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 7 

We introduce a geometric approach to study the representation of orientation by 8 

populations of neurons in primary visual cortex in the presence and absence of an 9 

additive mask. Despite heterogeneous effects at the single cell level, a simple 10 

geometric model explains how population responses are transformed by the mask 11 

and reveals how changes in discriminability and bias relate to each other. We 12 

propose that studying the geometry of neural populations can yield insights into 13 

the role of contextual modulation in the processing of sensory signals. 14 

 15 

 16 

Introduction 17 

 18 

Individual neurons in primary visual cortex respond to stimulation within restricted areas 19 

of the visual field, which define their classical receptive fields1-3. These responses can be 20 

modulated by contextual stimuli presented within the classical receptive field or in the 21 

surrounding regions4-6. Cross-orientation and surround suppression are two well-known 22 

examples of contextual modulation5,7-21.  23 

 24 

The role that contextual modulation plays in cortical function remains an open question. 25 

Some have considered such interactions to be directly involved in image processing, such 26 

as the detection and enhancement of smooth, spatially extended contours22-37. Others 27 

maintain that the fundamental goal of contextual modulation is to generate a sparse, 28 

efficient representation of natural images6,38-45. Distinguishing between these theories is 29 

not straightforward, as the their goals are not mutually exclusive6.  30 

 31 

Here we focus on how contextual modulation transforms the activity of neural populations. 32 

Contextual modulation has been studied extensively in single neurons, leading to the 33 

development of the influential normalization model6,46,47. We have recently shown, 34 

however, that key properties derived from the classic formulation of normalization, such 35 

as contrast and subspace invariance, do not strictly hold at a population level48.  Thus, 36 

we and others49 see new opportunities in the study of contextual modulation at the level 37 

of neural populations. The present study follows up on this line of work by studying how 38 

the coding of orientation by neural populations is transformed in the presence of a mask. 39 

 40 
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Results 41 

 42 

Measurement of population responses in masked and unmasked conditions 43 

 44 

We measured the responses of neural populations in mouse primary visual cortex using 45 

two-photon imaging (Methods). Mice were head-restrained but otherwise free to walk on 46 

a rotating wheel. The visual stimulus consisted of two conditions (Fig 1A). In the 47 

unmasked condition, a full-field sinusoidal grating was presented while its orientation 48 

changed linearly with time 𝜃 = 𝜋𝑡/𝑇 with a period 𝑇 = 10s. This type of continuously 49 

rotating stimulus has previously been used to measure orientation maps50. In the masked 50 

condition, the same rotating stimulus was presented superimposed on top of a mask 51 

consisting of a sinusoidal grating oriented vertically. We estimated the spiking responses 52 

of neurons using a standard processing pipeline involving image registration, signal 53 

extraction and deconvolution51. The periodic nature of the stimulus was evident in the 54 

temporal responses of cells (Fig 1B). This is because neurons tuned to one orientation 55 

respond once per cycle. As described in earlier studies52, locomotion modulated the 56 

overall responses of the population (Fig 1B, shaded regions). 57 

 58 

Single neuron responses in masked and unmasked conditions are heterogenous 59 

 60 

We computed the average response of neurons in the unmasked and masked conditions 61 

over the cycle of the stimulus (Fig 1C). The temporal responses were shifted by the mean 62 

stimulus-response delay (see Methods). After this correction, the temporal profile of the 63 

response can be interpreted as an estimate of the tuning curve of the neuron. In this 64 

representation, the mask is present at an orientation of 90 deg (Fig 1C, dashed lines; 65 

subsequent figures omit the location of the mask to avoid clutter).  66 

 67 

We observed heterogeneity of responses at the single cell level. Some cells were well 68 

tuned to orientation in the unmasked condition but were completely suppressed by the 69 

addition of the mask (Fig 1Ca). Others did show such dramatic suppression, but 70 

responded with a scaled down version of their unmasked responses (Fig 1Cb) – a 71 

behavior consistent with the normalization model6,46,53. Some cells showed little or no 72 

difference between the responses in the two conditions (Fig 1Cc). Another group saw 73 

their unmasked responses scale up by the mask (Fig 1Cd). Finally, somewhat 74 

surprisingly, a set of neurons showed very weak responses in the unmasked condition 75 

but responded vigorously in the presence of the mask (Fig 1Ce)48.  76 

 77 

We studied the range of behaviors in single cells (Fig 1C) by comparing the mean 78 

response of the 𝑖 − 𝑡ℎ neuron over the stimulation cycle between unmasked and masked 79 

conditions, which we denote by  𝜇𝑢
𝑖  and 𝜇𝑚

𝑖  respectively (Fig 2A). We found a significant 80 
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anti-correlation: the stronger a neuron responded in the unmasked condition the weaker 81 

its response was in the masked condition and vice-versa (𝑛 = 3920, 𝑟 = −0.55, 𝑝 =82 

5.6 × 10−312). We refer to neurons at the extremes of the distribution of behavior as 83 

grating and plaid cells (Fig 2A, shaded areas). These groups were formally defined as 84 

the cells attaining the 10% lowest (grating cells) and highest (plaid cells) ratios of 85 

log2(𝜇𝑚
𝑖 /𝜇𝑢

𝑖 ) (Fig 2A, inset). We note these groups represent behaviors found at the 86 

extremes of a unimodal distribution (there is no evidence of discrete classes of neurons). 87 

