.	2017).	

	

Positional	 read	 coverage	 at	mitochondrial	 sites	 were	 summarised	 using	 SAMtools	mpileup	

and	mismatch	rate	was	calculated	from	sites	with	a	nucleotide	quality	score	≥	Phred	13	and	

coverage	 ≥	 20x.	 A	 site	 was	 then	 considered	 to	 show	 evidence	 of	 being	 methylated	 if	 the	

average	proportion	of	mismatches	within	a	dataset	was	greater	than	1%,	as	below	this	level,	

mismatched	due	to	the	presence	of	methylation	is	indistinguishable	from	mismatches	due	to	

sequencing	error.	A	combined	measure	of	methylation	level	was	also	calculated	by	averaging	

across	11	mt-tRNA	p9	sites:	585,	1610,	4271,	5520,	7526,	8303,	9999,	10413,	12146,	12274	

and	14734	(where	values	are	present),	in	order	to	gain	an	idea	of	processes	influencing	post-

transcriptional	methylation	 overall.	 These	 sites	 consistently	 show	 variation	 in	whole	 blood	

data	and	have	previously	been	used	as	an	estimate	of	combined	methylation	(Hodgkinson	et	

al.	 2014;	 Idaghdour	 and	Hodgkinson	2017).	Methylation	 values	3	 standard	deviations	 from	

the	mean	were	masked	to	avoid	association	results	being	driven	by	extreme	values.	

	

Pearson’s	 correlation	 coefficients	 between	 methylation	 levels	 at	 different	 tRNA	 P9	 sites	

(including	 averaged	 levels	 across	 P9	 sites)	 were	 calculated	 within	 individuals,	 across	 all	

datasets	and	tissue	types	available.	A	total	of	91	comparisons	that	were	carried	out.		Pearson’s	

correlation	 coefficients	 between	 methylation	 level	 at	 the	 same	 position,	 across	 multiple	

tissues,	were	 carried	 out	 using	measurements	 from	 the	 GTEx	 dataset.	 For	 a	 position	 to	 be	

compared	between	tissues,	we	required	that	both	tissues	have	an	average	methylation	level	of	
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1%	 and	 at	 least	 100	 pairs	 of	 data	 points	 to	 compare.	 For	 tRNA	 P9	 sites,	 there	 are	 1657	

comparisons,	for	positions	2617	and	13710	there	are	219	comparisons.		

	

Association	Analyses	and	Meta-Analysis	

	

Association	 analyses	 studies	 were	 carried	 out	 for	 modification	 positions	 with	 an	 average	

methylation	 level	 ≥	 1%	 variation	 per	 dataset.	 Association	 analyses	 were	 carried	 out	

separately	 for	 each	 position	 and	 tissue,	 using	 linear	 models	 in	 PLINK	 [v1.9]	 (Chang	 et	 al.	

2015).	 For	 the	 TwinsUK	 tissues,	 GEMMA	 [v0.96]	 (Zhou	 and	 Stephens	 2012)	 was	 used	 to	

calculate	a	relatedness	matrices	and	association	tests	were	carried	out	using	univariate	linear	

mixed	models.	Covariates	used	in	the	association	model	included	5	study	specific	genetic	PCs	

and	10	PEER	factors	calculated	from	RNAseq	data	using	PEER	[v1.0]	(Stegle	et	al.	2012)	for	

tissues	with	≥100	samples	or	5	genetic	PCs	and	5	PEER	factors	for	tissues	with	<100	samples.	

Additional	covariates	included	in	the	association	model	were	sex,	genotyping	array	and	RNA-

sequencing	 batch	 information,	 where	 available	 and	 where	 relevant.	 Tissues	 with	 multiple	

datasets	were	meta-analysed	using	PLINK	[v1.9],	under	a	fixed	effects	model.		

	

Cis-eQTL	Identification	and	Mediation	Analysis	

	

To	identify	genes	through	which	nuclear	genetic	variants	associated	with	mitochondrial	post-

transcriptional	methylation	levels	were	acting,	we	carried	out	a	cis-eQTL	analysis,	followed	by	

mediation	analysis.	Cis-eQTLs	and	eGenes	were	 identified	by	selecting	protein	coding	genes	

within	a	1Mb	interval	of	peak	SNPs	and	testing	 for	association	between	the	genotype	at	 the	

peak	 SNP	 and	 cis-gene	 expression	 level	 in	 the	 corresponding	 tissue	 type,	 using	 quantile	

normalised	RNAseq	data.	For	tissues	with	multiple	datasets,	cis-eQTLs	were	identified	in	the	

