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Abstract 
 
The single-molecule multiplex chromatin interaction data generated by emerging non-ligation-
based 3D genome mapping technologies provide novel insights into high dimensional chromatin 
organization, yet introduce new computational challenges.  We developed MIA-Sig 
(https://github.com/TheJacksonLaboratory/mia-sig.git), an algorithmic framework to de-noise the 
data, assess the statistical significance of chromatin complexes, and identify topological 
domains and inter-domain contacts.  On chromatin immunoprecipitation (ChIP)-enriched data, 
MIA-Sig can clearly distinguish the protein-associated interactions from the non-specific 
topological domains.  
 
Main text 
 
Previous 3D genome-mapping efforts have suggested complex chromosomal folding structures.  
In particular, methods based on high-throughput sequencing capture bulk chromatin contacts 
(Hi-C (Lieberman-Aiden et al., 2009)) or enrich for chromatin contacts involving a specific 
protein (ChIA-PET (Fullwood et al., 2009)). Both of these methods rely on proximity ligation, and 
therefore can only reveal population averages of pairwise contacts.  Thus, they lacked the ability 
to simultaneously capture multiple loci involved in a chromatin complex in an individual cell.   

To overcome these challenges, novel experimental methods have recently been 
developed to capture multiplex chromatin contacts with single-molecule resolution. For instance, 
GAM (Beagrie et al., 2017) identifies multi-way interactions by capturing multiple DNA elements 
co-existing in a given nuclear slice, SPRITE (Quinodoz et al., 2018) barcodes individual 
chromatin complexes via a split-pool strategy, and ChIA-Drop (Zheng et al., 2019) partitions 
each complex into a microfluidic droplets for barcoding and amplification.   Collectively, these 
emerging 3D genome-mapping technologies are advancing the frontier of the nuclear 
architecture field. However, as with other genomic approaches prone to the background noise, 
the noisy and high-dimensional nature of the multiplex data poses unique computational 
challenges that cannot be readily addressed with existing tools that are tailored for pairwise 
interactions data.  Thus, we developed MIA-Sig (Multiplex Interactions Analysis by Signal 
processing algorithms) with a set of Python modules tailored for ChIA-Drop and related 
datatypes.  

A central analytic challenge is to distinguish the true biological chromatin complexes 
from the experimental noise. A possible source of noise is an event that two or more chromatin 
complexes are potentially encapsulated in the same microfluidics droplet and then assigned the 
same barcode, yielding a multiplet (Figure 1a). The problem also prevails in microfluidics-based 
single-cell RNA-seq data, which is then resolved computationally via dimensionality-reduction 
and clustering (Wolock et al., 2019).  However, methods developed for single-cell 
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transcriptomics data are not apt for multiplex chromatin interactions data since: 1) the signal for 
chromatin interactions is point data (fragment is captured or not captured) rather than 
continuously valued data (gene expression level), and 2) multiplex chromatin interaction data 
are inherently sparser than the single-cell transcriptomics data, due to the lack of cell barcodes.   

Therefore, we devised a distance test with an entropy filter based on the biological 
knowledge that most meaningful chromatin interactions occur in a certain distance range, while 
those outside the range are likely noise (Lajoie et al., 2015).  By converting the distances 
between fragments into a probability vector, we compute the normalized Shannon entropy 
(Shannon, 1948), ranging from 0 to 1.  If a droplet contains a single complex, the fragments are 
presumably close and equally spaced, resulting in high entropy close to 1.  In the case of a 
doublet, two independent complexes would be separated by a single large distance, resulting in 
low entropy close to 0, which can then be separated into two singlets (Figure 1b).  To identify 
significant chromatin complexes, a resampling-based distance test is applied before and after 
the entropy filter (Figure 1c; Methods).  As a result, we retained 55,995 statistically significant 
complexes in the Drosophila S2 ChIA-Drop data out of 3,075,926 putative complexes 
(Supplementary Figure 1). Filtering to retain significant complexes preserves the TADs along 
the diagonal of the 2D heat maps, while reducing the off-diagonal noise (Figure 1d; 
visualization through Juicebox (Durand et al., 2016)). A shift in distance distributions supports 
that meaningful interactions are captured within 10 kb and 1 Mb (Figure 1e; Supplementary 
Figure 2).  Of the significant chromatin complexes, 15,055 (27%) were from the entropy filtering 
step that resolved doublets and triplets (Supplementary Figure 3).   

From the significant complexes, it is desirable to automatically call TADs for downstream 
analyses.  Many TAD calling algorithms exist for Hi-C data (Zufferey et al., 2018), yet all are 
based on pairwise contacts.  To retain multiplexity information, we developed an algorithm to 
call TADs directly from ChIA-Drop data (Methods). The idea is to convert complexes into 1D 
signal track, then apply wavelet transformation (Mallat, 1989) to smooth the signal while 
retaining clear change points (Supplementary Figure 4). MIA-Sig called 335 TADs with wider 
range of sizes than 513 TADs called by pairwise ‘Insulation Score’ (‘InS’) approach 
(Supplementary Figure 5). Compared to InS TADs, the MIA-Sig TADs are less likely to overlap 
active regions characterized by high H3K27ac and low H3K27me3 (Figure 1f), which are known 
to be the gaps between TADs in Drosophila (Rowley et al., 2017).  This pattern is observed 
genome-wide: MIA-Sig TADs have higher inactive mark (H3K27me3) in than InS TADs, and 
MIA-Sig gaps have higher active mark (H3K27ac) than InS gaps (Supplementary Figure 6).  
Most interactions occur within a single TAD, but 23% of significant complexes also cross 2 or 
more TADs, consistent with previous findings (Paulsen et al., 2019).  Thus, we identify frequent 
interactions involving multiple TADs by counting the occurrences and performing a binomial test 
(Methods).  A set of TADs with frequent contacts are ultimately assigned low p-values 
(Supplementary Figure 7), which can guide the researchers to perform validation experiments.   