Grating and plaid cells had different preferred orientations. Grating cells were 88 

preferentially tuned to the orientation orthogonal to the mask in both conditions (Fig 2B, 89 

left panels). In grating cells, the introduction of the mask scaled down the responses by 90 

about a third but did not affect tuning (note the different y-scales in Fig 2B). This is the 91 

type of responses one might expect from the classic normalization model46,53. Plaids cells, 92 

on the other hand, where preferentially tuned to the orientation of the mask (90 deg) when 93 

probed with grating stimuli in the unmasked condition, although their responses were 94 

relatively weak (Fig 2B, top right). Instead, and somewhat surprisingly, these cells were 95 

most responsive to the orthogonal orientation (0 deg) under the presence of the mask 96 

(Fig 2B, bottom right) – in other words, they responded best when the stimulus was a 97 

plaid with orthogonal components.  98 

 99 

A geometric framework to study contextual modulation in neural populations 100 

 101 

The data in unmasked and masked conditions can each be represented as a matrix where 102 

the columns represent the tuning function of each cell (Fig 3A). To ease visualization, we 103 

ordered neurons by their preferred orientation. The rows of the matrix represent the 104 

population response to a given orientation. We denote the mean population responses 105 

as a function of orientation in the unmasked and masked conditions by 𝑟𝑢(𝜃) and 𝑟𝑚(𝜃), 106 

respectively. These vectors can be thought to describe parametric (closed) curves in a 107 

high dimensional space as 𝜃 ∈ [0, 𝜋] traverses the orientation domain (the dimension 108 

being the number of neurons in the population). We aim to understand the shape of these 109 

curves, the nature of the transformation 𝑇: 𝑟𝑢(𝜃) → 𝑟𝑚(𝜃) introduced by the mask, and 110 

how the outcome affects the discriminability of stimuli and biases the estimation of 111 

orientation in the masked condition.  112 

 113 

In what follows we denote by 𝑑𝑢(𝜃, 𝜑) the cosine distance between 𝑟𝑢(𝜃) and 𝑟𝑢(𝜑) (Fig 114 

3B, left). The cosine distance is one minus the cosine of the angle between the two 115 

vectors. Because these vectors have positive entries representing a spike rate, the 116 

distance is bounded between zero and one. Similarly, we define 𝑑𝑚(𝜃, 𝜑) as the cosine 117 

distance between 𝑟𝑚(𝜃) and 𝑟𝑚(𝜑) (Fig 3B, middle). Under certain assumptions about 118 

the uniformity of the noise, the measurements  𝑑𝑢(𝜃, 𝜑) and 𝑑𝑚(𝜃, 𝜑) capture the ability 119 

of the population to discriminate between two angles in each condition. Finally, 𝑑𝑢𝑚(𝜃, 𝜑) 120 
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denotes the cosine distance between the population representation of 𝜃 in the unmasked 121 

condition and the representation of 𝜑 in the masked condition. This measure captures the 122 

relative positions of the two curves and will induce biases in the estimation of orientation 123 

in the presence of a mask. Namely, non-zero biases result when the structure of 𝑑𝑢𝑚(𝜃, 𝜑) 124 

is not perfectly diagonal (Fig 3B, right). In the sequel, we also denote the normalized 125 

population vectors by 𝑟̂𝑢(𝜃) = 𝑟𝑢(𝜃)/‖𝑟𝑢(𝜃)‖ and 𝑟̂𝑚(𝜃) = 𝑟𝑚(𝜃)/‖𝑟𝑚(𝜃)‖. 126 

 127 

Orthogonality of signal and noise subspaces 128 

 129 

We selected cosine distance as a metric because a substantial component of neural 130 

variability in the population response occurs along its direction54. To show this, we 131 

computed the mean and the covariance of the responses, 𝑟𝑢(𝜃) and ∑ (𝜃)𝑢 . For each 132 

orientation, we compared the direction of the population response with the direction of the 133 

largest eigenvector, 𝑣1(𝜃), of the covariance matrix (Fig 3C). The largest eigenvector 134 

accounted for nearly a third of the variability (and more than three times the variance 135 

accounted for by the next largest eigenvalue) (Fig 3D) and its direction was very similar 136 

to that of the largest eigenvector – the correlation coefficient between 𝑟𝑢(𝜃) and 𝑣1(𝜃) 137 

was 0.88 ± 0.05 (mean ± 1SD) (Fig 3D, inset). This large component of variability is due 138 

to fluctuations in behavioral state which modulates the gain of the response vector52,55,56. 139 

An implicit assumption behind the adoption of the cosine metric is that the orientation of 140 

the stimulus is coded by the direction of the population vector46,57. Thus, the result can be 141 

rephrased by stating that for each orientation, the direction of largest variability, 𝑟̂𝑢(𝜃), is 142 

orthogonal to the direction of the encoding, 𝑟̂𝑢
′(𝜃), which is tangent to the unit sphere.  143 

 144 

Multidimensional scaling of population responses.  145 

 146 

To gain insight about the geometry of the curves and their relative positions we visualized 147 

them using multi-dimensional scaling using the cosine distance as a metric (Fig 4). The 148 

curves represent the embeddings of 𝑟̂𝑢(𝜃) (blue) and 𝑟̂𝑚(𝜃) (red) in 3D space, while the 149 

spheres of matching colors indicate the point where the stimulus cycle begins. We define 150 

the mean population response over the entire stimulation cycle as the white point, which 151 

we denote by denote by 𝜇𝑢 and 𝜇𝑚. The grey arrows depict the shift of the white points 152 

between unmasked and masked conditions, with the stem of the arrow positioned at 𝜇𝑢 153 

and the head at 𝜇𝑚. These examples are typical of what we observed in our experiments.  154 