dataset	with	the	largest	sample	size.	For	blood,	this	corresponded	to	the	CARTaGENE	dataset,	
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for	adipose	and	skin	tissues,	this	corresponded	to	unrelated	samples	in	the	TwinsUK	dataset,	

and	for	LCLs,	this	corresponded	to	the	Geuvadis	dataset.	eGENEs	are	reported	if	significant	in	

any	corresponding	tissue	type	and	tests	were	corrected	for	the	number	of	cis-genes	tested	for	

association,	per	peak	SNP.	To	identify	causal	relationships	between	genotype,	gene	expression	

levels	 and	 methylation	 levels,	 we	 tested	 for	 significant	 mediation	 effects	 using	 1000	

bootstrapping	simulations	with	the	‘Mediation’	package	in	R.	Mediation	analyses	were	carried	

out	using	quantile	normalised	gene	expression	values,	 in	 the	 same	datasets	 that	eQTLs	and	

gene	pairs	were	identified	in.	Each	mediation	test	was	corrected	for	the	number	of	significant	

cis-genes	tested	for	evidence	of	a	mediation	effect	with	a	SNP.	

	

Candidate	Causal	Variant	Selection	

	

Significant	SNPs	were	defined	as	SNPs	passing	genome-wide	significance	after	correction	for	

the	number	of	methylation	positions	analysed,	and	the	number	of	unique	dataset-tissue	type	

pairs	they	were	analysed	in,	resulting	in	a	threshold	of	(6.79	x	10-11).	SNPs	passing	corrected	

genome-wide	significance	were	annotated	using	the	‘geneanno’	option	in	ANNOVAR	[v2017-

07-17]	 (Wang	 et	 al.	 2010b).	 Candidate	 causal	 SNPs	 were	 further	 shortlisted	 as	 corrected	

genome-wide	significant	SNPs	that	resulted	in	a	missense	mutation,	or	showed	evidence	for	

mediating	methylation	levels	as	a	cis-eQTL,	or	for	having	the	lowest	P-value.	

	

Cross	Tissue	Replication	Analysis		

	

Peak	 methylation	 site-variant	 pairs	 from	 the	 whole	 blood	 meta-analysis	 were	 tested	 for	

nominal	 evidence	 of	 significance	 in	 matched	 methylation	 site-variant	 pairs	 in	 other	 tissue	

types	 (excluding	 the	 tissues	 that	 were	 meta-analysed).	 Nominal	 significance	 is	 defined	 as	
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P<0.05,	corrected	for	the	number	of	tissues	the	SNP-trait	pair	is	tested	in,	and	the	number	of	

SNP-trait	pairs	tested.	

	

Consequences	of	Variation	in	Mitochondrial	RNA	Methylation	Levels	

	

To	 test	 if	 methylation	 level	 at	 mitochondrial	 tRNA	 P9	 sites	 have	 an	 impact	 on	 expression	

levels	 of	 immediately	 upstream	mitochondrial	 genes,	we	 regressed	 the	 expression	 levels	 of	

the	upstream	gene	on	the	 level	of	methylation	at	the	relevant	tRNA	P9	site,	 including	batch,	

gPC	1-5	and	PEER	factors	1-10	as	covariates	in	the	model.	This	analysis	was	carried	out	in	the	

CARTaGENE	 whole	 blood	 dataset,	 which	 is	 our	 largest,	 paired-end,	 long	 read	 dataset,	 and	

replicated	in	the	GTEx	whole	blood	dataset.	We	tested	9	regions	of	the	mitochondrial	genome,	

where	there	is	an	rRNA	or	mRNA	gene	immediately	upstream	of	a	tRNA	gene	and	identified	

significant	relationships	at	P<0.05,	corrected	for	by	the	number	of	positions	tested.	

	

Overlap	with	Disease	

	

We	 additionally	 tested	 for	 overlap	 between	 genetic	 variants	 identified	 in	 our	 association	

studies,	 and	 SNPs	 in	 strong	 LD	 (r2	 ≥	 0.8)	 within	 a	 500kb	 interval,	 with	 genome-wide	

significant	 SNPs	 associated	 with	 disease	 phenotypes	 reported	 in	 the	 NHGRI-EBI	 GWAS	

Catalog	(MacArthur	et	al.	2017).	Variants	 in	strong	LD	with	peak	SNPs	were	 identified	from	

the	NIMH,	CARTaGENE,	TwinsUK	(unrelated	samples	only),	GTEx	and	Geuvadis	datasets	using	

PLINK,	 and	 were	 overlapped	 with	 data	 present	 in	 the	 NHGRI-EBI	 GWAS	 Catalog	 in	 March	

2019.	
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