Similar to ChIA-PET, ChIA-Drop can also enrich chromatin complexes involving a 
specific protein, such as RNAPII or CTCF.  We implemented an enrichment test to estimate the 
significance of binding intensity of observed chromatin complexes (Figure 2a; Methods) 
compared to an empirical null distribution (Supplementary Figure 8).  As a result, we retain 
significant complexes with their fragments in highly enriched domains characterized by high 
RNA-seq expression and H3K27ac signal with abundant RNAPII ChIA-PET loops (Figure 2b).  
Genome-wide patterns confirm that significant complexes are biased towards active regions, 
whereas insignificant complexes are not (Supplementary Figure 9).   Moreover, significant 
complexes have higher median H3K27ac signals and lower median H3K27me3 signals than 
insignificant complexes (Figure 2c-d). A detailed view around a few genes shows that 
significant complexes are more likely to retain promoter-centric interactions than insignificant 
complexes (Figure 2d; visualization through ChIA-View (Tian et al., 2019)). This pattern is 
prevalent genome-wide, with 69% of significant complexes containing at least 1 promoter 
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compared to only 30% of insignificant complexes (Figure 2f). Notably, significant complexes are 
most likely to capture one active promoter and one or more non-promoters—possibly 
enhancers—while insignificant complexes are prone to detect interactions among non-
promoters (Supplementary Figure 10).   Among the promoter-involving fragments, those in 
significant complexes have higher median gene expression than those in insignificant ones.   

As with many experimental protocols, the chromatin immunoprecipitation step is not 
100% efficient and typically yields a 20-40% efficiency rate (Tang et al., 2015). Thus, we take 
advantage of the fact that enriched ChIA-Drop data sets also contain some background signal 
for chromatin complexes that did not specifically involve the protein of interest, similar to non-
enriched ChIA-Drop data. Through the MIA-Sig enrichment test on RNAPII ChIA-Drop data, we 
can extract the non-enriched complexes from the insignificant complexes, which approximately 
emulate the ChIA-Drop data (Figure 2g).  

Given that the frontier of the nuclear architecture field is now single-cell and single-
molecule 3D genome mapping, it is imperative to develop algorithms to analyze data from these 
novel experimental protocols.  We have presented an approach to the imminent problem of 
extracting statistically significant complexes from noisy signals, calling TADs, and identifying 
frequent inter-TAD contacts (Figure 3). In addition, we offer a practical strategy to extract non-
enriched ChIA-Drop from RNAPII ChIA-Drop. As a publicly available software package, MIA-Sig 
provides a valuable algorithmic framework for multiplex chromatin interaction data to be utilized 
by the broader scientific community. MIA-Sig nonetheless has its own drawbacks. One key 
assumption in the distance test is that a fragment far from the other fragments is likely a droplet 
contamination resulting in a doublet, a behavior yet to be confirmed experimentally and 
statistically.  In performing the enrichment test for RNAPII ChIA-Drop data, we do not use a 
background distribution model and instead draw an empirical null distribution via random 
sampling.  A disadvantage of this approach is the computational cost, which can be demanding 
for large human datasets.  

We envision that MIA-Sig will be broadly applicable to any type of multiplex chromatin 
interaction data ranging from ChIA-Drop, SPRITE, to GAM, under the aforementioned 
assumptions and with modifications (Supplementary Note 1).  Here, we focused on the 
Drosophila ChIA-Drop and RNAPII ChIA-Drop data as a proof of concept and demonstrated that 
MIA-Sig filters and retains only the highly informative complexes.  We anticipate that 
researchers will be able to utilize this refined data to dissect heterogeneous population within 
TADs and to identify interactions involving multiple regulatory elements.   
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Figures and legends 

 
Figure 1: Performance of MIA-Sig on ChIA-Drop data. 
(a) ChIA-Drop experiments are designed to encapsulate each chromatin complex in a droplet, 
but the encapsulation is a random process and sometimes results in more than one complex in 
a droplet (multiplets).  (b) MIA-Sig aims to detect multiplets by computing the normalized 
Shannon entropy 𝐻"#$%  (Methods).  It separates a complex at the largest distance if 𝐻"#$% is 
smaller than a threshold, which is 0.7 in this example.  (c) Summary statistics of the distance 
test indicate that entropy filter resolves around 500,000 doublets and 85,000 triplets, from which 
15,055 complexes pass the second distance test.  (d) 2D heatmap comparison of original 
(bottom triangle) and significant (upper triangle) complexes demonstrates that MIA-Sig removes 
off-diagonal noise.  (e) Empirical cumulative distribution function for the neighboring distances of 
original and significant complexes (two-sided Kolmogorov-Smirnov test statistic= 0.47, p-value 
< 2.2 × 10/01	). (f) Comparison of TADs called from significant putative complexes (MIA-Sig) 
and from enumerating all pairs of fragments (Insulation score).  MIA-Sig more specifically 
separates active regions (high H3K27ac and low H3K27me3) rather than assigning them to 
TADs.   
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Figure 2: Enrichment test on RNAPII ChIA-Drop data. 
(a) MIA-Sig performs an enrichment test on RNAPII-enriched ChIA-Drop data by retaining 
complexes with fragments in strong binding regions, which also correspond to RNAPII ChIA-
PET peaks. (b) The significant complexes are pronounced in regions with high level of 
transcription, abundant loops, and active histone mark; insignificant complexes tend to be in 
inactive regions. (c) Log of H3K27ac signal for fragments in significant and insignificant 
complexes (one-sided Mann-Whitney U test, p-value < 2.2 × 10/01). (d) Log of H3K27me3 
signal for fragments in significant and insignificant complexes (one-sided Mann-Whitney U test, 
p-value < 2.2 × 10/01).   (e) Fragment coverage profile of significant complexes is similar to that 
of RNAPII ChIA-PET, with 45 promoter-centric multiplex interactions (green: non-promoters, 
light green: promoters). By contrast, insignificant complexes do not show any strong binding 
peaks in coverage, and 91 multiplex interactions are non-specific (turquoise: non-promoters, 
light turquoise: promoters). (f) Genome-wide, significant complexes have higher proportion of 
active promoter fragments than insignificant complexes do (two-sided K-S test statistic= 0.39, p-
value < 2.2 × 10/01). (g) The insignificant RNAPII ChIA-Drop complexes from the enrichment 
test are comparable to the significant ChIA-Drop complexes from the distance test. TADs (black 
lines) are called by MIA-Sig on the latter complexes.  
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Figure 3: Summary of MIA-Sig algorithm. 
ChIA-Drop putative complexes from ChIA-DropBox pipeline are inputs to the distance test, 
which assigns p-values to each complex to quantify its significance.  Refined complexes enable 
TAD calling directly on the multiplex data.  A binomial test identifies frequent contacts among 
multiple TADs.  RNAPII-enriched ChIA-Drop putative complexes are assigned significance 
according to the level of enrichment.  
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Data access 
Code availability 
The MIA-Sig software is available at: https://github.com/TheJacksonLaboratory/mia-sig.git. 