 155 

The shapes of 𝑟̂𝑢(𝜃) and 𝑟̂𝑚(𝜃) are similar, with the masked representation being a scaled 156 

down version of the original. The curves are farthest from each other at the beginning of 157 

the cycle, when the pattern in the masked condition consists of an orthogonal plaid and 158 

the one in the unmasked condition is a horizontal grating. The two curves are closest to 159 

each other near the middle of the cycle, when the pattern in the masked condition is a 160 
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vertical grating with 100% contrast and the one in the unmasked condition is a vertical 161 

grating with 50% contrast. The curve 𝑟̂𝑚(𝜃) appears to be rotated away from that of 𝑟̂𝑢(𝜃), 162 

with the axis of rotation passing near the representation the mask. These features were 163 

consistent across our experiments suggesting that a scaling and rotation may explain the 164 

transformation of 𝑟̂𝑢(𝜃) into 𝑟̂𝑚(𝜃) induced by the mask. Of course, these visualizations 165 

ought to be interpreted with caution, as they are only approximate representations of the 166 

geometry of high dimensional objects. Thus, we must check these first impressions of the 167 

geometry by doing appropriate calculations in the native space.  168 

 169 

Masking shrinks and rotates population responses 170 

 171 

To verify our perception that curves are shrinking we computed their lengths58, 𝐿𝑢 =172 

∫ ‖𝑟̂𝑢
′(𝜃)‖𝑑𝜃

𝜋

0
 and 𝐿𝑚 = ∫ ‖𝑟̂𝑚

′ (𝜃)‖𝑑𝜃
𝜋

0
. The arguments represent the angular velocity at 173 

which the population changes its orientation and represent a measure of discriminability 174 

between nearby angles. The length, therefore, represents local discriminability summed 175 

over all orientations58,59. The mask had the effect of reducing the overall length of the 176 

curves by a factor of 0.84 ± 0.05 (mean ± 1SD) (Fig 5A). As we will soon demonstrate, 177 

this shrinkage is not uniform, but peaks near the orientation of the mask.  178 

 179 

To verify our impression that the mask induces a change in the direction of the mean 180 

population activity, we defined the white-point shift as ∆= 𝑑(𝜇𝑢, 𝜇𝑚)/((𝜌𝑢 + 𝜌𝑚)/2). Here, 181 

𝜌𝑢 represents the average radius of the curve in the unmasked condition, calculated as  182 

(1/𝜋) ∫ 𝑑(𝑟𝑢(𝜃), 𝜇𝑢)
𝜋

0
𝑑𝜃, and a corresponding definition applies to 𝜌𝑚. In other words, we 183 

measure the shift of the white point in terms of the average radius of the curves. Across 184 

the population we find ∆= 0.71 ± 0.15 (mean ± 1SD) – a relatively large fraction (Fig 5B), 185 

which is consistent with the visualizations from multi-dimensional scaling. We will see this 186 

shift is important because it is partly responsible for generating biases in the estimation 187 

of orientation in the masked condition.  188 

 189 

Rejection of the linear combination model 190 

 191 

With the geometric formalism in place, we can test a common model of population 192 

responses, which postulates that the response to a plaid can be written as a linear 193 

combination of the population responses to the individual components48,60. The 194 

implication for our experiment is that 𝑟𝑚(𝜃) ∈ span {𝑟𝑢(𝜃), 𝑟𝑢(𝜋/2 )} (recall the mask has 195 

orientation 𝜋/2). One way to test the prediction is to measure the angle formed by the 196 

vector 𝑟𝑚(𝜃) and the plane span {𝑟𝑢(𝜃), 𝑟𝑢(𝜋/2 )}. The results show a significant departure 197 

from the prediction, with angular deviations larger than 30 deg and significantly higher 198 

than zero (𝑝 < 0.005, bootstrap, see Methods) (Fig 5C). Thus, the present data rule out 199 

the linear combination model, thereby confirming and extending a prior result48.  200 
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 201 

The mask impairs discriminability and biases the decoding of orientation 202 

 203 

Next, we analyzed changes in discriminability induced by the mask. Discriminability 204 

between any two orientations depends both on the distance between the mean population 205 

vectors and the statistics of the noise. As mentioned above, if the statistics of the noise 206 

are uniform in the sense that they translate with the direction of the population, we expect 207 

discriminability to be proportional to the distances 𝑑𝑢(𝜃, 𝜑) and 𝑑𝑚(𝜃, 𝜑).  Nevertheless, 208 

given we have ~100 cycles we were able to compute a proper d-prime measure for both 209 

masked and unmasked conditions, which we denote by 𝐷𝑢(𝜃, 𝜑) and  𝐷𝑚(𝜃, 𝜑) (see 210 

Methods) (Fig 6A). To measure local discriminability (or just noticeable differences) we 211 

defined the threshold for detection in the unmasked condition 𝑇𝑢(𝜃) as the minimal angle 212 