 

Data availability  
The ChIA-Drop (GSM6647523) and RNAPII ChIA-Drop (GSM3347525) data were downloaded 

from the Gene Expression Omnibus under SuperSeries accession number GSE109355.  A link 

to the pure DNA ChIA-Drop data and processed files of relevant data are also available through 

the MIA-Sig github page.  
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ONLINE METHODS 

Notation 
An input dataset contains a set of chromatin complexes, each with 2 or more fragments.  Let 𝑂𝐶% be the 
set of fragments contained in the 𝑚-th ‘observed complex’ (OC), for 𝑚 ∈ {1,2, … , 𝑀}, and 𝑛 = |𝑂𝐶%| is 
the size of the set denoting the number of fragments in a complex.  Each fragment 𝑢 is subscripted by the 
complex index and superscripted by the fragment index, and encodes the genomic location of its origin 
expressed as a triplet of chromosome, start, and end position.  The distance 𝑑 between fragments 𝑢%B  and 
𝑢%C  is start(𝑢%C )-end(𝑢%B ), and neighboring (fragment-to-fragment; F2F) distances are encoded in a vector 

𝐱EFE(𝑂𝐶%) = [𝑑(𝑢%0 , 𝑢%F ), 𝑑(𝑢%F , 𝑢%J ), … , 𝑑(𝑢%"/0, 𝑢%" )], 
and the total distance is 𝑑L#L(𝑂𝐶%) = ∑𝐱EFE(𝑂𝐶%); the probability vector 𝐩EFE(𝑂𝐶%) =

𝐱OPO(QRS)
TUVU(QRS)

.  For 
example, if an 8-th complex 𝑂𝐶W = {𝑢W0, 𝑢WF, 𝑢WJ} contains 3 fragments (chr2L, 100, 500), (chr2L, 1000, 
1500), and (chr2L, 6000, 6500), then 𝐱EFE(𝑂𝐶W) = [500, 4500], 𝑑L#L(𝑂𝐶W) = 5000, and 𝐩EFE(𝑂𝐶%) =
[ 0
0Y
, Z
0Y
].  Finally, we can partition 𝑀 complexes 𝑂𝐶0, 𝑂𝐶F,… , 𝑂𝐶[  into 𝐹] , where 𝑗 is the number of 

fragments in a complex (𝑂𝐶W belongs to 𝐹J since it has 3 fragments). 
 
Distance test for non-enriched multiplex chromatin interactions data 
Empirical null distribution and first distance test.  Assuming that complexes are independent of 
chromosome, we perform the distance test separately for each chromosome. Motivated by the fact that 
each fragment class 𝐹]  has distinct distributions in F2F distances, we construct the expected null 
background distribution by randomly rewiring fragments.  Specifically, all neighboring distances 
𝐱EFE(𝑂𝐶%) for 𝑚 ∈ {1,2, … ,𝑀} are placed in a bucket 𝐵. For each observed 𝐹] , we randomly draw 𝑗 − 1 
elements  (with replacement) from 𝐵 to create 100,000 ‘expected complexes’ (EC) 𝐸𝐶b

] for 𝑘 ∈
{1,2, … ,100000} and store them in 𝐹]′. Note that since we only care about distance between fragments, 
we can assume that every fragment starts at (chr, 1, 500) and each fragment is of equal length. In practice, 
we store minimum information to save compute memory (implementation details below). For each 𝑂𝐶% 
in 𝐹] , we compare its total F2F distance to total F2F distance in 𝐹]e and record the proportion of expected 
complexes that have shorter distances than the observed complexes as the estimated ‘raw p-value’.  
Formally, for a 𝑂𝐶% ∈ 𝐹] , 

𝑝𝑣𝑎𝑙$Bj(𝑂𝐶%) = ∑ 1{TUVU(QRS)kTUVUlmRn
op}

0YYYYY
bq0 , 

where 1{∗} is an indicator function. Assuming that complexes in each fragment class are independent, we 
subsequently separate the raw p-values by 𝐹]  and adjust them for multiple hypothesis testing using 
Benjamini-Hochberg method (Benjamini, Hochberg, 1995) with false discovery rate (FDR) of 0.1. The 
complexes with adjusted p-value ≤ 0.1 are considered to be statistically significant and are classified as 
‘pass1’ (𝐹],tBuu0).  Of those insignificant complexes with adjusted p-value > 0.1, we ‘fail1’ (𝐹],vBwx0) 
those with 2 fragments (𝑂𝐶% ∈ 𝐹F with adjusted p-value > 0.1) and treat others in a separate category 
called ‘defer’ (𝐹],Tyv).  These ‘deferred’ complexes are passed onto the entropy filter to correct for droplet 
contamination. 
Entropy filter.  Some complexes in the ‘deferred’ category may be due to the experimental noise that can 
be computationally detected. Specifically, this step aims to computationally correct for the undesired 
phenomenon of a droplet containing more than one chromatin complex (referred to as ‘doublet’ for two, 
‘triplet’ for three, and ‘multiplet’ for 2 or more).  In single-cell RNA-seq (scRNA-seq; single-cell 
transcriptome) experiments, the outcome of a doublet would be a vector of real numbers indicating 
average expression of the two cells.  By contrast, ChIA-Drop data only provide binary values indicating if 
a fragment was captured or not, with a variable number of fragments. Therefore, the effect of two 
complexes accidentally being encapsulated in a single droplet would be a large distance in the data. This 
assumption is based on the observation from Hi-C and ChIA-PET data analysis that true interactions 
occur within certain range of genomic span.  Our goal is to identify complexes with one dominating 
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distance between fragments.  Using the probability vector of the neighboring distance, we quantify the 
likelihood of a dominating event.  Formally, for an observed complex 𝑂𝐶% with 𝑛 fragments and 
𝐩EFE(𝑂𝐶%) = [𝑝0, 𝑝F, … , 𝑝"/0], we compute the normalized Shannon entropy (Shannon, 1948)  

𝐻"#$%z𝐩EFE(𝑂𝐶%){ =
∑ 𝑝𝑖
𝑛−1
𝑖=1 log2�

1
𝑝𝑖
�	

log2(𝑛−1)
. 

The normalization factor logF(𝑛 − 1) ensures that 𝐻"#$%(𝒙) ∈ [0,1] for any probability vector 𝒙.  
Generally, 𝐻"#$%  is small when only one or two of 𝑝wof is large, in which case we presume that a 
complex is a multiplet and need to separate into singlets.  For each observed complexes in the ‘deferred’ 
category, we compare its normalized Shannon entropy to the average normalized Shannon entropy of the 
expected complexes in the corresponding class; if the former is smaller, then we separate the observed 
complex at the longest distance interaction.  In other words, for 𝑂𝐶% ∈ 𝐹],Tyv, if  

𝐻"#$%z𝐩EFE(𝑂𝐶%){ <
0

0YYYYY
∑ 𝐻"#$%(𝐩EFEz𝐸𝐶b

]{)0YYYYY
bq0 , 

then 𝑂𝐶% is separated into 
𝑂𝐶%,0={𝑢%0 , 𝑢%F ,… , 𝑢%� } and 𝑂𝐶%,F={𝑢%��0, 𝑢%��F, … , 𝑢%" }, 

where 𝑑(𝑢%� , 𝑢%��0) = max 𝐱EFE(𝑂𝐶%).  Furthermore, if the second largest distance is at least 0
�
 of the 

largest distance, we also separate at the second longest distance.  𝜏 is a variable parameter and we set it to 
2 in our analyses; the larger the 𝜏, the more likelihood of a ‘second cut’ (implying a triplet).  The resulting 
sub-complexes are placed in 𝐹],Tyv,vwxL , and are now subject to the second distance test.  Note that we did 
not perform any statistical test in this step; only performed filtering.  Also, the Shannon entropy merely 
serves as a quantification measure for a single complex and should not be confused with the heterogeneity 
of all complexes in the ChIA-Drop data. 
Second distance test.  We repeat the distance test after correcting for possible doublets and triplets.  For a 
𝑂𝐶%,∗ ∈ 𝐹],Tyv,vwxL, 

𝑝𝑣𝑎𝑙$Bj(𝑂𝐶%,∗) = ∑ 1TUVUzQRS,∗{kTUVU(mRn
o)

0YYYYY
bq0 . 

We adjust raw p-values using Benjamini-Hochberg method with false discovery rate (FDR) of 0.1. The 
complexes with adjusted p-value ≤ 0.1 are classified as ‘pass2’ (𝐹],tBuuF) and others are ‘fail2’ (𝐹],vBwxF).  
A diagram of the distance test is illustrated in Supplementary Figure 1a. 
Implementation, results, and analysis.  MIA-Sig takes putative chromatin complexes as the input, which 
are results of the ChIA-DropBox (Tian et al., 2019) data processing and visualization pipeline.  The 
‘distance test’ python (v3.6) script encompasses all parts using the following packages: numpy, random, 
statsmodels, itertools, os, sys. We used the parameters --gen dm3 --fdr 0.1 --cef 2 --sz 100000 to run the 
script on GSM3347523 dataset, which used 1.8 Gigabyte of memory and 13 minutes of cpu time.  To 
save memory, we store minimal information for the null: total distance for expected complexes, and their 
mean entropy for each fragment class.  Two runs with the same parameters should yield identical results 
because we set seeds in the construction step for the expected complexes.  By saving the first 1000 
expected complexes for each class in a chromosome, we can compare our expected null model to the 
biological null model, which is the ‘pure DNA’ described in (Zheng et al., 2019).  Plotting the 
neighboring distances, we observed that both the computational null and pure DNA are unimodal with 
peaks between 1 Mbps and 10 Mbps for all classes (Supplementary Figure 1b). After confirming that 
our expected complexes do emulate long-range noise, we obtained detailed statistics of each step resulting 
in 55,995 significant complexes (Supplementary Figure 1c).  Complexes in each of the ‘original’, 
‘significant’ (‘pass1’+‘pass2’), and ‘insignificant’ (‘fail1’+ ‘fail2’) categories are converted into a .short 
format by enumerating over all pairs of fragments in a complex.  Three .short files are then converted into 
.hic files via juicer (v1.7.5) to be visualized in juicebox. A 5 Mbps window on chr3L shows that the 
original data exhibit both the signal and noise, which are separated by MIA-Sig into significant and 
insignificant, respectively (Supplementary Figure 2a). The original observed complexes have a bimodal 
distribution for high fragment classes, which is a distinct behavior from the null distribution 
(Supplementary Figures 1b, 2b). The density plot further support that significant complexes retained 
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short distances or a mix of short and long distances. By contrast, insignificant complexes are only 
comprised of unimodal long distances (Supplementary Figure 2b).  Consistent with an observation that 
high-fragment complexes contribute to the structure more than the low-fragment complexes (Zheng et al., 
2019), MIA-Sig assessed the majority of high-fragment complexes as significant (Supplementary 
Figure 2c). We next investigated the effects of the entropy filter, which was designed to remove doublets 
and triplets.  Of the 1,452,878 complexes in the deferred category ranging from 𝑛 = 3 to 𝑛 = 8, MIA-Sig 
identified 60% (869,065) to be singlets, 34% (498,291) to be doublets, and 6% (85,522) to be triplets, 
yielding 548,342 singletons (𝐹0) and 1,573,871 complexes (𝐹�F) (Supplementary Figure 3). For each 
class, singletons had the highest normalized Shannon entropy, followed by doublets and triplets.  The 
entropy filter step allowed MIA-Sig to identify additional 15,055 complexes as significant, which 
amounts to 27% of the total significant complexes.   
 