Δ such that 𝐷𝑢(𝜃 − Δ/2, 𝜃 + Δ/2) ≥ 4 (Fig 6A, iso-discriminability contours); we adopted 213 

a similar definition for the threshold in the masked condition, 𝑇𝑚(𝜃). Comparison of the 214 

thresholds in the two conditions revealed that the mask elevated thresholds around the 215 

orientation of the mask (at 90 deg) (Fig 6A). Interestingly, the thresholds around the 216 

orientation orthogonal to the mask (0 deg) were not affected.  A similar result is obtained 217 

if we perform a similar analysis based on 𝑑𝑢(𝜃, 𝜑) and 𝑑𝑚(𝜃, 𝜑) and assume the noise is 218 

uniform (data not shown). 219 

 220 

We then analyzed how the presence of the mask can lead to biases in estimates of 221 

orientation. We used a decoder based on population voting57,61. The estimated orientation 222 

was obtained as  𝜃 = (1/2) arg ∫ (1 − 𝑑𝑢𝑚(𝜃, 𝜑)) exp(𝑖2𝜃)
𝜋

𝜃=0
 𝑑𝜃. In other words, the 223 

population votes for each angle with a weight that depends on the distance to the 224 

representation of each angle in the unmasked orientation – the smaller the distance the 225 

strongest the vote. The bias is then 𝑏 = (𝜃 − 𝜑) mod 𝜋. We observe that except at the 226 

orthogonal orientation the estimates are biased towards the orientation of the mask (Fig 227 

6B). These biases arise because 𝑑𝑢𝑚(𝜃, 𝜑) does not have a non-diagonal structure -- the 228 

local minima of  𝑑𝑢𝑚(𝜃, 𝜑) occur slightly off the main diagonal (Fig 6B, bottom, white 229 

contours). Similar results are obtained using a simpler winner-takes-all decoder, where 230 

we pick 𝜃 = arg min 𝜃 𝑑𝑢𝑚(𝜃, 𝜑).   231 

 232 

A geometric model for population transformations under masking 233 

 234 

We tested if a simple geometric model62, originally developed to explain the effects of 235 

adaptation in psychophysical experiments, could explain our masking data (Fig 6C). The 236 

model assumes that in the unmasked condition the population response 𝑟𝑢(𝜃) describes 237 

a trajectory around the unit circle and that the effect of the mask is to translate and scale 238 

this response to yield 𝑟𝑚(𝜃). Translation is towards the population direction evoked by the 239 

mask, and the scaling is a typically a factor smaller than one. The model assumes that 240 
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orientations are identified by the direction of the population vector, and that the decoder 241 

is unaware of the shift in the white point of the population between the two conditions. In 242 

other words, estimates of orientation are based on the direction of the population vector 243 

measured relative to the origin (which is also 𝜇𝑢 in this case) (Fig 6C). The model has 244 

only two parameters, the magnitude of the shift of the white point and a scaling factor. Its 245 

simplicity allows one to compute an analytical expression for both the threshold and the 246 

bias62 (see Methods). Indeed, this model captures some of the behavior of observed in 247 

the data. First, it reproduces the dependence of threshold with orientation in the masked 248 

condition, showing a maximum centered around the orientation of the mask. Second, it 249 

reproduces the shape of the bias reflecting an attraction towards the orientation of the 250 

mask.  251 

 252 

The model, however, fails in three fundamental ways. First, in the model the population 253 

responses in both conditions lie within the same plane. As two independent vectors span 254 

the entire plane, it has to be the case that 𝑟𝑚(𝜃) ∈ span{𝑟𝑢 (𝜃), 𝑟𝑢(𝜋/2)}  (so long as 255 

𝑟𝑢(𝜃) ≠ 𝑟𝑢(𝜋/2)). In other words, this model satisfies linear combination60. However, we 256 

have already shown this is not the case in the data (Fig 5D). Second, both curves make 257 

a single revolution around the origin. This means that the lengths of the normalized 258 

responses are the same and equal to 2𝜋, predicting a ratio 𝐿𝑚/𝐿𝑢  = 1. Another way of 259 

stating this is that both 𝑟̂𝑢(𝜃) and 𝑟̂𝑚(𝜃) are unit circles, and that the two curves are 260 

different parametrizations of the same curve. However, the data show the ratios of the 261 

lengths to be significantly less than one (Fig 5A, tailed sign-test, 𝑝 = 9.3 × 10−10). Third, 262 

the threshold is directly linked to how fast the population response changes its direction 263 

with angle, which is given by ‖𝑟̂𝑢
′(𝜃)‖ and ‖𝑟̂𝑚

′ (𝜃)‖. The faster the population direction 264 

rotates the lower the thresholds for discrimination. Faster rotation speeds  However, as 265 

we just pointed out the average across all orientations is constant under this model, 266 

∫ ‖𝑟̂𝑢
′(𝜃)‖𝑑𝜃

2𝜋

0
= ∫ ‖𝑟̂𝑚

′ (𝜃)‖𝑑𝜃
2𝜋

0
= 2𝜋. This means that if the mask increases 267 

discriminability for some orientations it must decrease it for others58. This is reflected in 268 

the fact that the threshold in the masked condition fluctuates around the mean for the 269 

unmasked condition (Fig 6C). The data, however, indicates that the effect of the mask 270 

was to impair the discriminability around the orientation of the mask, while there is little or 271 

no effect at the orthogonal orientation (Fig 6A, right column). The data refutes the 272 

prediction that increases in threshold at some orientations must be accompanied by 273 

decreases in threshold at other orientations (Fig 6C).  274 

 275 

Can model be extended to account for our results? We know from the analysis of single 276 

cell responses that some neurons are unresponsive in the unmasked condition but 277 

respond robustly in the presence of a mask (Fig 1B and 2A). This fact alone indicates the 278 

population responses in the masked and unmasked conditions do not lie within the same 279 

subspace. Thus, one way to extend the model is to allow the population responses to be 280 
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displaced relative to each other along a third dimension (Fig 6D). Consider the response 281 

in the unmasked condition to be the unit circle and the one in the masked condition to be 282 

a the result of an affine transformation, 𝑇(𝑟) = 𝛼𝐴𝑟 + 𝑡, where 𝐴 is an orthogonal matrix 283 