TAD calling for non-enriched multiplex chromatin interactions data 
Generating 1D signal track.  Existing TAD calling algorithms for pairwise Hi-C data generally fall into 
two categories: 1) signal segmentation after conversion from 2D contact maps into 1D tracks measuring 
interaction intensities along the genome, 2) community detection directly on the 2D heatmap by treating 
each bin as a node on an undirected graph.  We take the first approach and convert our complexes into 1D 
signal track. A conventional pairwise approach would enumerate over all pairs of fragments in a complex 
and record their spans. However, multi-fragment complexes may over-contribute since the number of 
pairs grows quadratically: z"F{ =

"("/0)
F

, where 𝑛 is the number of fragments in a complex.   Instead, we 
allow each complex to only contribute linearly in 𝑛 by recording its span weighted by 𝑛.  More precisely, 
coordinates are (chrom(𝑢%0 ), start(𝑢%0 ), end(𝑢%" ), 𝑛) for an 𝑂𝐶% with 𝑛 fragments.  We finally obtain a 
‘weighted complex span coverage’ by accumulating the coordinates over all given complexes.  
Smoothing and segmentation.  Our next task is to segment the 1D track into regions with high signal and 
annotate them as TADs.  In an ideal case, we can achieve this goal by computing the slope of the signal s 
and by recording critical points where the slope is 0. However, our signal has a basepair resolution and 
thus is not smooth, resulting in too many false critical points. A common way to smooth the signal is by a 
moving average window, but using a large window size would lose the resolution and yield TADs with 
fuzzy boundaries. Moreover, due to the inherent nature of TAD sizes, a window size parameter optimal in 
one region may not be optimal in another . We avoid this parameter tuning step by instead applying a 
discrete wavelet transformation, which decomposes signal into high-frequency component and low-
frequency component (Mallat, 1989).  Of note, the low-frequency component generally retains the 
smoothed version of the signal without affecting the shape, which is helpful for us to find accurate TAD 
boundaries (Supplementary Figure 4).  Using this ‘smoothed’ signal, we compute the slope and fine-
tune TAD coordinates.  
Implementation, results, and analysis.  The ‘tad calling’ python (v3.6) script encompasses all parts using 
the following packages: numpy, os, scipy, pywt, itertools, sys. We used the parameters --cat PASS --bs 
1000 –sp drosophila --r dm3 to run the script on significant complexes from the distance test of 
GSM3347523 dataset, which used 84 Megabyte of memory and 1 minute of cpu time. Before generating 
the 1D signal track, we separate two fragments if they are more than 100 Kb apart, based on the upper 
range of general TAD sizes by organisms (Dekker and Heard, 2015). Coverage was generated by 
BEDtools (Quinlan et al., 2010) using ‘genomecov’ function and the coverage is binned into 1 kb 
windows via ‘makewindows’ and ‘map’ commands. Signal smoothing was done by pywt package using 
the parameters ‘bior1.1’ for wavelet function and ‘3’ for the level.  MIA-Sig called 335 TADs over the 6 
chromosomes, with a median size of 200 Kb  (Supplementary Figure 5a).  For a comparison, we also 
tested insulation score as follows: .hic file (of all pairs of fragments) are converted into contact matrices 
via Juicer’s ‘dump’ function with a dense matrix option (-d) in the Juicer tool (v1.7.5); insulation score 
script (https://github.com/dekkerlab/cworld-dekker/tree/master/scripts/perl) is executed with 100Kb 
insulation square size, 100Kb delta window size for 10Kb resolution contact maps with balanced 
normalization. Insulation score (InS) called 513 TADs with a median of 150Kb, and did not call any 
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TADs larger than 500 Kb (Supplementary Figure 5b,c).  When we examined the gaps (defined as 
regions between two TADs, if any), MIA-Sig also had wider size range than InS (Supplementary Figure 
5d,e). For each TAD called by MIA-Sig and InS, we compute the total H3K27me3 signal and plot the 
genome-wide behavior (Supplementary Figure 6a).  Overall, MIA-Sig has higher inactive signal in 
TADs than InS.  The gap regions in Drosophila are known to be transcriptionally active and should 
positively correlate with H3K27ac signal.  We confirm that MIA-Sig has slightly higher median active 
signal than InS (Supplementary Figure 6b).  Note that we did not perform any normalization by region 
size because both algorithms segment the genome into either a TAD or a gap, so the region size should 
also be a feature. Histone marks provide biological evidence that MIA-Sig TADs are inactive and gaps 
are active, but ChIA-Drop fragment counts provide a direct measure of TAD and gap intensities.  Using 
the BEDtools command ‘intersect -c’, we count the number of fragments in each region.  MIA-Sig 
generally captured more fragments in TADs than InS did (Supplementary Figure 6c), and less fragments 
in gaps than InS (Supplementary Figure 6d).  Finally, we annotate each fragment in significant and 
insignificant complexes as ‘TAD’ or ‘gap’ as called by MIA-Sig.  For each complex, we count the 
number of TADs with at least 2 fragments within each TAD.  Only 5% of the insignificant complexes had 
fragments in 1 or 2 TADs, and the rest were not contributing to the TAD structure (Supplementary 
Figure 7a), validating the observation from 2D heatmaps.  By contrast, only 26% of the significant 
complexes were not in TADs, a majority (51.3%) in intra-TAD interactions, and many (23%) connected 
two or more TADs.   By observing that 12,884 complexes involve 2 to 21 TADs, we next sought to 
characterize if multiple complexes connect the same set of TADs 
 
Inter-TAD binomial test for non-enriched multiplex chromatin interaction data 
Motivation and intuition.  Our goal is to evaluate the statistical significance of these TAD combinations 
based on the frequency of occurrence measured by the number of complexes therein.  The problem is 
simple for a pair of TADs: we may treat a TAD as a ChIA-PET loop anchor and apply tools based on 
hypergeometric test. However, our data are now multi-dimensional. For instance, suppose that there are 5 
TADs, and 5 combinations ‘A-C’, ‘B-C’, ‘B-C-D’, ‘A-B-E’, ‘A-D-E’ (Supplementary Figure 7b).  The 
pair ‘B-C’ appears 4 times on its own, but also appears 3 times as a part of the triple ‘B-C-D’. Moreover, 
some parts of a combination may appear elsewhere with the same number of TADs: given ‘B-C-D’ and 
‘A-C-D’, ‘C-D’ appears twice. Therefore, we propose a counting scheme based on occurrence of 
‘expanded pairs’.   
Methods.  The notations used defined in this section are independent from those in other sections. We let 
the 𝑖th combination be 𝑇𝐶w = {𝑇w0, 𝑇wF, … , 𝑇w�}, where each 𝑇w" ∈ {𝑇𝐴𝐷0, 𝑇𝐴𝐷F,… , 𝑇𝐴𝐷[}, 𝑁 = |𝑇𝐶w| is 
the number of TADs involved, and we partition each 𝑇𝐶w  into the same class 𝐺] if |𝑇𝐶w| = 𝑗. All pairs of 
TADs in 𝑇𝐶w  are in 𝑃𝑎(𝑇𝐶w) = {{𝑟, 𝑠}:	𝑟 ≠ 𝑠, for	𝑟, 𝑠 ∈ 𝑇𝐶w} and |𝑃𝑎(𝑇𝐶w)| =

"("/0)
F

.  For each 𝑇𝐶w , we 
record the number of pairs in the same class as 

𝑎(𝑇𝐶w) = � � 1jq�B(�R�)
j∈�B(�)�∈��

 

and the number of exact appearance in higher class as  
𝑏(𝑇𝐶w) = ∑ 1�R�⊂jj∉�� . 

Using these two numbers, we compute the appearance of ‘pairs’ in same class and higher class:  
𝑥(𝑇𝐶w) = 𝑎(𝑇𝐶w) + 𝑏(𝑇𝐶w) ∙ 𝑛 l

"/0
F
p. 

Finally, we perform the binomial test with 𝑥(𝑇𝐶w) as the number of success, 𝑘(𝑇𝐶w) = ∑ 𝑥(𝑧)§∈�o  as the 

number of trials, the probability of success hypothesized as 𝑝 = 0
|�o|

; the alternative hypothesis is that the 

observed probability is greater than the expected probability 𝑝. A detailed example is provided using 
same notations (Supplementary Figure 7b).  
Implementation, results, and analysis.  A python script ‘inter-TAD binomial test’ implements the 
method using packages numpy, itertools, scipy, statsmodels, os, and sys.  Of 6,861 unique combinations 
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involving 2 to 21 TADs, 915 (13%) were identified as statistically significant.  An example illustrates that 
a pair of TADs with strong signal in the heatmap and many complexes in the linear view has lower p-
value than that with weak signal (Supplementary Figure 7c).   Here, we assumed that frequency of 
interactions between TADs is independent from their distance and sizes, and we also did not distinguish 
contacts with 2 fragments from those with 10 fragments.  These parameters may be incorporated in the 
future version.   
 
Enrichment test for RNAPII-enriched multiplex chromatin interaction data 
Motivation.  The above sections are designed to analyze non-specific multiplex interaction data analogous 
to the Hi-C data.  With an additional step of chromatin immunoprecipitation, protein-enriched multiplex 
data reveal protein-specific interactions similar to the population average ChIA-PET loops.  In a typical 
ChIA-PET analysis, loops anchored in strong binding peaks are considered to be more reliable than those 
with weak or no peaks. Extending this notion to the multiplex data, we developed an enrichment test for 
RNAPII ChIA-Drop data.  Our end goal is to retain complexes with fragments in strong binding peaks.  
One approach is to call peaks and only keep complexes that overlap the peak regions.  However, peak 
calling algorithms have their own model assumptions that may not hold for ChIA-Drop data.  Even with 
accurate peak regions, assigning statistical significance to each complex is not a trivial problem since the 
null distribution is unclear.   Thus, we take an alternative—inevitably the computationally expensive—
approach by sampling the background null distribution for each complex. 
Statistical test. The idea is to take the observed complex and place it on a random location of the same 
chromosome and compare the mean coverage between the observed and the expected.  Through many 
rounds of re-sampling, we obtain the p-value by counting the number of occurrences in which the 
expected coverage exceeds the observed coverage (Supplementary Figure 8a).  More precisely, for an 
observed complex 𝑂𝐶% = {𝑢%0 , 𝑢%F ,… , 𝑢%" }, we randomly draw an integer 𝑖 ∈ {1,… , length(𝑐ℎ𝑟𝑜𝑚)−
start(𝑢%0 )} and the shift 𝛿 = start(𝑢%0 ) − 𝑖.  The first expected complex is then 𝐸𝐶0% = {𝑣%0 , 𝑣%F ,… , 𝑣%" }, 
where startz𝑣%x { = startz𝑢%x { − 𝛿, and endz𝑣%x { = endz𝑢%x { − 𝛿 for all 𝑙 ∈ {1,… , 𝑛}. Repeating this 
process 10,000 times, we obtain 𝐸𝐶b% for 𝑘 ∈ {1,… ,10000}.  We can then compute the raw p-value of 
the 𝑚th observed complex as: 

𝑝𝑣𝑎𝑙$Bj(𝑂𝐶%) = ∑ 1²#³(QRS)´²#³(mRnS)
0YYYY
bq0 ,  

where 𝑐𝑜𝑣(𝑂𝐶%) =
0
"
∑

𝒇𝒄𝒔luLB$Lz¸S¹ {,			y"Tz¸S¹ {p

y"Tz¸S¹ {/uLB$L(¸S¹ )
"
xq0  and 𝒇𝒄𝒔(𝑥, 𝑦) is the mean ‘fragment coverage signal’ 

between coordinates 𝑥 and 𝑦. Raw p-values are separated by chromosomes and are adjusted via the 
Benjamini-Hochberg method with false discovery rate (FDR) of 0.1. The complexes with adjusted p-
value ≤ 0.1 are considered to be statistically significant and are classified as ‘pass’; others are considered 
insignificant or ‘fail’.  
Implementation, results, and analysis.  A python script ‘enrichment test’ utilizes packages numpy, 
random, statsmodels, os, sys.  GSM3347525 RNAPII ChIA-Drop data are pre-processed to exclude 
fragments mapped to the repetitive regions in the genome (dm3.rmsk.bed), and 769,803 complexes 
remain as ‘GSM3347525NR’.  The most time-consuming part of the algorithm is to obtain the fragment 
coverage at a given location, since we need to search for a start and end index in a bedgraph or a bigwig 
file. With at least 769803 * 2 * 10000 = 1.54 × 100Y  operations, we realized that python implementations 
of exact search would be intractable.  As means to reduce the runtime, we store the bedgraph file into bins 
of size 10 bps and store only the 4th column ‘value’.  The solution then turns into a simple lookup 
operation, yielding an approximation that is close to the exact solution. Our code is ‘parallelized’ by 
chromosome, each using around 5 hours cpu time and 230 Megabytes of memory (Supplementary 
Figure 8b). MIA-Sig identified 190,226 complexes (24.7%) as statistically significant.  We ensure that 
our empirical null distribution does behave randomly by comparing the enrichment scores of the observed 
complexes in chr2L with those of 1,000 expected complexes generated for each observed complex 
(Supplementary Figure 8c).  Zooming in further, we note that the histogram of the observed is shifted to 
the right of the histogram of the expected null (Supplementary Figure 8d).  Using the active and 
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inactive regions defined in (Zheng et al., 2019), we count the number of fragments therein for significant 
and insignificant complexes (Supplementary Figure 9a). For each active and inactive region, we 
compute the number of significant complexes fragments and their log10 values are plotted 
(Supplementary Figure 9b); K-S test supports that significant complexes are indeed more likely to be in 
active regions than inactive regions. By contrast, insignificant complexes have no bias towards or against 
active regions (Supplementary Figure 9c). We define a gene promoter as +/- 1kb from the 
transcriptional start site (TSS) annotated by UCSC genome browser. Note that typically +/- 250 bp is used 
for drosophila, but we extend it to accommodate ChIA-Drop protocol-specific features.  A gene is active 
(6466 genes) if total RNA-seq level is greater than 5, and inactive (8874 genes) otherwise. A fragment is 
‘active promoter’ if it overlaps the promoter of an active gene. In general, significant complexes have 
higher proportion of promoter fragments than insignificant complexes (Supplementary Figure 9d), and 
the skew is more pronounced for active promoters (Supplementary Figure 9e). Inactive promoters serve 
as a control, in which both significant and insignificant complexes display similar patterns in the number 
of inactive promoter fragments (Supplementary Figure 9f,g).  
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Supplementary Figures and legends 
 