(representing a rotation), 𝛼 is a scaling factor, and 𝑡 a translation. It is then possible to 284 

find parameters of the transformation that reproduce the ratio between the lengths of the 285 

curves, as well as the dependence of discriminability and bias on orientation (Fig 6D, 286 

middle and right panels). An affine transformation can be represented in homogenous 287 

coordinates as 𝑇(𝑟) = 𝐴𝑟 where the population vector now has an extra dimension to 288 

allow for translation. We can then write the transformation of the normalized population 289 

responses as 𝑇(𝑟̂) = 𝐴𝑟̂ /‖𝐴𝑟̂ ‖, which we recognize as a projective linear 290 

transformation63 (Fig 6E).  When the model is fit to the data in individual experiments, it 291 

nicely accounts for the observed transformations (Fig 6F). 292 

 293 

Discussion 294 

 295 

Understanding how populations of neurons encode a physical attribute of a sensory 296 

stimulus, and how responses are transformed by contextual modulation is a central 297 

question of system neuroscience49. Here we considered the simpler question of how the 298 

orientation of a sinusoidal grating is transformed by an additive mask.  299 

 300 

At the single cell level, we observed a wide range of responses (Figs 1C,2). Interestingly, 301 

we found a group of neurons that do not respond to gratings in the unmasked condition 302 

but respond strongly to plaids in the masked condition (Fig 2A). The maximal response 303 

of this type of these plaid neurons, occurs when the pattern is an orthogonal grating (Fig 304 

2B). This finding implies that the responses in masked and unmasked conditions do not 305 

lie within the same subspace. This explains why the linear model (Fig 5C) and the 2D 306 

geometric model (Fig 6C) fail to account for the data. Grating and plaid cells are 307 

reminiscent of pattern and component cells64,65. We use different terms because the 308 

definitions are not equivalent. We note, however, that the pattern index used to classify 309 

cells as pattern/component correlates with the plaid/grating response we use here66 and 310 

that mouse primary visual cortex contains a larger proportion of pattern cells than found 311 

in non-human primates67. Thus, we suspect that the neurons engaged during masking 312 

that do not respond strongly to gratings in the masked condition could represent pattern 313 

cells.  314 

 315 

We observed that plaid cells, when probed with a single component in the unmasked 316 

condition, responded optimally (albeit weakly) to the orientation of the mask (Fig 2B). 317 

While somewhat puzzling, the behavior in the masked condition might be explained if the 318 

addition of a grating orthogonal to a cell preferred orientation (as defined with single 319 
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gratings) increases its response by releasing it from inhibition from oblique orientations in 320 

a ring model of orientation tuning68. 321 

 322 

The main contribution of the present study is the introduction of a geometric approach to 323 

study contextual modulation of neural populations48,62. The analysis revealed that, despite 324 

a substantial heterogeneity in the behavior of individual cells, the map relating population 325 

responses in masked and unmasked conditions can be approximated as an affine 326 

transformation. When considering normalized responses, the corresponding map is a 327 

projective linear transformation63. The finding is so-far limited to masking, but we 328 

conjecture it may hold for other types of contextual modulation, such as interactions 329 

between the classical receptive field and the surround and sensory adaptation. Indeed, 330 

the a 2D model which accounts for psychophysical data on adaptation62 (Fig 6C) is an 331 

instance of an affine transform. 332 

 333 

The geometric approach proved helpful in understanding several important properties of 334 

how population responses are modified by the introduction of a mask. First, it offered a 335 

straightforward test (and rejection) of a linear combination model60. The result could be 336 

easily understood as the mask moving the population activity out of its original subspace.  337 

Second, the analyses revealed that the transformation cannot be a reparameterization of 338 

the same curve, of which the 2D model is a special case62 (Fig 6C). The reason is that 339 

all reparameterizations leave the length of the curve invariant. In contrast, the mask was 340 

observed to shrink the length of the representation (Fig 5A). Third, we were able to show 341 

that the shift in the white point of the population is large compared to the radius of the 342 

curve (Fig 5C). This explains how a decoder which is unaware of such shift is bound to 343 

generate biased estimates. Finally, it clarified how a simple transformation can introduce 344 

changes in discriminability and bias in decoding (Fig 6).  345 

 346 

Our finding of a white-point shift appears to be at odds with the idea that adaptation keeps 347 

the mean population response invariant (population homeostasis)69. In our terminology, 348 

population homeostasis would have predicted that 𝜇𝑢 = 𝜇𝑚, meaning no white-point shift. 349 

We suspect the reason for this discrepancy is rooted in the stimuli used.  In the referenced 350 

study, a sequence of gratings with randomly chosen orientations was presented to the 351 

population. In one condition, the orientations were uniformly distributed; in the second 352 

condition, one orientation (the adapter) appeared more frequently than the others. In both 353 

conditions any one stimulus consists of a single grating. It is possible that such design 354 

failed to engage the plaid cells that clearly play an important role in shifting the white 355 

point. Similarly, a previous report60 selected cells to be analyzed only if their orientation 356 

tuning in response to a grating showed good selectivity (circular variance less than 0.85). 357 