 
Supplementary Figure 1: Overview of distance test, comparison of computational and 
experimental null distribution, and summary statistics. 
(a) A diagram of distance test encompasses both the statistical test and the filter for correcting 
multiplets, which is defined as droplets with more than one chromatin complex. All observed 
complexes get tested for distance, and those with significant p-values ‘pass’; of those with 
insignificant p-values, 2-fragment complexes ‘fail’, and others are ‘deferred’.  Entropy filter 
separates multiplets into singlets and resulting complexes are subject to the second distance 
test.  (b) Log10 of neighboring fragment-to-fragment distances of expected complexes and pure 
DNA complexes are computed by fragment number class.  Density plot illustrate that both 
datasets comprise mostly large distances.  (c) A comprehensive statistics of complexes at each 
step of the distance test.  A singleton is a complex with only one fragment, and complex has 
more than one fragment.  
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Supplementary Figure 2: Characteristics of original, significant, and insignificant complexes. 
(a) A 2D heatmap is shown for each of original, significant, and insignificant complexes after the 
distance test.  Significant complexes contribute to the TAD structures, and insignificant 
complexes have seemingly random behavior throughout the heatmap.  (b) Neighboring 
distances are plotted as in Supplementary Figure 1b.  Only high-fragment original complexes 
are bimodal.  Significant complexes are either bimodal or unimodal with distances less than 1 
Mbps; majority of insignificant complexes contain large distances.  (c) A histogram of the 
number of fragments in each complex indicates that complexes with many fragments pass the 
first distance test, and additional complexes with 4 to 8 fragments pass the second test after 
entropy filter.  Insignificant complexes are mainly low-fragment complexes.  
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Supplementary Figure 3: Effects of the entropy filter. 
(a) A box plot of normalized Shannon entropy is provided for sub-complexes after filter. Of 
complexes with three fragments (in 𝐹J), 499,613 are identified as ‘singlets’ due to high entropy, 
and 284,540 are considered to be ‘doublets’ due to low entropy.  x-axis is labled with the size of 
sub-complexes, with counts in a parenthesis.  For instance, a 5-fragment complex can be split 
into a singleton (1) and a 4-fragment complex (4), or into a complex (2) and another complex 
(3); alternatively, a triplet has three sub-complexes (1,1,3 and 1,2,2). A general trend is that 
entropy is highest for those without any splits, lowest for a doublet with a singleton, and 
increases as the size of sub-complexes balance to be roughly equal. (b) Complexes in 𝐹» and 
𝐹W are plotted in an identical procedure as part (a). 
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Supplementary Figure 4: Ideas behind the MIA-Sig TAD calling algorithm. 
(a) A raw signal track is generated from significant complex span with preprocessing.  Wavelet 
transformation of the raw signal with level 3 yields a moderately smoothed version, and that with 
level 5 removes more noise (both using biorthogonal wavelet).  Similar results are obtained with 
a triangle moving average window of size 40 bps, but ‘valleys’ are narrower than those by 
wavelet method.  (b) MIA-Sig distinguishes clear gaps between TADs (indicated by three 
arrows) possibly due to wavelet method. 
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Supplementary Figure 5: Statistics of TAD and gap sizes called by MIA-Sig and Insulation 
Score. 
(a) Statistics of 335 TADs called by MIA-Sig for each chromosome.  (b) Histogram of sizes of 
TADs called by MIA-Sig (left; n=335) and Insulation Score (right; n=513).  (c) Boxplot of TADs 
called by MIA-Sig (median=200kbps) and Insulation Score (median=150 kbps) (Mann-Whitney 
U test p-value= 8.16 × 10/0J). (d) Histogram of sizes of gaps between TADs by MIA-Sig (left; 
n=318) and Insulation Score (right; n=513).  (e) Boxplots of gaps by MIA-Sig (median=72 kbps) 
and Insulation Score (median=70kbps) (Mann-Whitney U test p-value= 0.29).  
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Supplementary Figure 6: Comparison of TADs and gaps by MIA-Sig and Insulation Score. 
(a) Total H3K27me3 signal is plotted for each TAD called by MIA-Sig (median= 2.2 × 101) and 
Insulation Score (median= 1.4 × 101) (one-sided Mann-Whitney U test p-value= 7.33 × 10/0F). 
(b) Total H3K27ac signal is plotted for each gap defined by MIA-Sig (median= 9.5 × 10½) and 
Insulation Score (median= 7.8 × 10½) (one-sided Mann-Whitney U test p-value= 0.0003). (c) 
Number of fragments from significant ChIA-Drop complexes are recorded for each TAD.  MIA-
Sig TADs have more fragments (median=933) than Insulation Score TADs (median=613) (one-
sided Mann-Whitney U test p-value= 1.5 × 10/0J).  (d) In gap regions between TADs, MIA-Sig 
has less fragments (median=266.5) than Insulation Score (median=313), though not statistically 
significant (one-sided Mann-Whitney U test p-value= 0.1).  
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Supplementary Figure 7: Inter-TAD binomial test. 
(a) For each complex, a TAD interaction is valid if two or more fragments are enclosed in TADs 
called by MIA-Sig.  Most (51.3%) of significant complexes are intra-TAD interactions, yet 23% 
involve 2 or more TADs.  By contrast, the majority (94.32%) of insignificant complexes are not in 
any TAD.  (b) Inter-TAD binomial test is designed to assess significance of the 23% identified in 
part (a). Given a set of complexes spanning over 5 TADs ‘A’, ‘B’, ‘C’, ‘D’, and ‘E’, we count the 
number of complexes in a specific TAD combination and use the counts to test for significance 
via one-sided binomial test (details in the Method). Only ‘B-C’ and ‘B-C-D’ are identified as 
significant contacts.  (c) An example of complexes involving 3 TADs with identifications ‘T26’, 
‘T28’, and ‘T29’.  ‘T26-T28’, ‘T28-T29’ and ‘T26-T28-T29’ are classified as significant contacts, 
whereas ‘T26-T29’ is covered by only 8 complexes and thus insignificant.  
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Supplementary Figure 8: Overview of enrichment test for RNAPII ChIA-Drop data. 
(a) Empirical null distributions are generated by taking the observed complex and placing it in a 
random location of the same chromosome; ‘enrichment score’ is computed as the mean 
fragment coverage.  (b) Summary statistics of complexes after enrichment test. (c) Empirical 
cumulative distribution function of the ‘enrichment score’ is plotted for expected (computational 
null) and observed complexes (one-sided Kolmogorov-Smirnov test statistic=0.47, p-value<
2.2 × 10/01).  (d)  A closer view of the distribution reveals that enrichment scores of observed 
complexes are shifted to the right of expected (null) complexes.  
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Supplementary Figure 9: Comparison of significant and insignificant RNAPII complexes. 
(a) A majority (83%) of the fragments in significant complexes is in active region (cf. 58% of 
insignificant complexes). (b) For each active and inactive domain, number of fragments of 
significant complexes are plotted.  Genome-wide, significant fragments are more likely to be in 
active regions than inactive regions (‘*’ denotes significant; Mann-Whitney U test p-value=
3.7 × 10/FF).  (c) Insignificant fragments have no preference over active and inactive regions 
(‘n.s.’ denotes not significant; Mann-Whitney U test p-value= 0.23).  (d) Number of complexes 
with 0, 1, 2, more than 2 promoter fragments are recorded for significant (‘Pass’) and 
insignificant (‘Fail’) complexes. (e) Most (69%) of the significant complexes have at least one 
active promoter fragment (cf. 30.4% of insignificant complexes). (f) In both significant and 
insignificant complexes, around 80% had no fragment annotated as an inactive promoter. (g) 
Distribution of inactive promoters have similar pattern for significant and insignificant complexes. 
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Supplementary Figure 10: Annotation of fragment as an active promoter, inactive promoter, or 
non-promoter. 
(a) For complexes with 2 fragments, enrichment test captured ‘active promoter – non-promoter’ 
pair the most, possibly reflecting the promoter-enhancer interactions previously observed in 
ChIA-PET data.  The third largest proportion is a contact between two active promoters.  
Insignificant complexes proportions are correlated with the number of non-promoters.  (b) 
Simultaneous interactions among 3 regulatory elements can be inferred from complexes with 3 
fragments.  More than 50% of significant complexes involve one or two active promoter with 
non-promoter(s). (c) Similarly, complexes with 4 fragments are centered around active 
promoters, with ‘ANNN’, ‘AANN’, ‘AAAN’, and ‘AINN’ collectively making up more than 60% of 
the significant complexes.  (d) Significant complexes had promoter fragments with higher 
corresponding gene expression (median=57) than insignificant complexes (median=34) (Mann-
Whitney U test p-val< 2.2 × 10/01).   
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1  Supplementary Note 
Supplementary Note 1. Extending MIA-Sig to GAM and SPRITE data 