Perhaps, plaid cells that were either unresponsive or weakly responsive to gratings failed 358 

to pass this criterion. The result would be biased towards gratings cells and it is possible 359 
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that a linear combination model could be satisfactory when applied to this subpopulation 360 

of neurons.   361 

 362 

Our findings indicate that analyzing the patterns of activity across large population of 363 

neurons we might be able to discover some general principles of sensory representation, 364 

including topological70 and geometrical structure, that are undetectable at the single cell 365 

level. These patterns can allow us to describe the transformations of representations in a 366 

simple way, as appeared to be the case for masking. Novel technologies that allow the 367 

recording of hundred or thousands of neurons simultaneously provide an ideal test bed 368 

for these ideas. 369 

 370 

Methods 371 

 372 

Animals: All procedures were approved by UCLA’s Office of Animal Research Oversight 373 

(the Institutional Animal Care and Use Committee) and in accord with guidelines set by 374 

the US National Institutes of Health. A total of 5 tetO-GCaMP6s mice (Jackson Labs), 375 

both male (3) and female (2), aged P35-56, were used in this study. Mice were housed in 376 

groups of 2-3, in reversed light cycle. Animals were naïve subjects with no prior history of 377 

participation in research studies. We imaged 30 different fields, and obtained data for 378 

3920 cells, for a median of 111 cells per field (range: 50 to 275). 379 

 380 

Surgery: Carprofen and buprenorphine analgesia were administered pre-operatively. 381 

Mice were then anesthetized with isoflurane (4-5% induction; 1.5-2% surgery). Core body 382 

temperature was maintained at 37.5C using a feedback heating system. Eyes were 383 

coated with a thin layer of ophthalmic ointment to prevent desiccation. Anesthetized mice 384 

were mounted in a stereotaxic apparatus. Blunt ear bars were placed in the external 385 

auditory meatus to immobilize the head. A portion of the scalp overlying the two 386 

hemispheres of the cortex (approximately 8mm by 6mm) was removed to expose the 387 

underlying skull. After the skull was exposed it was dried and covered by a thin layer of 388 

Vetbond. After the Vetbond dried (approximately 15 min), it provided a stable and solid 389 

surface to affix the aluminum bracket with dental acrylic. The bracket was then affixed to 390 

the skull and the margins sealed with Vetbond and dental acrylic to prevent infections.  391 

 392 

Imaging and signal extraction: Imaging was performed using a resonant, two-photon 393 

microscope (Neurolabware, Los Angeles, CA) controlled by Scanbox acquisition software 394 

(Scanbox, Los Angeles, CA). The light source was a Coherent Chameleon Ultra II laser 395 

(Coherent Inc, Santa Clara, CA) running at 920nm. The objective was an x16 water 396 

immersion lens (Nikon, 0.8NA, 3mm working distance). The microscope frame rate was 397 

15.6Hz (512 lines with a resonant mirror at 8kHz). We monitored locomotion using a 398 

rotary, optical encoder (US Digital, Vancouver, WA) connected to the rotation axel. The 399 
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quadrature encoder was read by an Arduino board. We performed motion stabilization of 400 

the images, followed by signal extraction and de-convolution to estimate the spiking of 401 

neurons. The details of these methods are described elsewhere51,55,71. We used the 402 

average delay (387ms) measured in reverse correlation experiments to correct for the 403 

stimulus-response delay in the data71.  404 

 405 

Visual stimulation: We measured the responses of neural populations in mouse primary 406 

visual cortex using two-photon imaging in tetO-GCaMP6s mice (Jackson Labs #024742). 407 

The visual stimulus consisted of two conditions. In the first, unmasked condition, a 408 

sinusoidal grating (50% contrast and a spatial frequency in the range 0.04–0.06cpd) was 409 

presented with an orientation that changed linearly with time 𝜃 = 𝜋𝑡/𝑇, and a period 𝑇 =410 

10s. The spatial phase of the grating was updated every 𝑇𝜙 = 783 msec by 𝜙 ← 𝜙 +411 

𝜋/2 + 𝑛, where 𝑛 was a random variable distributed uniformly  𝑛~𝑈(−𝜋/8, +𝜋/8). In other 412 

words, the grating underwent a “noisy contrast reversal” as its orientation changed 413 

continuously with time. This ensured that different spatial phases were present during 414 

different cycles of the stimulus. The unmasked condition was displayed for 15 min for a 415 

total of 90 cycles around the orientation domain. Immediately after, we added a vertical 416 

mask. The vertical mask also underwent a noisy contrast reversal with a period of 717 417 

msec. A TTL pulse was generated by an Arduino board at the beginning of each stimulus 418 

cycle. The pulse was sampled by the microscope and time-stamped with the frame and 419 

line number being scanned at that time.  420 

 421 

The screen was calibrated using a Photo-Research (Chatsworth, CA) PR-650 spectro-422 

radiometer, and the result used to generate the appropriate gamma corrections for the 423 

red, green and blue components via an nVidia Quadro K4000 graphics card. The contrast 424 

of the stimulus was 99%. The center of the monitor was positioned with the center of the 425 

receptive field population for the eye contralateral to the cortical hemisphere under 426 

consideration. The locations of the receptive fields were estimated by an automated 427 

process where localized, flickering checkerboards patches, appeared at randomized 428 

locations within the screen. This measurement was performed at the beginning of each 429 

imaging session to ensure the centering of receptive fields on the monitor. 430 

 431 

Data analysis: We computed discriminability between two angles 𝜃 and  𝜑 as follows. 432 

Consider the responses in the unmasked condition. Let 𝑟𝑢
𝑖(𝜃) be the response of the 433 

population in the i-th cycle to a given orientation and let 𝜇𝑢(𝜃) be the mean population 434 

response across all trials. We define 𝑑𝑢
𝑖 (𝜃, 𝜑) = 𝑑(𝜇𝑢(𝜃), 𝑟𝑢

𝑖(𝜑)). We then compute the 435 

indices 𝐹𝜃
𝑖 = (𝑑𝑢

𝑖 (𝜃, 𝜃) − 𝑑𝑢
𝑖 (𝜃, 𝜑))/(𝑑𝑢

𝑖 (𝜃, 𝜃) + 𝑑𝑢
𝑖 (𝜃, 𝜑)) and 𝐹𝜑

𝑖 = −(𝑑𝑢
𝑖 (𝜑, 𝜑) −436 

𝑑𝑢
𝑖 (𝜑, 𝜃))/(𝑑𝑢

𝑖 (𝜑, 𝜑) + 𝑑𝑢
𝑖 (𝜑, 𝜃)). Finally, we compute 𝐷𝑢(𝜃, 𝜑) as the difference in the 437 

means of these distributions normalized by the average standard deviation. The same 438 

calculation was applied for the masked condition.  439 
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 440 

Fitting the geometric model to experimental data. Note that the affine model in 𝑑 441 

dimensions has a total of 𝑑(𝑑 + 1) parameters.  Our data consists of 𝑠 = 155 equally 442 

spaced samples (10 sec period at 15.5 fps) of the continuous curves 𝑟𝑢(𝜃) and 𝑟𝑚(𝜃). 443 

Each sample provides 𝑑 constraints on the transform. Thus, we must have 𝑑(𝑑 + 1) ≤ 𝑑𝑠 444 

or (𝑑 + 1) ≤ 𝑠 to ensure the problem is not under-constrained. We handled this constraint 445 

by first projecting the data onto into 𝑅3 using the first three components in the SVD 446 

factorization of the data and subsequently fit the lower-dimensional embedding of the 447 

curves (Fig 6F). Note that projection is a linear operation. Thus, if the data conformed to 448 

an affine model in the high-dimensional space, it should also do it its low dimensional 449 

embedding (no matter how much distortion we are imposing by the projection). This can 450 

be easily shown using a basis set corresponding to the canonical form of the projection. 451 

The reverse, of course, it not necessarily true.      452 

 453 

Analytic computation of threshold and bias: In the simple geometric model of Fig 6C 454 

it is possible to compute the threshold and bias.  Consider a two-dimensional population 455 

code for orientation in the unmasked condition 𝑟𝑢(𝜃) = (cos 𝜃, sin 𝜃), which is transformed 456 

by a scaling and translation along the x-axis under the presence of the mask 𝑟𝑚(𝜃) =457 

(𝑎 + 𝑏 cos 𝜃, 𝑏 sin 𝜃).  Then, the velocity of 𝑟𝑚(𝜃) is 458 

 459 

‖ 𝑟𝑚
′ (𝜃)‖ =

𝑏(𝑏 + 𝑎 cos 𝜃)

(𝑎2 + 𝑏2 + 2𝑎𝑏 cos 𝜃)
 460 

 461 

The threshold will be inversely proportional to the velocity 𝑇𝑚(𝜃)  1/‖ 𝑟𝑚
′ (𝜃)‖.  Given a 462 

population direction in the masked condition, which in the plane is simply given by an 463 

angle 𝜑, a decoder without knowledge of the white point shift will estimate the orientation 464 

by measuring the angle 𝜃 formed between the population vector with respect to 𝜇𝑢 (Fig 465 

6C), which a little geometry shows it is given by 𝜃 = arctan((𝑎 + 𝑏 cos 𝜑)/ sin 𝜑).  Thus, 466 

the bias is given by 467 

 468 

𝑏𝑖𝑎𝑠(𝜑) = [arctan((𝑎 + 𝑏 cos 𝜑)/ sin 𝜑) − 𝜑 ] mod 2𝜋. 469 

 470 

 471 

  472 
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Figure Legends 473 

 474 

Fig 1. Measurement of population responses in masked and unmasked conditions. (A) 475 

Structure of the visual stimulus. Each of the lines show a single period of the stimulus in 476 

unmasked and masked conditions. (B) Samples of responses by individual neurons in 477 

both conditions. Some cells responded very well in the unmasked conditions (top traces) 478 

while others gave a weak response (bottom traces). Periods of locomotion enhanced the 479 

overall responsivity of the population (shaded regions). Traces are plotted on a z-scored 480 

scale (vertical bar = 10). Horizontal bar represents 1min of stimulation (or 6 periods of the 481 

orientation cycle). (C) Example of cell responses in unmasked and masked conditions. 482 

Each trace shows the response of a neuron over the stimulation cycle after correction for 483 

neural delay, so they can be interpreted as a sweep of the orientation tuning curve of the 484 

neuron. The dashed line indicates the orientation of the mask. Blue traces represent the 485 

responses in the unmasked condition, while red traces represent responses in the 486 

masked condition.  487 

 488 

Fig 2. Characterization of responses in single neurons. (A) Anti-correlation between 489 

responses of neurons in masked and unmasked conditions. The mean responses of cells 490 

in the unmasked condition, 𝜇𝑢, are anti-correlated with the responses in the masked 491 

condition, 𝜇𝑚. The inset shows the distribution of log2(𝜇𝑚/𝜇𝑢). Cells at the extreme of this 492 

distribution are termed grating (shaded green) and plaid (shaded pink) neurons. (B) 493 