 

This note discusses the technical principles of the current three experimental protocols 

(GAM, SPRITE, and ChIA-Drop) for capturing multiplex interaction data, and the applicability of 

MIA-Sig to all multiplex data generated by different methods including GAM and SPRITE. 
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Supplementary Note 1. Extending MIA-Sig to GAM and SPRITE data 
 

We have developed MIA-Sig on ChIA-Drop data, but it could also potentially be suitable 
for denoising multiplex chromatin interactions from other methods, such as SPRITE and GAM, 
considering the properties of these protocols and data sets. 

SPRITE uses 3- 5 rounds of split-and-pool approach to barcode each chromatin 
complex by combinatorial indexing, with a theoretical assumption that many rounds of splitting 
and pooling should result in one unique barcode combination per chromatin complex. However, 
in practice, the split-and-pool process is limited to 4-5 rounds with a limited set of distinct 
barcodes, and in each round, potentially hundreds of thousands of chromatin complexes are 
assigned the same DNA oligo barcode. As a result, there is a certain non-zero probability of 
multiple complexes receiving an identical barcode combination. These unrelated complexes 
would be considered technical noise of SPRITE rather than specific chromatin interactions. The 
SPRITE technical noise profile is somewhat similar to that of ChIA-Drop of unrelated complexes 
partitioned in the same microfluidics droplet. Thus, MIA-sig could potentially be applied to the 
SPRITE data for noise assessment and data refinement. 

Unlike SPRITE and ChIA-Drop, GAM captures multi-way interactions by slicing a 
cryopreserved nucleus and then taking one thin section to represent each nucleus for 
amplification and sequencing of the chromatin DNA fragments within that slice. Aggregating the 
sequencing data derived from slices of many nuclei, one can then identify statistically confident 
interactions by counting the frequency of occurrence. However, many unrelated DNA fragments 
could be randomly co-captured by the process, and the potential technical noise could be high. 
Thus, a hybrid of MIA-Sig’s distance test and the binomial test for inter-TAD contacts may be 
extended to GAM complexes by treating a binned fragment of a complex as a TAD.   

In sum, all multiplex chromatin interaction data could have significant level of noise, and 
the principle nature of the noises are conceptually similar. The algorithm used in MIA-Sig 
considers general issues that should be applicable to all multiplex data. Although the current 
version of MIA-Sig is specifically developed based on ChIA-Drop data, it could be adapted to 
accommodate other data types. MIA-sig could thus be modified to call statistically significant 
complexes from SPRITE or GAM data. In addition, MIA-sig’s algorithm for calling TADs from 
multiplex chromatin contacts should be directly applicable to any multiplex chromatin interaction 
data, whether they be from ChIA-Drop, SPRITE, or GAM.   
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