Average tuning of grating and plaid cells in unmasked and masked conditions. The 494 

histograms show the distribution of the preferred orientation of the neurons in each case. 495 

The red traces show the average tuning of neurons in each condition. The y-axis is 496 

labeled by cell count (in black) or by the amplitude of the responses (in red).  497 

 498 

Fig 3. Characterization of population responses. (A) Responses of a population of 499 

neurons in the unmasked and masked conditions. Cells were ordered according to their 500 

preferred orientation, thus resulting in a diagonal structure. The rows for these matrices 501 

represent the population responses in the unmasked and masked conditions, 𝑟𝑢(𝜃) and 502 

𝑟𝑚(𝜃). These curves describe a close curve as 𝜃 describes one cycle. (B). The intrinsic 503 

geometry of the curves is captured by the cosine distances between the representation 504 

of two orientations in the unmasked condition, 𝑑𝑢(𝜃, 𝜑) (left panel), and unmasked 505 

condition, 𝑑𝑚(𝜃, 𝜑) (middle panel). The relative positions of the curves with respect to 506 

each other is measured by the cosine distance between 𝑟𝑢(𝜃) and 𝑟𝑚(𝜑), denoted by 507 

𝑑𝑢𝑚(𝜃, 𝜑) (right panel). (C). Schematic showing a response 𝑟𝑢(𝜃) along with the 508 

covariance matrix and the direction of the first eigenvector, 𝑣1. (D) The first 509 

eigenvector/eigenvalue captured about a third of the total energy of the noise and the 510 

direction of the first eigenvector was very close to that of the response itself. The inset 511 
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shows the distribution of the correlation coefficient between 𝑟𝑢(𝜃) and 𝑣1 for all our 512 

experiments and orientations tested.  513 

 514 

Fig 4. Multidimensional scaling of population responses in unmasked and masked 515 

conditions. Each row shows two viewpoints of the result of one experiment. The curves 516 

were obtained by doing multidimensional scaling simultaneously on the population 517 

responses in unmasked and masked conditions into 3D space using the cosine distance 518 

as a metric. The blue curve shows 𝑟𝑢(𝜃) and the red curve shows 𝑟𝑚(𝜃). The gray sphere 519 

represents the origin, and colored spheres represent the beginning of the cycle. The 520 

green arrows represent the shift in the white point between conditions. The stimuli 521 

represent the patterns at different locations on the curves for the two conditions (blue 522 

outline = unmasked condition; red outline = masked condition). 523 

 524 

Fig 5. Basic geometric properties of population representations in unmasked and masked 525 

conditions. (A) Shrinkage of the length of the curves by the introduction of the mask. 526 

Scatterplot shows the lengths of the curves in unmasked (𝐿𝑢) and masked (𝐿𝑚) 527 

conditions.  Dashed line represents the unity line.  Inset shows the distribution of 𝐿𝑚/𝐿𝑢 528 

across all experiments.  (B) Distribution of white-point shift (∆) across all experiments. (C) 529 

Measurements of the angle between 𝑟𝑚(𝜃) and the plane span {𝑟𝑢(𝜃), 𝑟𝑢(𝜋/2 )} across all 530 

experiments.  Solid line represents the mean, while the shaded area represents ± 2 SEM. 531 

 532 

Fig 6. A geometric model of masking. (A) Discriminability (d-prime) between the 533 

representation of two orientations in unmasked (left panels) and masked (middle panels) 534 

conditions. The top panels show results for one experiment, while the ones at the bottom 535 

show the average across all our experiments. Iso-performance contour for the single 536 

experiment is shown at 𝑑′ = 4.  The iso-performance contours for the average behavior 537 

is shown at levels of 𝑑′ = 4, 6, 8.  The widening in the iso-performance contours in the 538 

masked condition reflect an increase in thresholds near the mask (which has an 539 

orientation of 90 deg). This is best shown in the panels on the right, which show the 540 

dependence of thresholds in masked (red) and unmasked (blue) conditions as a function 541 

of a base angle.  In the average data the shaded areas represent ± 2 SEM. (B) Mutual 542 

distances and bias. Top panels show the mutual distance between orientations across 543 

masked and unmasked representations (𝑑𝑢𝑚) and the expected bias from a decoder 544 

based on the distances. The non-diagonal structure of  𝑑𝑢𝑚 is more evident in the average 545 

data (bottom left panel), showing the locations of the minima of the main diagonal (white, 546 

dashed line). Bottom right panel shows the average bias across all our experiments.  547 

Shaded areas represent 2 SEM. (C) Two-dimensional geometric model of population 548 

coding62. The model assumes 𝑟𝑢(𝜃) and 𝑟𝑚(𝜃) are two circles in the plane. The 549 

displacement of their centers (white points) induce changes in the mutual distances 550 

inducing corresponding changes in threshold (middle panel) and bias (right panel). (D) 551 
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The model can be extended by allowing displacement of the curves along a third 552 

dimension. (E) Two viewpoints of the same population activity in (D) but now normalized 553 

to yield 𝑟̂𝑢(𝜃) and 𝑟̂𝑚(𝜃).  (F) Fits of an affine model to low dimensional representations of 554 

𝑟̂𝑢(𝜃) and 𝑟̂𝑚(𝜃) in four different experiments. In each case, 𝑟̂𝑢(𝜃) represents the 555 

population response in the unmasked condition (blue), 𝑟̂𝑚(𝜃) represents the population 556 

response in the masked condition (red), and 𝑟̃𝑚(𝜃) is the best fit to the response in the 557 

masked condition by means of an affine transform. 558 

 559 
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